Multi-modal retrieval using binary hashcodes

- **Research Question**: Can learning binary hashcodes for cross-modal data-points enable efficient and effective multi-modal retrieval?
- **Approach**: we learn hyperplanes that split both feature spaces (e.g. text, image descriptors) into buckets so that similar cross-modal data-points fall into the buckets labelled with the same hashcodes.

Hashing-based approximate nearest neighbour search

- **Problem**: Nearest Neighbour (NN) search in multi-modal datasets.
- **Hashing-based approach**:
 - Generate a similarity preserving binary hashcode for query.
 - Use the fingerprint as index into the buckets of a hash table.
 - If collision occurs only compare to items in the same bucket.

- **Hashtable buckets are the polytopes formed by intersecting hyperplanes in the word and image descriptor feature spaces.**
- **This work**: learn hyperplanes to encourage collisions between similar multi-modal data-points.

Regularised Cross-Modal Hashing (RCMH)

- **Step A**: Use LSH [1] to initialise word bits \(B \in \{ -1, 1 \}^{N \times K} \)
 - \(N \): # data-points, \(K \): # bits
- **Repeat for \(M \) iterations**:
 - **Step B**: Graph regularisation, update the bits of each data-point to be the average of its neighbours:
 \[
 B \leftarrow \text{sgn} \left(\alpha \text{SD}^{-1} B + (1-\alpha) B \right)
 \]
 - \(* \in \{ 0, 1 \}^{N \times N} \): adjacency matrix, \(D \in \mathbb{Z}_+^{N \times N} \) diagonal degree matrix, \(B \in \{ -1, 1 \}^{N \times K} \): bits, \(\alpha \in [0, 1] \): interpolation parameter, \(\text{sgn} \): sign function
 - **Step C**: Word data-space partitioning, learn hyperplanes that predict the \(K \) word bits with maximum margin
 \[
 \min \| f_i \|^2 + C \sum_{i=1}^N \xi_{ik} \quad \text{s.t.} \quad B_{ik} (f_i^T a_i + b_k) \geq 1 - \xi_{ik} \quad \text{for} \ i = 1 \ldots N
 \]
 - \(f_i \in \mathbb{R}^D \): word hyperplane, \(b_k \in \mathbb{R} \): bias, \(a_i \in \mathbb{R}^D \): word descriptor, \(B_{ik} \): bit for word data-point \(a_i \), \(\xi_{ik} \): slack variable
 - **Step D**: Update \(B \):
 \[
 b_k \leftarrow \text{sgn} (f_i^T a_i + b_k)
 \]
 - Use the learnt hyperplanes \(\{ f_i, g_k \}_{k=1}^K \) to generate hashcodes

Step B: Graph Regularisation (bit smoothing)

- Set word bits of each data-point to be the average of its neighbours:

Step C: Learning the hashtable buckets (hyperplanes)

- Word hyperplanes \(f_1, f_2 \) learnt using bit 1 (green), bit 2 (red) as labels:
- Visual hyperplanes \(g_1, g_2 \) learnt using same regularised bits:

Results: Retrieval effectiveness and efficiency

- Retrieval evaluation on two standard multi-modal (text,image) datasets. Image query used to retrieve documents, and vice-versa.
- Retrieval on NUS-WIDE (left). Timing on Wiki dataset (right).

Conclusions and References

- New effective and efficient iterative model for cross-modal hashing
- Hashcode bits smoothed over using adjacency graph are used to learn hashable buckets (hyperplanes) in word and image space.
- Extend to high volume data stream and cross-lingual retrieval.

References

Our model more effective and efficient than competitive baselines.