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Abstract In this paper, we introduce a new form of the
continuous relevance model (CRM), dubbed the SKL-CRM,
that adaptively selects the best performing kernel per feature
type for automatic image annotation. Previous image anno-
tation models apply a standard selection of kernels to model
the distribution of image features. Popular examples include
a Gaussian kernel for modelling GIST features or a Lapla-
cian kernel for global colour histograms. In this work, we
demonstrate that this standard assignment of kernels to fea-
ture types is sub-optimal and a substantially higher image
annotation accuracy can be attained by adapting the kernel-
feature assignment. We formulate an efficient greedy algo-
rithm to find the best kernel-feature alignment and show that
it is able to rapidly find a sparse subset of features that max-
imises annotation F1 score. In a second contribution, we
introduce two data-adaptive kernels for image annotation—
the generalised Gaussian and multinomial kernels—which
we demonstrate can better model the distribution of image
features as compared to standard kernels. Evaluation is con-
ducted on three standard image datasets across a selection of
different feature representations. The proposed SKL-CRM
model is found to attain performance that is competitive to a
suite of state-of-the-art image annotation models.
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1 Introduction

Automatic image annotation describes the algorithmic
process of assigning one or more descriptive keywords to
a digital image. For example, if we have an image of a tiger
in a jungle setting, we might expect the algorithm to assign
the keywords “Tiger”, “Grass”, “Tree” to the image. This
research field has become increasingly popular over the years
due in part to the massive growth in the availability of large
still image archives, both within industry and in private per-
sonal collections. To facilitate search and exploration of dig-
ital still image archives, each image requires a set of labels
that describe the high-level semantic content of the image.
Unfortunately, manual labelling suffers from the disadvan-
tages of not only being slow, expensive and highly subjective,
but also impossible to scale to modern multi-million image
libraries.

The social study conducted by Ames and Naaman [2]
provides an insight into the motivations that drive private
individuals to annotate their images. This study revealed a
changing opinion with regard to the usefulness of manual
image annotation, from it being nearly completely avoided
for personal offline collections through to it being warmly
embraced for online collections such as those on Flickr. The
authors revealed a taxonomy of reasons behind this increase
in motivation, with one of the most interesting being the
social incentives brought about by online libraries, where,
for example, a photographer may obtain the “satisfaction”
of having made available a highly popular (or most viewed)
photograph on the website. Despite this, many images posted
online lack high-quality descriptive labels forcing the major
search engines to rely on analysing the text in the associated
webpage to discover the semantic content of an image.

Large organisations such as newspapers and broadcast-
ers also maintain substantial still image archives. Markkula
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and Sormunen [31] studied the image archive of a Finnish
newspaper and described how archivists annotated pictures
with keywords, with journalists searching the image collec-
tion based on those keywords. These companies typically
employ teams of people to manually annotate the images.
Correct annotation of images is crucial so as to maximise
the efficiency in satisfying the needs of consumers; an incor-
rectly or insufficiently labelled image will be difficult to find
in the archive. The alternative search techniques of query by
sketch and query by example have been cited as less flexible
and user friendly1 means of querying image libraries than the
familiar query by text already employed to search document
collections.

Over the past decade, the computer vision community has
attempted to address the problem of automatic annotation
of images. The depth and breadth of the research have been
astounding, with suggested algorithms cutting right across
the entire taxonomy of machine learning models. We conduct
a thorough review of the research field in Sect. 2. In general
terms, however, image annotation can be thought of as a form
of multi-label classification of image-based data [18]. We are
given an unannotated image which is typically parsed into a
set of discriminative image features. The features from our
novel image are compared to the features of a large training
set of manually labelled images. Images in our training set
that have highly similar features, as defined by some notion
of similarity (e.g. a kernel function), have a greater chance
of propagating their associated keywords to our novel test
image.

Automatic image annotation is still very much an open
research problem, mainly due to the fact that the analysis
and understanding of images in unrestricted domains is an
extremely challenging task. Any algorithm has to surmount
the so-called semantic gap between low-level image features
(GIST, global colour histograms) and high-level concepts
(Tiger, Grass) in the images. To have any hope of doing so,
an annotation model must maintain a fine balance between
two conflicting goals: firstly, the image representation has
to be very specific so as to be able to correctly differentiate
between objects that may be easily confounded, such as sky
and sea. On the other hand, any representation must be invari-
ant to various confounding factors present in images such as
occlusions, deformation, scale, background clutter, illumina-
tion and view point variations. These latter factors can make
the same object look very different between images.

Even if we can attain a reliable mapping between low-
level image features and real-world concepts, authors such
as Enser [12] highlight fundamental limitations of any means
of automatic image annotation. Firstly, the vocabulary key-
words relate to entities that are visible within the image,

1 Users are known to find it particularly difficult to represent their image
needs via abstract image features [23].

whereas real users tend to submit search queries related to
more abstract scenarios that involve the depicted objects.
Enser illustrates this point with the query “the first public
engagement of Prince Charles” which would be difficult to
identify from content extractable by automated algorithms.
Furthermore, the generic object limitation questions the use-
fulness of generic labels for images such as “sun”, “grass”
and “tiger”: “...they have the common property of visual stim-
uli which require a minimally-interpretive response from the
viewer”. That is to say, users typically submit queries refer-
ring to objects by proper name which typically have limited
associated visual features in images. As a consequence Enser
argues that any defining textual annotations may always nec-
essarily have to be manually assigned to images.

Despite the computational and philosophical difficulties
in automating the process of image annotation, it is widely
regarded that semantic indexing of images using the current
breed of annotation algorithms, while not entirely capturing
the full conceptual properties, is still a considerable advance
over relying solely on manual annotation or having no asso-
ciated labels at all. In this paper, we focus on advancing the
state-of-the-art in automatic image annotation by proposing a
set of novel contributions that increase the labelling accuracy
of the continuous relevance model (CRM) of [26]. Our new
probabilistic model of image annotation is dubbed the Sparse
Kernel Learning Continuous Relevance Model or SKL-CRM
and makes two novel contributions to the field.

Our first contribution is a greedy algorithm for automati-
cally discovering the best kernel (e.g. Laplacian, Gaussian)
to model the similarity between a given set of image fea-
tures (e.g. GIST, global colour histograms). Our experimental
results show that this greedy algorithm is effective in finding
a sparse subset of features that maximise the image anno-
tation performance while at the same time not requiring the
computation of the derivative of the objective function. Eval-
uation of this algorithm leads to two surprising conclusions:
firstly, with just a small subset of the available features, our
model can equal and in some cases outperform competing
image annotation models in the literature; and secondly, the
standard default selection of kernels for each feature type
as commonly used in the literature is sub-optimal, and it is
much better to adapt the kernels to a given feature type for a
particular image dataset.

Our second contribution is the introduction of two data-
adaptive visual kernels for automatic image annotation: the
generalised Gaussian and multinomial kernels. The kernels
are parametrised by a shape factor that permits both to be
adapted to a specific feature set. In our experimental evalua-
tion, we show that the data-adaptive capability permits both
kernels to be substantially more effective at modelling the
distribution of image features as compared to standard ker-
nels such as the Gaussian or χ2 kernel. We envisage these
data-adaptive kernels being valuable not only for image anno-
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tation but in a plethora of other domains that employ kernels
for modelling the similarities between vectorial data [44].

The SKL-CRM combines these novel contributions in a
single, probabilistically sound model of image annotation.
We thoroughly evaluate the performance of our model against
competing models in the literature and find that it outper-
forms a wide selection, while reaching a competitive level of
performance with the state-of-the-art.

2 Related research

Automatic image annotation has been the subject of an
intense level of research over the past decade and a diverse
set of models have been suggested to tackle the problem. The
field can be usefully divided into the type of feature represen-
tation used (global feature-based or block-based), followed
by the type of statistical model (local learning, generative,
discriminative etc). All models are united in their attempt to
formulate a mapping between the low-level image features
and annotation keywords.

The global feature-based branch, also known as the scene-
based approach, exploits the properties of global image
colour and texture distributions to differentiate between
annotation keywords. These methods sidestep the commonly
error-prone segmentation of an image into distinct sub-
regions and effectively exploit earlier pyschovisual studies
that found evidence of a link between the scene category
of an image and the associated colour distribution [39]. The
global feature representation is reported to perform well in
classification tasks when the distinctive visual properties are
distributed equally throughout the image, for example, in
a city scene where strong vertical and horizontal edges are
dominant.

Prominent research within the global feature branch
include [7,20,30] and [53]. Early work, such as that of [7],
explored the applicability of a support vector machine (SVM)
classifier to predict the keyword class of images based on
extracted HSV colour histograms. In contrast, Huang et al.
[20] employed a classification tree to model the spatial cor-
relation of colours in images. More recently, Yavlinksy et al.
[53] construct a simple non-parametric kernel density model
(NPDE) based on CIELab colour features and Tamura and
Log-Gabor texture filters and demonstrate that these basic
global image properties can attain reasonable levels of anno-
tation accuracy. In a similar vein, Makadia et al. [30] intro-
duced a different feature set also consisting of colour (RGB,
HSV, LAB) and texture-based descriptors (Haar and Gabor
filters) and described a heuristic nearest neighbour-based
model for feature fusion and label prediction. The authors
established a new baseline for image annotation that exhib-
ited significantly improved performance over the then state-
of-the-art in the field.

