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LEARNING THE HASHING THRESHOLDS AND HYPERPLANES

• Research Question: Can learning the hashing quantisation thresh-
olds and hyperplanes lead to greater retrieval effectiveness than
learning either in isolation?

• Approach: most hashing methods consist of two steps: data-point
projection (hyperplane learning) followed by quantisation of those
projections into binary. We show the benefits of explicitly learning
the hyperplanes and thresholds based on the data.

HASHING-BASED APPROXIMATE NEAREST NEIGHBOUR SEARCH

• Problem: Nearest Neighbour (NN) search in image datasets.
• Hashing-based approach:

– Generate a similarity preserving binary hashcode for query.
– Use the fingerprint as index into the buckets of a hash table.
– If collision occurs only compare to items in the same bucket.
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• Hashtable buckets are the polytopes formed by intersecting hyper-
planes in the image descriptor space. Thresholds partition each
bucket into sub-regions, each with a unique hashcode. We want
related images to fall within the same sub-region of a bucket.

• This work: learn hyperplanes and thresholds to encourage colli-
sions between semantically related images.

PART 1: SUPERVISED DATA-SPACE PARTITIONING

• Step A: Use LSH [1] to initialise hashcode bits B ∈ {−1, 1}Ntrd×K

Ntrd: # training data-points, K: # bits

• Repeat for M iterations:

– Step B: Graph regularisation, update the bits of each data-point
to be the average of its nearest neighbours

B← sgn
(
α SD−1B+ (1−α) B

)
∗ S ∈ {0, 1}Ntrd×Ntrd : adjacency matrix, D ∈ ZNtrd×Ntrd

+ di-
agonal degree matrix, B ∈ {−1, 1}Ntrd×K : bits, α ∈ [0, 1]:
interpolation parameter, sgn: sign function

– Step C: Data-space partitioning, learn hyperplanes that predict
the K bits with maximum margin

for k = 1. . .K : min ||wk||2 + C
∑Ntrd

i=1 ξik

s.t. Bik(w
ᵀ
kxi) ≥ 1− ξik for i = 1. . .Ntrd

∗ wk ∈ <D: hyperplane, xi: image descriptor, Bik:
bit k for data-point xi, ξik: slack variable

• Use the learnt hyperplanes
{
wk ∈ <D

}K
k=1

to generate K projected

dimensions:
{
yk ∈ <Ntrd

}K
k=1

for quantisation.

PART 2: SUPERVISED QUANTISATION THRESHOLD LEARNING

• Thresholds tk = [tk1, tk2, . . . , tkT ] are learnt to quantise projected
dimension yk, where T ∈ [1, 3, 7, 15] is the number of thresholds.
• We formulate an F1-measure objective function that seeks a quan-

tisation respecting the contraints in S. Define Pk ∈ {0, 1}Ntrd×Ntrd :

P kij =

{
1, if ∃γ s.t. tkγ ≤ (yki , y

k
j ) < tk(γ+1)

0, otherwise.

• γ ∈ Z ∈ 0 ≤ γ ≤ T . Pk indicates whether or not the projec-
tions (yki , y

k
j ) fall within the same thresholded region. The algorithm

counts true positives (TP), false negatives (FN) and false positives (FP):

TP =
1

2
‖P ◦ S‖1 FN =

1

2
‖S‖1 − TP FP =

1

2
‖P‖1 − TP

• ◦ is the Hadamard product, ‖.‖1 is the L1 matrix norm. TP is the
number of +ve pairs in the same thresholded region, FP is the −ve
pairs, and FN are the +ve pairs in different regions. Counts com-
bined using F1-measure optimised by Evolutionary Algorithms [3]:

F1(tk) =
2‖P ◦ S‖1
‖S‖1 + ‖P‖1

ILLUSTRATING THE KEY ALGORITHMIC STEPS
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(a) Initialisation
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(b) Regularisation
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(c) Partitioning
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(d) Quantisation

EXPERIMENTAL RESULTS (HAMMING RANKING AUPRC)

• Retrieval evaluation on CIFAR-10. Baselines: single static threshold
(SBQ) [1], multiple threshold optimisation (NPQ) [3], supervised
projection (GRH) [2], and variable threshold learning (VBQ) [4].
• LSH [1], PCA, SKLSH [5], SH [6] are used to initialise bits in B
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SBQ NPQ GRH VBQ GRH+NPQ

LSH 0.0954 0.1621 0.2023 0.2035 0.2593

SH 0.0626 0.1834 0.2147 0.2380 0.2958

PCA 0.0387 0.1660 0.2186 0.2579 0.2791

SKLSH 0.0513 0.1063 0.1652 0.2122 0.2566

• Learning hyperplanes and thresholds (GRH+NPQ) most effective.

CONCLUSIONS AND REFERENCES

• Hashing model that learns the hyperplanes and thresholds. Found
to have highest retrieval effectiveness versus competing models.
• Future work: closer integration of both steps in a unified objective.
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