In contrast, block/region-based image annotation intro-
duces an automatic segmentation step, such as normalised
cuts [42], before the learning stage so as to isolate real-
world objects within the images. The hope is that a good
segmentation can better resolve the presence of visual objects
within the image versus the sole use of global features.
Unfortunately, segmentation in unconstrained images is a
challenging problem and the process may sometimes fail to
extract a set of coherent objects. As a second step, the fea-
tures resulting from the segmented regions are subsequently
clustered into a discrete visual vocabulary. As indicated by
some authors [26], annotation quality is sensitive to cluster-
ing errors and depends on being able to a priori select the
right cluster granularity: selecting too many clusters results
in extreme sparseness of the space, while too few will lead us
to confuse different objects in the images. These issues with
automatic segmentation have led some authors to bypass this
step entirely and compute features over a simple regular grid,
which can in fact yield superior performance [13].

There are many examples in the literature of models that
rely on a segmentation step prior to learning. It is useful to
split this branch by the type of model used: generative mod-
els, discriminative models, nearest neighbour-based mod-
els. Generative modelling-based approaches consist of mix-
ture models and topic models. Mixture models formulate the
image annotation task as the estimation of a joint likelihood
over visual features and words. To annotate an unseen test
image, the model computes the conditional probability of
each word in the vocabulary given the visual features of
the image. A fixed number of the highest probability key-
words are used as the annotation. Influential models in this
category include the Co-occurrence model [37], the cross
media relevance model (CMRM) [22], CRM [26] and mul-
tiple Bernoulli relevance model (MBRM) [13].

One of the earliest examples of a probabilistic approach
to image annotation is the co-occurrence model of Mori
et al. [37]. The authors segment images using a simple regu-
lar grid and a probabilistic generative model is learnt based
on the co-occurrence statistics of vocabulary keywords and
the clusters derived from segmented image regions. In other
early work, the authors of [11] use a statistical machine trans-
lation model and apply EM to learn a maximum likelihood
association of words to image regions using a bi-lingual cor-
pus. A notable feature of this approach is the association of
words to image regions, in comparison to most other models
which do not specify which image sub-structure gave rise
to which word. The original pre-processed Corel 5K data-
set first made available by [11] has become a widely used
and popular benchmark of annotation systems in the litera-
ture. We denote the features arising from this dataset as the
Duygulu features in this work.

This early work was subsequently advanced by the
CMRM, a modification of relevance-based language mod-
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els within information retrieval (IR) to the task of image
annotation. The CMRM is a discrete analogue of the later
CRM and MBRM models and relies on a vector quantisation
step to cluster the set of image features to form a visual code-
book. The probabilities of drawing a word and a “blob” (clus-
tered image features) are computed using smoothed maxi-
mum likelihood estimates in this model. The CMRM demon-
strated impressive gains in annotation accuracy versus the
co-occurrence model.

The CRM [26] replaced the CMRM vector quantisation
step with direct modelling of the continuous image fea-
tures using non-parametric kernel density estimation with the
Gaussian kernel. The probability of drawing a vocabulary
keyword in this model was computed using a multinomial
distribution. The avoidance of an error prone intermediate
clustering step permitted the CRM to substantially outper-
form the CMRM on the benchmark Corel dataset, both for
image annotation and retrieval. However, the use of non-
parametric kernel density estimators placed over every train-
ing image requires large kernel distance matrices to be manip-
ulated and stored, leading to a substantial increase in the
computational load required for this model.

Feng et al. [13] later argued that the multinomial distri-
bution was inappropriate for modelling the distribution of
words for image annotation. Specifically, the multinomial
distribution focuses on the prominence rather than the pres-
ence of words in the annotation. In benchmark datasets, a
word only occurs at most once in the annotation of an image;
therefore, modelling the frequency (prominence) of words
is unnecessary. MBRM [13] tackled this issue by replacing
the multinomial distribution with multiple Bernoulli mod-
els that naturally incorporate multi-keyword annotations. In
addition, the authors partition each image into a regular grid
and compute continuous image features over these regions.
This latter technique avoids the computational expense of
a dedicated image segmentation algorithm and provides the
model with a larger set of image regions for learning the
association between regions and words. The authors report
an advancement in performance over the CRM. More specif-
ically, a large boost in performance is realised by the image
grid, with a more modest gain through the Bernoulli distri-
bution. In a subsequent paper, [25] capture the benefits of
the MBRM in the CRM by padding the annotations of each
image to a fixed length in the so-called normalised CRM
model.

A well-studied avenue of research has explored effec-
tive techniques for refining the labels produced by relevance
modelling-based approaches to image annotation by captur-
ing keyword correlation. For example, taking account of key-
word correlation should make {jungle, trees} more plausible
than {jungle, snow}. Wang et al. [46] use the CRM to capture
keyword correlation of tags. The suggested greedy method
involves adding successive tags to the set that have the largest

joint probability with the tags already in the annotation. The
authors of [55] build a graph with nodes representing the can-
didate annotations output by the CRM with weights reflecting
the similarity between the nodes of the graph. The random
walk with restarts algorithm is then applied to this fully con-
nected graph to re-rank the candidate annotations. In later
work, [50] incorporate the MBRM in a Markov random field
framework (MRFA model) so as to capture the relationship
between keywords. More recently, [34] extended the model
of [46] in their BS-CRM model, demonstrating how the right
combination of visual kernel and keyword correlation mea-
sure could yield improved annotation accuracy.

In other related work, Carneiro et al. [6] proposed the
supervised multiclass labelling (SML) technique which aims
to learn class conditional densities from the training data. The
authors frame image annotation from a multiple instance
learning perspective—in this paradigm, a model is learnt
from positive and negative bags of examples, where a bag
is a collection of localised image features. A bag is deemed
a positive exemplar if only one of the examples in the bag
is positive, and negative otherwise. The principle behind the
annotation model is that, for a given image, the positive (key-
word related) features follow a specific distribution while the
negative features (pertaining to unrelated keywords) are uni-
formly distributed. By averaging the density estimates for a
specific class, the keyword-related densities are reinforced
while the non-keyword-based densities are curtailed. Images
are modelled using a Gaussian mixture with model averag-
ing performed using mixture hierarchies to yield the required
class-conditional densities.

Topic model inspired image annotation models have been
another popular area of research within the probabilistic mod-
elling branch of the field. Annotated images are modelled as
samples from a mixture of topics, with each topic being a dis-
tribution over visual features and words. In these models, an
indirect association between blobs and words is derived via
a latent topic space. Typically, a multinomial distribution is
used for modelling the distribution of words and a Gaussian
for visual features. Exact inference in these models is usually
intractable with most approaches appealing to inference and
learning approximations to find the topic mixture per image
and the data distribution of the given topics.

The seminal work in this area can be traced back to the
Correspondence Latent Dirichlet Allocation (CorrLDA) [5],
a model that finds conditional relationships between latent
variable representations of image regions and words. The
authors demonstrate the flexibility of CorrLDA by evaluating
against the tasks of automatic image annotation, automatic
region annotation, and text-based image retrieval. This work
was further described in [4] amongst several other models
for annotated data. Unfortunately, sensitivity to model ini-
tialisation and the simplifying assumptions needed to make
inference tractable, such as assuming that the generation
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of an image region given a topic is Gaussian, have caused
these models to somewhat lag behind the competition. In
subsequent work, [51] introduced the MoM-HDP, a non-
parametric generalization of the LDA model of [4,5] using
a hierarchical Dirichlet process (HDP) that automatically
adapted the number of clusters based on the training data.

In image annotation, the overall end goal is to find the con-
ditional probability of a word given an image. This suggests
that direct modelling of the decision boundary using discrim-
inative approaches might be particularly useful for this task.
In this scenario, the task of image annotation is framed as a
classification problem where, for each word in the vocabu-
lary, a binary decision is made as to whether it should appear
as the annotation of a given image. Many types of discrimi-
native models have been used for image annotation including
support vector machines (SVMs) [52], random forest classi-
fiers [14] and passive aggressive classifiers [15].

Grangier and Bengio [15] introduced a passive aggressive
model for image retrieval (PAMIR) that directly optimises
an image ranking loss inspired by the ranking SVM [24].
Fu et al. [14] explored the applicability of a random forest-
based framework for image annotation. This model sorts the
training dataset images into the leaf nodes of multiple random
trees based on the associated visual features and keywords.
For a given test image, training images that fall into the same
leaf nodes across multiple trees form the so-called “semantic
nearest neighbours”, the top-k of which are used for labelling.
SVMs have also been popular [10,52]. For example, in [52],
a (one-vs-rest) SVM is adapted with a novel hinge loss so as
to gain specific tolerance to what the authors dub “confus-
ing labels”, i.e., labels with similar semantics, for example
{flower, plant} that should be treated as positive exemplars
in learning the decision boundary. This so-called KSVM-VT
model demonstrates competitive results to the current suite
of state-of-the-art image annotation models.

Nearest-neighbour (or local-learning) models predict key-
words by taking a weighted combination of the keyword
absence and presence among neighbouring images. Notable
work in this area includes Tagprop [17], short for tag propa-
gation. In this model, the weights of neighbouring images are
based on a set of distances computed using different similar-
ity metrics across several feature types. The optimal weighted
combination of these base distances is computed by maximis-
ing the log-likelihood of the word predictions on the training
dataset. The direct integration of metric learning within the
model was shown to substantially improve annotation per-
formance. Rather than solely build a model off either global
or local image descriptors, the authors of [17] introduced
the now de-facto standard multiple-feature image annota-
tion dataset. This dataset consists of 15 visual features rang-
ing from local shape descriptors to global colour histograms
providing a powerful standard feature set for annotation. We
refer to this feature set as the Tagprop features in this work.

In subsequent related work, Zhang et al. [54] applied group
sparse coding to the feature set of [17] in their group sparse
(GS) image annotation model. The authors demonstrated that
by carefully pruning non-informative or redundant features,
image annotation accuracy can be further increased over and
above the performance of [17].

The current state-of-the-art model for image annotation is
the two-pass k-nearest neighbour (2PKNN) model of [45].
Two key ingredients contribute to the success of this model:
dealing with the severe keyword frequency imbalance inher-
ent in the benchmark annotation datasets and maximally
leveraging the visual modality by learning a weighted com-
bination of base distances and features. To achieve key-
word balance, a unique and more balanced training dataset,
referred to as a semantic neighbourhood, is crafted per test
image based on the visual similarity of a test image to the
training dataset images. The optimal weighted combination
of feature distances and individual feature dimensions is
derived through a multi-label extension to the large-margin
nearest neighbour (LMNN) framework of [48]. The 2PKNN
model demonstrates impressive levels of annotation accuracy
through its ability to effectively exploit the visual and textual
modalities.

3 Background

The CRM [26] is a statistical model for automatically assign-
ing words to unlabelled images using a set of NJ training
images. The CRM estimates the joint probability distribution
of a set of words w = {w1 . . . wK } from a vocabulary of size
V together with an image f represented as a set of feature
vectors f = {f1. . .fM }. The modelling of the joint distrib-
ution P(w, f) of tags and image regions in this manner is
key to the model and gives it the ability to annotate images
by searching for those tags w that maximize the conditional
probability (Eq. 1).

P(w|f) = P(w, f)
P(f)

(1)

The probability P(w, f) is computed as joint expectation over
the space of distributions P(.|J ) defined by annotated images
J in the training set T :

P(w, f) =
∑

J∈T

P(J )

K∏

i=1

P(wi |J )

M∏

i=1

P(fi |J ) (2)

The annotation component P(wi |J ) is modelled using a
Dirichlet prior:

P(wi |J ) = μpv + Nv,J

μ + ∑
v

′ N
v

′
,J

(3)
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Here, Nv,J is the number of times the keyword v appears
in the annotation of training image J , pv is the relative fre-
quency that the word v appears in the training set and μ is a
smoothing parameter selected based on a held-out validation
set. The CRM feature component P(f j |J ) is modelled with
a kernel-based density estimator:

P(fi |J ) = 1

R

R∑

j=1

P(fi |f j ) (4)

Each region j = 1. . .R of the training image J instantiates
a Gaussian kernel which has bandwidth β and is centered at
the feature vector f j of that region:

P(fi |f j ) = 1√
2dπdβ

exp

{−||fi − f j ||2
β

}
(5)

Here, d denotes the dimensionality of the image feature vec-
tors and ||fi − f j || represents the Euclidean distance. The
bandwidth parameter β is optimized on a held-out portion of
the training set.

4 The SKL-CRM model

In this section, we present the proposed sparse kernel learning
(SKL) framework for the CRM, dubbed the SKL-CRM. Our
method consists of three parts: investigation into a method
for promoting the probability of rare tags in the context of
relevance modelling (Sect. 4.1), a greedy optimisation algo-
rithm for finding a pairing of features to kernels (Sect. 4.2)
and the application of the generalised Gaussian (Sect. 4.3.1)
and multinomial kernel (Sect. 4.3.2) to model the distribution
of image features.

4.1 Promoting the probability of rare words

Many benchmark image datasets have a substantial imbal-
ance between the frequent and rare keywords in the vocab-
ulary (Fig. 1). This imbalance causes many image annota-
tion models to bias their prediction to the more dominant
keywords. In the case of the CRM, this means that, when
predicting the keywords for a novel test image, the rare key-
words do not appear within the nearest neighbours of the
test image with sufficient weight and hence have a very low
likelihood of being assigned to the image. All state-of-the-art
image annotation models have a mechanism for promoting
the probability of rare words. For example, [17] train word-
specific logistic sigmoid models, one per word while [45]
craft a more balanced semantic neighbourhood for each test
image.
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Fig. 1 Zipfian distribution of vocabularly keywords in the benchmark
image datasets (log-log scale). The relative differences between the
IAPR TC-12 versus ESP-Game and Corel 5K become important in
Sect. 5.3.1

In this work, we explore a simple technique, max–min
normalisation, for promoting the probability of rare words
in the context of relevance modelling (Eq. 6).

P̂(w|f) = P(w|f) − minf ′ P(w|f ′
)

maxf ′ P(w|f ′
) − minf ′ P(w|f ′

)
(6)

Equation 6 regularises the SKL-CRM conditional proba-
bility P(w|f) (Eq. 1) and is an adaptation of a similar tech-
nique first suggested by [45] for application to local-learning-
based models. The lower the occurrence of a word in the train-
ing dataset, the greater is the amplification given by Eq. 6 to
the probability of that word’s presence in each testing image.
This technique tempers the over-confident prediction, ensur-
ing that rare words have a greater chance of appearing as
the annotation of an image.2 While conceptually simple, our
experiments show that this method of promoting the proba-
bility of rare words is just as effective as more computation-
ally expensive techniques such as learning a logistic sigmoid
model per word class as in [17].

4.2 Kernel-feature alignment algorithm

4.2.1 Problem overview

Recent image annotation models employ the feature set intro-
duced by [17], which consists of a mixture of local (SIFT,
robust hue) and global (GIST, colour histograms) image fea-

2 In preliminary experiments, we also found that z-score normalisation
has a similar effect, but for simplicity we report the max–min normali-
sation results in this paper.
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tures. Previous work uses a Gaussian kernel for GIST fea-
tures, a Laplacian kernel for the global colour histograms
and a χ2 kernel for the local SIFT-based features [17]. To the
best of our knowledge, there has been no systematic study
as to whether or not this assignment of kernels to feature
types is in fact optimal across different image datasets. As
different kernels correspond to different notions of similar-
ity, we hypothesise that assigning a specific kernel function
to a feature type has an important impact on the quality
of the resulting annotations. We argue that this commonly
accepted setting of kernels to feature types is sub-optimal
and it is better to learn the optimal kernel for each feature
type.

To test our hypothesis, we propose a kernel learning frame-
work for the CRM [26] model, dubbed the SKL-CRM. We
frame the learning problem as that of finding an optimal
alignment between a given feature type (for example, an
RGB colour histogram) and a particular kernel (for exam-
ple, a Laplacian kernel). In principle, the set of kernels could
contain any valid kernel function. In this paper, we consider
the χ2 kernel (Sect. 4.3.3), Hellinger kernel (Sect. 4.3.3)
and also two data-adaptive kernels: the generalised Gaussian
(Sect. 4.3.1) and our proposed multinomial kernel for count-
based image features (Sect. 4.3.2). Given a set of image fea-

tures of size A and a set of kernels of size B, we wish to find
a matrix � ∈ � that specifies an optimal alignment between
the two sets (Eq. 7).

� :=
⎧
⎨

⎩� ∈ {0, 1}A×B and ∀i
∑

j

�i j = 1

⎫
⎬

⎭ (7)

The alignment matrix � specifies a mapping between ele-
ments of our feature set and kernel set. We find the best
alignment �∗ by directly optimising the quality of the image
annotations it yields (Sect. 4.2.2).

An intuitive overview of our proposed algorithm is
depicted in Fig. 2. In this toy example, we wish to compute
the similarity between two images based on four different
feature types (GIST, SIFT, LAB, HSV). The contents of the
optimal alignment matrix � are also shown for clarity. To
compute the similarity between the image of the tiger and
the image of the city scene, we need to compute a kernel
function on the corresponding image features. Our greedy
algorithm finds a kernel per feature type that leads to a local
maximum in the image annotation quality. For example, in
this setup a Laplacian kernel is aligned with the LAB colour
feature which is indicated by a 1 in the appropriate cell of

;p
)

p =1

;p
)

p =15

;p
)

p =2

Fig. 2 Illustration of the greedy kernel-feature alignment algorithm on a toy example. See text for a description
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matrix �. The algorithm terminates when all available fea-
ture types have been aligned to a kernel.

4.2.2 Optimising annotation F1 score

Rather than optimise a convenient objective such as the log-
likelihood [17], we directly optimise annotation accuracy as
measured by the mean per word F1 score computed on a
held-out validation dataset. This F1 score is computed as
follows: firstly, we use the SKL-CRM to annotate the vali-
dation dataset images. The predicted tags are determined by
selecting five keywords per validation image that have the
highest P̂(w|f) (Eq. 6) with the visual feature probability
P(I |J ) given as in Eq. 8.

P(I |J ) =
M∏

i=1

R∑

j=1

exp

{
− 1

β

∑

u,v

�u,vkv(fu
i , fu

j )

}
(8)

Here, kv(fu
i , fu

j ) denotes the vth kernel function operating on
the uth feature type. Equation 8 is a principled generalisation
of the CRM visual feature probability (Eq. 4) to handle a bag
of distinct feature types. The predicted annotations can be
compared to the ground-truth annotations to compute the
F1 score: if a word wi is present in the ground-truth of ni1

images, and it is predicted for ni2 images out of which ni3 of
the predictions are correct—precision is, therefore, ni3/ni2

and recall is ni3/ni1. The F1 score over the entire vocabulary
is subsequently given as in Eq. 9.

F1 = 2

V
×

∑V
i=1(ni3/ni2) × ∑V

i=1(ni3/ni1){∑V
i=1(ni3/ni2) + ∑V

i=1(ni3/ni1)
} (9)

We optimise the objective function F1(G, P̂�) which
takes as input a ground-truth matrix G ∈ �NI ×V and a
label prediction matrix P̂� ∈ �NI ×V where each element
is P̂(w|f) (Eq. 6), NI is the number of testing images, and
returns the corresponding F1 score. The kernel-feature align-
ment � is now represented implicitly by the annotations P̂�

resulting from that alignment. The ground-truth matrix speci-
fies the true labels for each validation dataset image while the
prediction matrix P̂� gives the SKL-CRM predicted labels
for a specific kernel-feature alignment �. Our optimisation
objective can be compactly stated as in Eq. 10.

maximize
�

F1(G, P̂�)

where P̂� = promote(P�)

and P� = SW
(10)

The function promote(.) applies Eq. 6 to each element
of the label prediction matrix P� , W ∈ �NJ ×V holds the
image-word probabilities P(w|J ) and Ŝ ∈ �NI ×NJ is the

matrix of Bayesian posterior probabilities P(J |I ) given by
Eq. 11.

Ŝ = exp
{
S − {

Z × 11×NJ

}}
(11)

Here, S ∈ �NI ×NJ is the matrix of image-image likelihoods
log {P(I |J )} and Z ∈ �NI ×1 represents a normalization
vector which is also computed in log-space (Eq. 12).

Zi j = log

{
∑

J∈T

exp {log {P(I |J )}}
}

(12)

4.2.3 Greedy set-based alignment algorithm

The consequence of directly optimising the annotation F1

score is that the objective F1(G, P̂π ) is both non-smooth
and non-convex, making it difficult to maximise via gradient
ascent. To circumvent this issue, we introduce a deterministic
greedy approach to aligning each feature type with a kernel
that leads to maximisation of the F1 score. Our proposed
optimisation strategy is presented in Algorithm 1. Starting
with an empty set, this algorithm, at each iteration, greed-
ily adds the feature-kernel combination that maximises the
F1 annotation score with respect to the features and kernels
already present in the set. The parameters β (Eq. 8) and
μ (Eq. 3) are optimised individually as each new feature-
kernel combination is considered for addition to the set. We
observe rapid convergence to a local optimum typically only
after five feature-kernel combinations have been added to
the set (Sect. 5.3). To lighten the computational load at run-
time, we pre-compute the set of A × B kernel matrices so
that they may be simply looked up during the optimisation
procedure.

4.3 Discrete and real-valued kernels

In this section, we describe the set of kernels we use in our
SKL-CRM model. The kernels under consideration can be
categorised into two groups: those specialised for real-valued
features (Sect. 4.3.1) and kernels better able to model discrete
count-based features (Sects. 4.3.2, 4.3.3).

4.3.1 Generalised Gaussian kernel

We investigate replacing the Gaussian kernel in Eq. (5) with
a generalised exponential kernel based on the Minkowski
p-norm. This kernel is similar to the Minkowski kernel of
[34] and is also known as the generalised Gaussian in the sta-
tistics community.3 We will argue that the proposed kernel
is more sensitive to subtle changes in the visual appearance

3 We use Minkowski kernel and generalised Gaussian interchangeably
to refer to the same kernel in this work.
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Algorithm 1 Greedy kernel-feature alignment algorithm
1: Input: Ground-truth label matrix G.
2: Output: Optimal kernel-feature alignment matrix �∗
3: �∗ = 0
4: while �∗ changes do
5: � = �∗
6: //Find the best kernel-feature to add to the set//
7: for each a s.t. ∀i �(a, i) = 0 do
8: for for each b,μ,β do
9: �(a, b) = 1
10: if F1(G, P̂�) > F1(G, P̂�∗ ) then
11: �∗ = �

12: end if
13: �(a, b) = 0
14: end for
15: end for
16: //Optimise selected kernel-features in the set//
17: for each a s.t. ∃i �∗(a, i) = 1 do
18: � = �∗
19: �(a, i) = 0
20: for for each b,μ,β do
21: �(a, b) = 1
22: if F1(G, P̂�) > F1(G, P̂�∗ ) then
23: �∗ = �

24: end if
25: �(a, b) = 0
26: end for
27: end for
28: end while

of an image region and better capable of modelling conjunc-
tions of features than the standard Gaussian kernel. The gen-
eralised Gaussian kernel parametrised by a shape factor p is
defined as follows:

P(fi |f j ) = p1−1/p

2β�(1/p)
exp

[
− 1

p

|fi − f j |p
βp

]
, (13)

Here, �(·) denotes the gamma function and |fi − f j |p =∑D
d=1 | fi,d− f j,d |p is a generalisation of the Euclidean norm.

The summation goes over the dimensions d of the feature
vectors while p and β are positive free parameters set on a
held-out validation set. By varying the value of p, we can
obtain a broad range of different kernel functions: if p → 0
a Dirac delta function appears, if p = 1 we obtain the Lapla-
cian, if p = 2 a Gaussian is the result and if p → ∞ a uni-
form kernel is revealed. For fractional values (0 < p < 1),
we have the Minkowski family of kernels. The normalising
constant ensures that the kernel integrates to one but is not
required when implementing this kernel in the CRM given
that it drops out of the equation during the conditional prob-
ability computation (Eq. 1).

Figures 3 and 4 highlight the difference between the fami-
lar Gaussian kernel and the generalised Gaussian kernel. The
generalised Gaussian kernel for fractional values ofp is much
more sensitive to the change in a feature value compared to
the Gaussian kernel. Figure 3 illustrates this most clearly:
if we take the same step away from the mean (fi − f j ),

f
j

P
(f

i|f
j)

p=2
p=0.75

f
i

Small step
from mean

f
i
−f

j

p=2 less
sensitive

p=0.75 more
sensitive

Fig. 3 The generalised Gaussian (p = 0.75) kernel is more sensitive
to small changes in one feature compared to the Gaussian (p = 2)
kernel. If we take a small step from the mean, the p = 0.75 kernel will
undergo a larger change in output as compared to the p = 2 kernel

the output of the generalised Gaussian kernel (in this case
with p = 0.75) will be correspondingly larger compared to
the output of the Gaussian kernel. This is further illustrated
in Fig. 4. Here, the Gaussian density on the left is concave
around the mean, which makes it insensitive to small differ-
ences between the training and testing feature regions. The
generalised Gaussian (Minkowski) kernel in the middle is
convex (for p < 1), allowing it to sense subtle differences
in feature values in a way that mimics the operation of the
human visual system [19].

Perhaps more importantly, the two kernel functions greatly
differ in how they treat simultaneous deviation of multi-
ple feature values from the mean. The right part of Fig. 4
shows equidistant contours for the Gaussian kernel (dashed
lines) and the Minkowski kernel (bold lines). The coordi-
nates reflect variation in feature values 1 and 2 (e.g. colour
and texture) between the training image A and three testing
images B, C, D. The Gaussian kernel has a spherical contour
profile, so a large variation in the value of single feature 2 has
a much greater effect than simultaneous variation of feature 1
and feature 2. Under the Gaussian kernel, points B and C are
equidistant from the meanA, whereas pointD is much further.
The generalised Gaussian kernel (for p < 1) behaves very
differently: points C and D are equidistant and much further
than B, so a simultaneous small change in several features is
as important as large variations in a single feature. In other
words, the Gaussian kernel can be thought of as mimicking
a logical OR of variations in feature 1 and feature 2, whereas
the generalised Gaussian kernel is closer to a logical AND.

123



Int J Multimed Info Retr

Fig. 4 a Density functions and
equidistant contours for the
Gaussian kernel. b The
generalised Gaussian
(Minkowski) kernel for
p = 0.75. c The Minkowski
kernel is particularly sensitive
when multiple feature values
change at the same time (point
C), whereas the Gaussian is
more sensitive to large variations
in any one feature (point D)

Gaussian kernel

feature 1feature 2

Minkowski kernel with p = 0.75

feature 1

feature 1

feature 2

feature 2
(a) (b) (c)

4.3.2 Multinomial kernel

The generalised Gaussian kernel described in the previous
section forms a flexible and powerful family of distributions
for modelling the real-valued image features, such as the
Corel features of Duygulu et al. [11]. However, as we argue
in this section, this kernel is not appropriate for modelling
count-based features, which are becoming more prevalent for
describing the visual appearance of images. A particularly
relevant example of count-based descriptors are the Tagprop
features [17], which can be seen as a concatenation of 15
different types of histograms.

In this paper, we advocate a multinomial kernel for image
annotation that is specifically optimised for count-based
descriptors, and defined as follows:

P(fi |f j ) = �(
∑

d fi,d + 1)∏
d (�( fi,d + 1))

∏

d

(p j,d) fi,d (14)

Here, the products go over the bins d in the histograms,
fi,d represents the count for bin d in the unlabelled image i ,
and f j,d is the corresponding count for the training image j .
The multinomial coefficient in front of the product is inde-
pendent of the training image j , and cancels out when we
compute the conditional probability P(w|f). We use Jelinek-
Mercer smoothing for estimating the parameters p j,d of the
multinomial kernel:

p j,d = λ
f j,d∑
d f j,d

+ (1 − λ)

∑
j f j,d∑

j,d f j,d
(15)

The smoothing parameter λ is optimized on a held-out
portion of the training set.

We believe that there are two reasons why the generalised
Gaussian kernel is not appropriate for modelling count data:
(1) it is probabilistically deficient [9] and (2) it tends to under-
estimate low and zero counts. We discuss both of these rea-
sons below, and refer to Fig. 5 for a visual illustration.

(i) Model deficiency The generalised Gaussian kernel (of
which the popular Gaussian kernel is a special case)

Fig. 5 A comparison of the multinomial kernel against a Gaussian
(p-norm) kernel with the same mean and variance. The Gaussian ker-
nel underestimates the likelihood of low counts (e.g. zero count), and
devotes a significant amount of its mass to impossible observations
(negative counts), forming a probabilistically deficient model of the
data

allocates the probability mass over both positive and
negative numbers. However, negative numbers cannot
possibly result from count-based observation. When the
kernel bandwidth β is large in relation to the mean f j ,
a significant proportion of the probability density will
be wasted on events that can never be observed in our
data (negative counts). As we increase the number of
features (dimensions) in our vectors f , the probability
mass allocated to non-negative count vectors becomes
vanishingly small, so the model is increasingly deficient.
On the other hand, the multinomial kernel assigns all
the probability mass to observable events (non-negative
counts).

(ii) Low counts Count-based observations often follow
power–law behaviours and are typically distributed with
a positive skew. The generalised Gaussian kernel is natu-
rally symmetric (zero-skew), so it will always underesti-
mate the likelihood of low-positive counts. The multino-
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mial kernel has a positive skew, and will assign a higher
probability to low and zero counts (see Fig. 5 for a count
of zero).

In summary, we believe that the multinomial kernel offers
a superior way of modelling histogram-based feature vectors,
because it is specifically designed for discrete observations
(counts), does not suffer from model deficiency and properly
estimates the likelihood of low and zero counts.

4.3.3 Additive homogeneous kernels

In addition to the generalised Gaussian and multinomial
kernels, we also study two additive homogeneous kernels.
Specifically, we consider the Hellinger kernel (Eq. 16).

k(fi , f j ) =
∑

d

√
fi,d f j,d (16)

for two L1 normalised feature vectors fi and f j (i.e.∑
d fi,d = 1 and fi,d ≥ 0). In addition, we also consider

the χ2 kernel (Eq. 17).

k(fi , f j ) =
∑

d

2 fi,d f j,d

fi,d + f j,d
(17)

Both kernels are commonly used for computing histogram
distance due to their higher sensitivity to smaller bin values
as compared to the Gaussian kernel [3].

5 Experiments

5.1 Datasets

We evaluate on three standard image annotation datasets. The
datasets cover a diverse range of different image topics from
natural scenes to personal photos, logos and drawings thereby
providing a challenging test suite for evaluation. All datasets
are identical to those used in most recent image annotation
publications [17,45], thereby permitting direct comparison.
The statistics of the datasets are summarised in Table 2.

Corel 5K has for a long time been a standard benchmark
for image annotation. The dataset consists of 5,000 images
from 50 Corel Stock Photo cds. Each cd includes 100 images
on the same topic. Each image contains an annotation of 1–5
keywords. Overall there are 371 tags of which 260 occur in
the test set with an average of 3.4 keywords per image. In our
evaluation, a fixed set of 500 images are used for testing with
the remaining 4,500 images being used for training. This split
corresponds to previous related work [17].

ESP Game was originally built by Von Ahn and Dabbish
[1] from images on the Internet. The images are diverse and

cover topics such as logos, drawings, personal photos and
web page decorations (Table 1). The quality of the images
is also highly variable making this a particularly challenging
dataset for automatic annoation. There are 20,770 images in
the dataset the annotations of which were collected in the
ESP collaborative image labelling task. In ESP game, two
players assign labels to the same image without communi-
cating. Only common labels are accepted, thereby enticing
players to provide accurate tags to the images. We use the
identical subset of images as [45]. There are 18,689 images
in the training dataset and 2,081 in the test dataset, with an
average of 4.7 keywords per image.

IAPR TC-12 is a collection of 19,627 images of natural
scenes that include different sports and actions, photographs
of people, animals, cities and landscapes from South Amer-
ica (Table 1). This dataset does not exhibit variety to the same
extent as the ESP Game dataset. IAPR TC-12 was initially
published for cross-lingual retrieval [16] with each image
being accompanied by descriptions in several languages. The
raw dataset was originally processed by [30] for use in image
annotation evaluation by extracting common nouns in Eng-
lish. The resulting vocabulary consists of 291 keywords, with
an average of 5.7 keywords per image. There are 17,665 train-
ing images with the remaining 1,962 being used for testing.

5.2 Experimental methodology

To fairly compare our model performance to previously pub-
lished figures we use the identical feature set, parameter opti-
misation strategy and evaluation procedure of previous rele-
vant work [17,26,45].

5.2.1 Features

We use, without modification, the feature set introduced by
[17] in the context of their Tagprop model for image anno-
tation. The feature set consists of a mixture of 15 distinct
local and global descriptors. The local descriptors include
SIFT [29] and local hue histograms [47] both of which are
extracted densely on a multiscale grid or for Harris-Laplacian
interest points. The local descriptors are quantized using k-
means with each image being represented as a bag-of-visual-
words histogram. Global features consist of GIST [40] fea-
tures which encode the layout of the image and colour his-
tograms with 16 bins in each colour channel for the RGB,
LAB, HSV colour spaces. All descriptors except for GIST are
L1-normalised. Furthermore, all features (except for GIST)
are computed in a spatial arrangement4 [27]. In all, there is
one GIST descriptor, six colour histograms and eight bag-of-
features.

4 Features computed in a spatial arrangement are denoted with a V3H1
suffix in this paper.
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Table 1 A selection of example test images from the IAPR TC-12 and ESP Game datasets

IAPR TC-12

Racing (1.00)
Spectator (0.55)
Car (0.45)
Tree (0.44)
Man (0.39)

Tree (0.31)
House (0.20)
Pond (0.18)
Palm (0.17)
People (0.12)

Tree (0.29)
Palm (0.17)
Sky (0.14)
House (0.13)
People (0.13)

Camera (1.00)
Tennis (0.73)
Court (0.73)
Player (0.73)
Chair (0.61)

Grave (0.39)
Mummy (0.37)
Pot (0.36)
Brick (0.32)
Bone (0.18)

Cup (0.37)
Lookout (0.30)
Group (0.26)
Front (0.26)
Tourist (0.23)

ESP Game

Sky (0.27)
Grass (0.22)
Mountain (0.18)
Green (0.12)
Hill (0.09)

Person (0.51)
Hat (0.26)
Boy (0.26)
Sky (0.22)
Nose (0.19)

Shop (0.28)
Anime (0.18)
Man (0.18)
Woman (0.12)
People (0.11)

Pole (1.00)
Grass (0.75)
Dog (0.50)
White (0.50)
Man (0.00)

Road (0.59)
Sky (0.36)
Car (0.30)
Grass (0.29)
Yellow (0.28)

Blue (0.25)
Logo (0.13)
Circle (0.11)
White (0.11)
Letter (0.11)

Note the wide diversity of images between the two datasets. Below each image, we show the annotations produced our proposed SKL-CRM model.
Words in bold case appear in the ground truth annotations and the regularised scores assigned by our model are shown in brackets. Notice that in
many cases, our model predicts relevant words for an image but those words do not exist in the ground truth. This is the well-known problem of
weak-labelling that plagues the benchmark image datasets

Table 2 Statistics of the Tagprop datasets used in our experimental evaluation

Dataset # Images # Labels # Training images # Testing images Labels per image Images per label

Corel 5K 5,000 260 4,500 500 3.4, 4, 5 58.6, 22, 1004

ESP Game 20,770 268 18,689 2,081 4.7, 5, 15 326.7, 172, 4553

IAPR TC-12 19,627 291 17,665 1,962 5.7, 5, 23 347.7, 153, 4999

In columns 6 and 7, the entries are in the format: mean, median, maximum. Adapted from a similar table in [45]

5.2.2 Parameter optimization

The parameter optimisation strategy is identical for each
dataset. We are given a training dataset and a test dataset as
is used in previous work. To make clear our parameter opti-
misation strategy, we denote the training dataset provided
by [17] as the full training dataset. To create a validation
dataset for parameter tuning, we split the full training dataset
into two portions: a reduced training dataset and a valida-
tion dataset both of which are randomly sub-sampled from
the full training dataset. The reduced training dataset and
validation dataset are used to find the optimal kernel-feature
combination (Sect. 4.2).

For Corel 5K, we use the full training dataset (4,500
images) to derive the reduced training dataset (4,000 images)
and validation dataset (500 images). To ensure that the cross-
validation is computationally tractable, on the larger ESP

Game and IAPR TC-12 datasets we do not use the full
training datasets (18,869 and 17,665 images, respectively)
to derive the reduced training dataset and validation dataset.
Rather, for finding the optimal parameters for our model vari-
ants on ESP Game and IAPR TC-12, we take a random sam-
ple of 5,000 images from the full training dataset in both
cases and use 4,500 of these images as the reduced training
dataset the remaining 500 as the validation dataset.

After fixing the parameters, we again use the full train-
ing dataset to compute the annotations on the test images.
The training and testing dataset splits for all three datasets
are identical to previously published work [17,45]. The final
reported F1 score is computed by taking the parameter con-
figuration at the point where validation dataset F1 score
is maximised and then running that instance of the SKL-
CRM model on the test dataset, reporting the resulting F1

score.
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5.2.3 Evaluation procedure

We follow the standard recall and precision-based evaluation
paradigm extensively used in the literature [11]. In this sce-
nario, we are given an unseen test image I and are asked to
automatically produce an annotation wauto. The automatic
annotation is then compared to the held-out human annota-
tion wI . Given a test image, we use the SKL-CRM algorithm
to determine the five words with the highest conditional prob-
ability (Eq. 6) and call them the automatic annotation of the
image in question. Then, following [11], we compute anno-
tation recall and precision for every word in the testing set.
Recall is the number of images correctly annotated with a
given word, divided by the number of images that have that
word in the human annotation. Precision is the number of
correctly annotated images divided by the total number of
images annotated with that particular word (correctly or not).
Recall and precision values are averaged over the set of test-
ing words. In addition, we include the number of words with
recall greater than zero (denoted as N+): this metric seeks
to measure the ability of the system to label images with rare
keywords.

5.3 Experimental results

In this section, we evaluate the performance of our model on
the task of automatic image annotation. We examine three
main hypotheses:

1. HYP-1 Regularising the conditional probability using
max–min normalisation is effective at improving the
recall of rare words in the vocabulary.

2. HYP-2 Learning an optimal combination of kernels using
the data itself, owing to its different geometry over the
feature space, will outperform the standard (default)
assignment of kernels to feature types often found in the
literature [17,45].

3. HYP-3 Greedy kernel-feature alignment is more effec-
tive than learnt distance weights for combining different
disparate feature types for the purposes of image anno-
tation.

In this section, we discuss a set of experiments that we
carried out to test the hypotheses. For each experiment, we
compute a measure of statistical significance—a paired t
test—based on mean per word F1 [43]. In other words, when
comparing System A to System B, the harmonic mean of
precision and recall is computed per word and the F1 score
of identical words from System A and B form the pairs for
the t test. The t test permits us to eliminate random chance as
being responsible for any observed increase in performance.
We measure statistical significance at the 1 % level.

5.3.1 Effect of conditional probability regularisation

In Table 3, we demonstrate the effect of regularising the CRM
conditional probabilities with max–min normalisation (Eq.
6). CRM (T) is the standard CRM model (standard kernel
alignment, no conditional probability regularisation) learnt
on the Tagprop feature set (denoted by T). CRM (T + P)
denotes the same model but with conditional probability reg-
ularisation applied (denoted by P). We notice that across all
three datasets the mean per word recall, precision and num-
ber of words with recall greater than zero all substantially
increase after applying this regularisation. Importantly, the
precision does not suffer at the expense of boosting the recall
of the rarer words.

More specifically on the Corel 5K dataset, we find a 20 %
relative increase in recall, a 14 % increase in precision and
a 19 % increase in the number of words with recall greater
than zero for CRM (T + P) versus CRM (T). To test the
significance of this result, we compute a paired t test based
on per word F1 yielding a p value of p ≤ 0.00003. CRM (T +

Table 3 Annotation performance scores for various incarnations of the CRM model

COREL 5K IAPR TC-12 ESP Game

Model R P F1 N+ R P F1 N+ R P F1 N+

CRM 19 16 17 107 – – – – – – – –

CRM (T) 30 28 29 135 21 32 26 229 12 42 19 202

CRM (T + P) 36 32 34† 161 25 50 34† 266 16 42 23† 234

SKL-CRM 46 39 42‡ 184 32 51 39‡ 274 26 41 32‡ 248

CRM is the original model as reported in [26] using the feature set of [11]. CRM (T) is the CRM model using all 15 tagprop-based features [17]
(denoted with T ) and default kernel selection. CRM (T + P) is the CRM model with Tagprop features (T ) default kernel allocation and max–
min conditional probability regularisation (P). SKL-CRM is our proposed model with max–min regularisation and the adaptive kernel allocation
mechanism. There are two points to note regarding these results versus those in [35]. Firstly, through a more extensive parameter sweep, we find a
slightly better local maxima for IAPR TC-12 leading to an F1 of 39. Secondly for ESP Game, the F1 of 25 for CRM (T) on ESP Game should in
fact be an F1 of 19. This erratum is corrected in the above table. Finally, † indicates that the result is statistically significant based on a paired t test
versus CRM (T), while ‡ indicates statistical significant versus CRM (T + P)
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(a) (b) (c)

Fig. 6 Annotation quality measured in terms of mean recall (y-axis) for various incarnations of the CRM model. The labels are grouped based on
their frequency in the dataset (x-axis). The first bin corresponds to the 50 % least frequent labels and the second bin corresponds to the 50 % most
frequent labels

P), therefore, gives a statistically significant improvement in
annotation quality versus CRM (T) on the Corel 5K dataset.
For the IAPR TC-12 dataset, we find a 19 % relative increase
in recall, a 56 % increase in precision and a 16 % increase in
the number of words with recall greater than zero for CRM
(T + P) versus CRM (T). The increase in mean per word F1

is statistically significant based on a paired t test p value: p ≤
0.0001. Lastly for the ESP Game dataset, we also observe a
statistically significant (p value: p ≤ 1.0 × 10−7) increase
in per word F1 with increases of 33 % for recall and 16 % for
the number of words with recall greater than zero.

This experiment and the statistical significance of the
gains in F1 score suggest that it can be beneficial to per-
form max–min normalisation on the conditional probabil-
ities arising from a relevance model learnt on keyword
imbalanced image datasets. The impressive annotation qual-
ity gains resulting from this regularisation are particularly
appealing given the simplicity of the method. For example,
we avoid the computational expense of having to learn one
logistic regressor per keyword as in [17] but nevertheless
attain similar annotation quality.

To gain further insight into the effect of the regularisation
mechanism, we follow [45] and compute the mean recall of
the 50 % most and least frequent words in the vocabulary
both before and after applying min-max regularisation. The
results of this experiment are shown in Fig. 6. Partitioning
the vocabulary in this manner demonstrates that for Corel 5K
(Fig. 6a) and ESP Game (Fig. 6c) the regularisation [CRM
(T + P)] is both benefitting the recall of the rarer words and,
to a lesser extent, the more frequent words in the vocabulary.

In the case of IAPR TC-12 (Fig. 6b), regularisation con-
siderably improves the recall of the rarer words (by 75 %)
but at the detriment of the recall on the more frequent words
(which falls by 19 %). The effect of regularisation appears
worse for the more frequent words on IAPR TC-12. A possi-
ble explanation arises from Fig. 1—from this chart it is clear
that words considered frequent for Corel 5K and ESP Game

(e.g. frequency 50 …200) are in fact infrequent for IAPR
TC-12. Therefore, we expect that the fall in mean recall for
more frequent words on IAPR TC-12 is due to where (50 %
most frequent and least frequent words) we decided to split
the vocabularly in Fig. 6.

Across all three datasets, we can see, however, that the
SKL-CRM model, combining both the regularisation for rare
words and the adaptive kernel allocation, obtains the high-
est recall across both the rarer words and the more frequent
words. We examine the annotation performance of the SKL-
CRM model in more detail in Sect. 5.3.2. Given these results
we can confirm our first hypothesis (HYP-1) that max–min
normalisation is an effective technique for regularising the
over-confident conditional probabilities so as to lend more
weight to the rarer words in the vocabularly.

5.3.2 Standard versus data-driven kernel assignment

We now turn to our second hypothesis (HYP-2) that the stan-
dard allocation of kernels to feature types is sub-optimal. As
a reminder, it is accepted practice in the literature to compute
similarities for SIFT and hue histograms using a χ2 kernel
while a Gaussian kernel is used for GIST and a Laplacian
kernel for global colour histogram-based features. We refer
to this alignment as the standard alignment and challenge
the notion that it is optimal for all datasets in this particular
experiment.

Our results are presented in Table 3 where we show the
proposed model, the SKL-CRM, measured against three
baselines: the original CRM model with Duygulu features
[26], the CRM model using the full 15 Tagprop-based fea-
tures and standard kernel assignments [CRM (T)] and the
CRM model with max–min conditional probability regular-
isation and standard kernel assignment [CRM (T + P)]. It
should be noted that our proposed model, the SKL-CRM,
combines both greedy kernel-feature selection and max–
min conditional probability regularisation. From this table,
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we firstly observe, across all three benchmark datasets, that
the SKL-CRM outperforms the three CRM baselines across
all three evaluation metrics. For example, on the Corel 5K
dataset, the SKL-CRM attains a substantial 147 % increase
in annotation F1 over the original CRM model. Against the
CRM model on the same set of features, CRM (T), the SKL-
CRM realises a 45 % increase in annotation F1 measure.

There are three factors that contribute to the increased
performance of the SKL-CRM: (1) the Tagprop feature set,
(2) the max–min conditional probability mechanism, and (3)
the adaptive kernel allocation algorithm. It is insightful to
ascertain the proportion of this performance gain that arises
from each of these factors. Comparing CRM to CRM (T)
we can clearly see the effect of the different feature sets
on annotation performance: it is obvious that the Tagprop-
based features are a more powerful set of features than those
of Duygulu et al. [11]—simply using the CRM with these
features, we obtain a substantial increase (71 %) in annota-
tion F1 over the CRM with Duygulu features on Corel 5K.
This observation further lends weight to the notion that to
fairly ascertain the performance of a new model it must be
learnt on the same feature set as previously published mod-
els so as to zero out the effect of a more powerful set of
features.

We will examine the Corel 5K dataset first: if we com-
pare CRM (T) to the CRM (T + P) model on this dataset
we can isolate the effect of the conditional probability reg-
ularisation technique (Eq. 6). Here, we find an increase in
annotation performance over CRM (T) across all three eval-
uation metrics as has been previously noted in some detail in
Sect. 5.3.1. In a similar manner, if we compare CRM (T + P)
to the SKL-CRM, we can isolate the effect of the greedy
kernel-feature alignment algorithm. For the Corel 5K dataset,
the SKL-CRM obtains a 24 % increase in F1 measure ver-
sus CRM (T + P) which is statistically significant p value:
p≤ 3.0 × 10−7. This result demonstrates the effectiveness
of our proposed greedy algorithm. In the case of the Corel
5K dataset, it is interesting to note that 38 % of the total
increase in F1 arises from the max–min regularisation while
the remaining 62 % is due to picking the best kernel per fea-
ture type. Using both techniques (max–min normalisation,
adaptive kernel allocation) together in the SKL-CRM yields
the best overall annotation quality.

We now provide a breakdown of the performance on
the larger IAPR TC-12 and ESP Game datasets: as can be
observed in Table 3, the max–min regularisation yields a sta-
tistically significant increase in annotation F1 of 31 % for
IAPR TC-12 and 21 % for ESP Game. Comparing CRM
(T + P) to the SKL-CRM in Table 3, we observe that the
adaptive kernel allocation again yields a further increase in
annotation quality: recall for IAPR TC-12 increases by 28 %
(63 % for ESP Game), precision by 2 % and the number of
words with recall greater than zero by 3 % (6 % for ESP

Game) over CRM (T + P). For both datasets the increase in
per word F1 is statistically significant: IAPR-TC 12 p value:
p ≤ 8.0 × 10−18 and ESP Game p value: p ≤ 2.0 × 10−29.

For IAPR TC-12, we can attribute 62 % of the gain in F1

measure of the SKL-CRM versus the CRM (T) to max–min
normalisation while 38 % of the gain arrives from the adap-
tive kernel-feature alignment. In this case, properly account-
ing for the rare vocabulary keywords is marginally more
important than exploiting the visual modality. In contrast, for
ESP Game 31 % of the increase in F1 for the SKL-CRM arises
from the regularisation while 69 % comes from the adaptive
kernel allocation mechanism. As for the Corel 5K dataset, the
highest annotation quality for IAPR TC-12 and ESP Game is
attained using both max–min normalisation and adaptive ker-
nel allocation together in the form of the SKL-CRM model.
These results suggest that both the visual modalities need
to be maximally exploited by an adaptive kernel allocation
mechanism in tandem with a method which ensures that the
rarer keywords are not suppressed by the more frequent key-
words in the vocabulary. It is clear that using either method
alone is not sufficient for best performance as has been previ-
ously noted in related work [17,45]. This fact is most vividly
demonstrated by the statistically significant increase in anno-
tation quality of the SKL-CRM versus CRM (T + P) and
CRM (T) across all three benchmark image datasets.

We have so far determined that adaptive kernel allocation
can lead to gains in image annotation quality. To fully con-
firm our second hypothesis, we must ascertain the identity
of the kernel-feature alignments that give rise to the SKL-
CRM performance and compare these alignments to the stan-
dard alignment advocated in the literature. Table 4 lists the
optimal feature-kernel alignments found by our greedy algo-
rithm for all three benchmark image datasets. The observed
kernel-feature alignments provide two interesting conclu-
sions: firstly, we note the prevalence (4 out of 6 on Corel
5K, 2 out of 4 on IAPR TC-12 and 5 out of 9 for ESP Game)
of our proposed data-driven kernels amongst the alignments,
including our proposed multinomial kernel. This observation
indicates that data-adaptive kernels are much more effective
than standard kernels for computing the similarities between
the visual features. While clearly useful for image annota-
tion, given their inherent generality, we envisage that such
kernels will also find much wider application to other areas
of Computer Vision (and beyond) where feature similarity
needs to be computed.

Secondly and perhaps more importantly, we observe
that no kernel-feature assignment agrees with the standard
assignment recommended in the literature. This observation
demonstrates that is it difficult to predict, a priori, which ker-
nel is best for a given feature, justifying the need for our
greedy kernel-feature alignment algorithm. We, therefore,
confirm our second hypothesis (HYP-2) that the standard
feature-kernel assignment advocated in the literature is sub-
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Table 4 Optimal kernel-feature alignments for the three benchmark
image datasets

Feature Dataset

Corel 5K IAPR TC12 ESP Game

RGB – GG (0.70) –

RGB_V3H1 – – –

LAB – – MK (0.99)

LAB_V3H1 – – –

HSV MK (0.99) – LP

HSV_V3H1 GG (0.90) – LP

HH – –

HH_V3H1 GG (0.10) – GG (0.10)

HS GA GG (0.70) LP

HS_V3H1 GG (0.70) – –

DH – – –

DH_V3H1 – – GG (0.10)

DS LP χ2 GG (0.70)

DS_V3H1 – – GA

GIST – LP GG (0.70)

MK multinomial kernel, GG generalised Gaussian kernel, GA Gaussian
kernel, LP Laplacian kernel. The parameter settings for the given data-
adaptive kernel are given in brackets

optimal and better performance can be realised by an adaptive
allocation.

5.3.3 Greedy optimisation algorithm performance

In this section, we test our third and final hypothesis (HYP-
3) namely that adaptively assigning kernels to features is

more effective than taking a weighted sum of standard ker-
nel distances. The latter technique is employed in all previ-
ous related works to combine the distances resulting from
multiple different feature types [17,45] and it is, therefore,
instructive to examine how our proposed adaptive kernel-
feature alignment strategy fairs in comparison. To examine
this hypothesis, we firstly investigate the optimisation profile
of our greedy kernel-feature alignment algorithm as proposed
in Sect. 4.2.3.

In Fig. 7a, for Corel 5K, we show the progress of our
greedy optimisation algorithm as each new feature-kernel
alignment is added to the set. Each point on the x-axis pro-
ceeding from left to right indicates the feature that has been
selected at that particular iteration of the algorithm: so, for
example, the colour histogram HSV_V3H1 is an important
feature for Corel 5K given that it has been selected first.
Each subsequent feature can be considered the next most
important feature, and so forth. In this way, our algorithm
can essentially be interpreted as an instance of a greedy fea-
ture selection mechanism.

We observe from Fig. 7a that the SKL-CRM model attains
the maximum annotation performance of 0.434 F1 on the
validation set (0.420 F1 on the test set) after only six feature
types [HSV and HSV_V3H1, Dense SIFT (DS), Harris SIFT
(HS and HS_V3H1) and Harris Hue (HH_V3H1)] have been
added to the set. Furthermore, and quite remarkably, with just
two features the SKL-CRM reaches 90 % performance, sur-
passing Tagprop σ -ML. This trend is repeated on the IAPR
TC-12 and ESP Game datasets where we also find sparse opti-
mal solutions: for IAPR TC-12, only 4 features are required
to reach the maximum annotation F1, whereas 9 features are
required for ESP Game. We also show in Fig. 7b the value
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Fig. 7 a Corel 5K annotation F1 score versus the contents of the feature set. b ESP Game annotation F1 score versus the contents of the feature
set. Note that in b the validation dataset F1 score is substantially lower than the test dataset F1 due to the sub-sampling—see Sect. 5.2.2
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Table 5 Annotation performance resulting from adaptive weight allocation (T + P + W ) versus adaptive kernel allocation (SKL-CRM)

Model COREL 5K IAPR TC-12 ESP Game

R P F1 N+ R P F1 N+ R P F1 N+

CRM (T + P + W ) 39 37 38 166 28 52 37 271 23 41 30 248

SKL-CRM 46 39 42† 184 32 51 39† 274 26 41 32† 248

The symbol † indicates that the result is statistically significant based on a paired t test versus CRM (T + P + W )

Fig. 8 The normalised values
of weights found by coordinate
descent for each of the 15
Tagprop features. These weights
are used to combine the
distances arising from the
standard kernels in a weighted
summation in a similar manner
to the Tagprop model [17]

of F1 measure versus the set of selected features on the ESP
Game dataset while Table 4 lists the optimal alignments for
all three datasets. These results demonstrate that further fea-
tures are detrimental and our greedy optimisation algorithm
is able to effectively identify a sparse subset of features that
jointly maximise annotation performance.

We now investigate how taking a weighted sum of the
distances arising from the standard feature-kernel assign-
ment performs with respect to our proposed data-adaptive
kernel allocation. Table 5 presents the results of this exper-
iment. CRM (T + P + W ) denotes the CRM model with
conditional probability regularisation and an aggregate ker-
nel distance derived as a weighted summation of the distances
arising from the standard assignment of kernels. The weights
for each kernel were learnt by coordinate descent optimisa-
tion based on maximisation of the annotation F1 measure
on a held-out validation dataset. To ensure a fair compari-
son, the validation datasets were identical to those used for
the adaptive-kernel feature alignment algorithm. To mitigate
the effect of local minima, we used five randomly selected
coordinate sweep patterns and selected the run that led to the
maximum annotation F1 on the validation dataset.

The results of this experiment are shown in Table 5. We
observe that the SKL-CRM outperforms the adaptive weight-
ing scheme across all three benchmark datasets in terms of
annotation F1 measure, with a 11 % relative increase on Corel

5K and a more modest 5 % increase of IAPR TC-12 and 7 %
increase on ESP Game. We test the statistical significance of
these results based on a paired t test of per-word F1. For the
SKL-CRM versus adaptive weighting [CRM (T + P + W )]
on Corel 5K, we find a p value: p ≤ 0.0003, for IAPR TC-
12 a p value: p ≤ 5 × 10−9 and for ESP Game a p value:
p ≤ 0.005. We confirm our third hypothesis (HYP-3) that
the SKL-CRM adaptive kernel assignment mechanism is a
more effective means of exploiting the visual modality as
compared to a weighted summation of the distances arising
from a set of standard kernels.

In addition, we show in Fig. 8 the value of the normalised
weights per feature type across the three datasets. From this
chart, we can see the features that are most important for
each dataset: for example, for Corel 5K the colour histograms
(particularly HSV) and Dense SIFT are given a high weight-
ing. Interestingly, the greedy kernel-feature alignment algo-
rithm (Fig. 7a) similarly selects both Dense SIFT and the
spatial variant of HSV, HSV_V3H1, as the first two features,
and hence two most important features, for this dataset. For
IAPR TC-12, the Dense SIFT and GIST appear to have a
high weighting suggesting they are particularly important
for performance on this dataset. Our greedy algorithm also
finds both of these features to be within the set of four most
important features. Finally, for ESP Game, both GIST and
the HSV_V3H1 colour histogram are assigned the highest
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weight and we can see in Fig. 7b that our greedy algorithm
also considers these features key to performance on ESP
Game.

The natural question arises as to whether or not taking a
weighted summation of the distances arising from the adap-
tive kernels can yield increased performance over and above
the SKL-CRM model. In other words, would a combina-
tion of adaptive kernels and adaptive weights reap higher
annotation quality? Unfortunately, we found that the annota-
tion F1 score from both techniques combined was indistin-
guishable from simply using adaptive kernel allocation alone.
Given the near equivalence of the features chosen by the
greedy algorithm and those features assigned a high weight
in Fig. 8, we believe that the kernels themselves are acting in
some sense as weights on the features, either up-weighting
the effect of a feature type that is added in the initial early
stages of the optimisation procedure, while down-weighting
the contribution of those features added towards the end of the
optimisation.

More specifically, in our experimental results, we noticed
that a generalised Gaussian with p = 0.1, effectively a Dirac
spike, was frequently aligned to those features added in the
latter stages. In contrast, generalised Gaussian kernels with
a higher value of p (or a multinomial kernel with a high
setting of λ) were assigned to features in the early part of
the optimisation procedure. As the initial features added to
the set are responsible for the vast majority of the annota-

tion performance, we believe that the higher p-norm gener-
alised Gaussian kernels (or the multinomial kernel) are up-
weighting those features, whereas the low p-norm kernels are
suppressing the influence of those latter, and less effective,
features.

5.3.4 SKL-CRM performance versus the literature

In Table 6, we present the annotation performance of the
SKL-CRM against a broad selection of image annotation
models recently proposed in the literature. The models we
compare to span the full range of different model types cov-
ered in Sect. 2—from generative to discriminative to local-
learning-based models. Encouragingly, across all three stan-
dard image annotation benchmark datasets, we find that the
SKL-CRM either decisively outperforms or is competitive
to a wide range of existing models. This demonstrates that
our model not only outperforms previous incarnations of the
CRM but also models employing many other techniques from
the field of machine learning.

For example, on the Corel 5K dataset, we improve recall
by 9.5 %, precision by 18 % and the number of words with
recall greater than zero by 15 % with respect to the strong
baseline of Tagprop σ -ML. Tagprop σ -ML is a local learning
model that employs metric learning to find an optimal combi-
nation of base kernels and word-specific logistic sigmoids to
boost the probability of rare words [17]. Our superior perfor-

Table 6 Performance of the SKL-CRM model against a wide range of recent annotation models on three benchmark image annotation datasets
(Corel, IAPR TC-12 and ESP game)

Model COREL 5K IAPR TC-12 ESP Game

R P F1 N+ R P F1 N+ R P F1 N+

CRM [26] 19 16 17 107 – – – – – – – –

MBRM [13] 25 24 25 122 23 24 23 223 19 18 18 209

InfNet [32] 24 17 20 112 – – – – – – – –

NPDE [53] 21 18 19 114 – – – – – – – –

BS-CRM [34] 27 22 24 130 22 24 23 250

SML [6] 29 23 26 137 – – – – – – – –

TGLM [28] 29 25 27 131 – – – – – – – –

JEC [30] 32 27 29 139 29 28 28 250 25 22 23 224

Tagprop SD [17] 33 30 31 136 20 50 29 215 19 48 27 212

MRFA [50] 36 31 33 172 – – – – – – – –

GS [54] 33 30 31 146 29 32 30 252 – – – –

RF-opt [14] 40 29 34 157 31 44 36 253 26 41 32 235

CCD (SVRMKL+KPCA) [38] 41 36 38 159 29 44 35 251 24 36 29 232

KSVM-VT [52] 42 32 36 179 29 47 36 268 32 33 33 259

FastTag [8] 43 32 37 166 26 47 34 280 22 46 30 247

Tagprop ML [17] 37 31 34 146 25 48 33 227 20 49 29 213

Tagprop σML [17] 42 33 37 160 35 46 40 266 27 39 32 239

SKL-CRM (this work) 46 39 42 184 32 51 39 274 26 41 32 248
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Table 7 Comparison of the SKL-CRM model against the current state-of-the-art model (2PKNN)

Model COREL5K IAPRTC-12 ESPGame

R P F1 N+ R P F1 N+ R P F1 N+

2PKNN [45] 40 39 40 177 32 49 39 274 23 51 32 245

2PKNN-ML [45] 46 44 45 191 37 54 44 278 27 53 36 252

SKL-CRM (this work) 46 39 42 184 32 51 39 274 26 41 32 248

mance to Tagprop σ -ML on this dataset further demonstrates
that learning an optimal combination of kernels can be more
effective than learning an optimal combination of weights
for the default base kernels. Table 6 also presents results on
the IAPR TC-12 and ESP Game datasets. We find that the
SKL-CRM is also competitive to recently proposed models
on these two much larger datasets. For example, on IAPR
TC-12 we obtain very similar performance to Tagprop σ -
ML, while decisively outperforming the strong benchmark
random forest model (RF-opt) [14] by 8 % F1, the FastTag
model [8] by 15 % F1 and the more recently proposed SVM-
based annotation model (KSVM-VT) [52] by 8 % F1. On
ESP Game results are competitive to Tagprop σ -ML, RF-opt
and KSVM-VT while outperforming FastTag by 7 % F1.

The state-of-the-art image annotation model is currently
the two-pass KNN (2PKNN) model of [45]. As touched upon
in Sect. 2, this model employs a large-margin nearest neigh-
bour metric learning algorithm to learn weights on both the
features and distances while balancing the distribution of
words by inducing a unique, balanced training set, per test
image. While 2PKNN achieves impressive levels of anno-
tation quality (Table 7), the methods employed for exploit-
ing the visual and textual modalities exhibit some disadvan-
tages. For the textual modality, a test image-specific subset
of the training dataset has to be constructed for every test
image leading to an increase in the computational demands
when annotating novel images. The SKL-CRM uses a single
training dataset for all test images eliminating this issue. In
addition, for the visual modality, the 2PKNN metric learning
algorithm requires multiple random initialisations (five are
used in the original work) making it computationally expen-
sive to obtain the best quality annotations—in contrast our
greedy algorithm is deterministic. Furthermore, it is not clear
how sparse the weights are in 2PKNN and whether a signifi-
cant proportion of the features can be discounted. Our greedy
algorithm explicitly targets sparsity by greedily finding the
best performing subset of features. This sparsity substan-
tially reduces the complexity of our model at test time while
also outperforming other sparsity-based annotation models
such as the model of [54]. Finally, as our greedy algorithm is
coordinate descent based it is, therefore, straightforward to
parallelise (namely lines 7–15 in Algorithm 1) for application
to larger image datasets [41].

6 Conclusions

In this paper, we introduced a Sparse Kernel Learning (SKL)
framework for the CRM. The SKL-CRM model incorporates
a greedy kernel-feature alignment algorithm which, at each
iteration, determines the best kernel for a given image feature
type. The alignment is chosen based on how well, in terms
of annotation F1 measure, that feature-kernel alignment per-
forms in combination with a set of previously aligned fea-
tures. In our experimental validation, we observed that this
greedy alignment algorithm is able to reach an impressive
level of annotation performance using only a sparse subset
of the available features. This sparse feature representation
provides storage and processing advantages over comparable
models at test time, while in many cases surpassing recent
image annotation models.

Experimental validation of the SKL-CRM brought four
further several interesting findings: firstly, data-adaptive ker-
nels, such as the generalised Gaussian and our proposed
multinomial kernel are more effective for image annotation
than standard kernels such as the Gaussian or χ2 kernels.
Secondly, it is impossible to predict a priori which particular
kernel is appropriate for a given feature type. In most previ-
ous work it is assumed, for example, that the Gaussian kernel
is the most appropriate for the GIST feature, while colour
histogram features can be best exploited with the Laplacian
kernel. In this paper, we demonstrated that this assumption
is flawed, and in fact it is much better to learn the appropri-
ate kernel for a given feature based on the image data itself.
Thirdly, in the context of relevance model-based image anno-
tation, we found that a data-adaptive kernel-feature alignment
was more effective than taking a weighted sum of distances
arising from the standard set of kernels. Lastly, we found no
additional benefit in learning a weighted combination of the
optimal kernel-feature alignments.

There are a number of fruitful avenues for future research
in this area. Firstly, the SKL-CRM is currently limited to a
single kernel per feature type. We would like to investigate
a continuous relaxation of this discrete alignment constraint
that permits more than one kernel to be assigned to a given
feature. In addition, the SKL-CRM alignment is currently
identical for every keyword in the vocabulary. Having a spe-
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cific alignment of kernels to feature types for each word in the
vocabulary would be an interesting route for future research.

Secondly, the SKL-CRM is limited to fairly small image
datasets of the order of 20k images. This limitation arises
from the need to store and manipulate large kernel distance
matrices arising from placing a non-parametric kernel den-
sity estimator over every training image. At the same time,
multi-million image datasets such as ImageNet are becom-
ing popular in the literature [49]. To annotate at such scale
approximate nearest neighbour (ANN), search techniques
could be employed to more efficiently find the k-nearest
neighbours of each test image [21,36]. It would be interest-
ing to determine the accuracy scalability trade-off resulting
from a hashing-based ANN search method.

Lastly, it is becoming more apparent that the Tagprop fea-
ture set of [17], while being powerful in its own right, has
been exploited to its near-fullest by the current breed of anno-
tation models. A new, more powerful, set of image features
may be needed now so as to push the mean per word recall
and precision on the three standard benchmark datasets to
higher levels. For example, it would be interesting to explore
mid-level or high-level structured image features (in terms
of parts for example) that capture semantic concepts beyond
the basic visual cues offered by low-level features such as
SIFT [33].
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