
Journal of Artificial Intelligence Research 1 (1993) 1-15 Submitted 6/91; published 9/91

A Primer on Machine Learning Models for Hashing-Based
Approximate Nearest Neighbour Search

Sean Moran sean.j.moran@gmail.com

Edinburgh, Scotland

Abstract

Nearest neighbour search is the problem of finding the most similar data-points to a
query in a large database, and is a fundamental operation that has found wide applicability
in many fields, from Bioinformatics, through to Natural Language Processing (NLP) and
Computer Vision. This survey reviews a host of important approximate nearest neighbour
search algorithms that permit constant-time retrieval of nearest neighbours, independent of
the dataset size. Typically these algorithms generate similar binary hashcodes for similar
data-points, with these hashcodes then used as the indices into the buckets of hashtables,
yielding a query time that is substantially improved over an exhaustive comparison. In
this survey we explore a host of recently proposed approximate nearest neighbour search
algorithms that improve retrieval effectiveness by learning task specific binary hashcodes.
We categorise the field according to the standard two-step pipeline employed by many
existing hashing models, namely projection and quantisation. The generation of a binary
hashcode comprises two main steps carried out sequentially: projection of the data feature
vector onto the normal vectors of a set of hyperplanes that fracture the input feature
space followed by a quantisation operation that thresholds the projections to generate the
binary hashcodes. The degree to which these two operations preserve the relative distances
between the data-points in the input feature space has a direct influence on the effectiveness
of using the resulting hashcodes for the task of nearest neighbour search. This review
departs from the broad and shallow approach of recent surveys by going into considerable
depth on the details of a few carefully handpicked hashing models, forming a useful primer
of the main concepts for those entering the field and a reference for more established
researchers and practitioners alike. An extendible living literature review accompanies this
survey and be found at http://learning2hash.github.io.

1. Introduction

The strong growth of the World Wide Web (WWW) over the past two decades has brought
with it a phenomenal increase in the amount of image, video and text based data being
collected, stored and shared across the world. This phenomenon has been fuelled by the
popularity of social media networks, cheap disk storage and the wide availability of Internet-
enabled smartphones. For example it has been estimated that Facebook has in the order of
300 million images uploaded per day1, YouTube receives 10 years worth of content per day2

and there are now estimated to be well over 1 trillion web pages3 in existence (Murphy,
2012). Figure 1 illustrates the explosive growth of images being uploaded onto popular social
media websites and applications during the period 2005-2014. The trend towards real-time

1. Velocity 2012: Jay Parikh, “Building for a Billion Users”
2. http://www.youtube.com/yt/press/en-GB/statistics.html

3. http://googleblog.blogspot.co.uk/2008/07/we-knew-web-was-big.html

c©1993 AI Access Foundation. All rights reserved.

Moran

Figure 1: The amount of images being uploaded to popular social media websites (Face-
book, Flickr) and mobile applications (Instagram, SnapChat, WhatsApp) has undergone a
dramatic growth since 2005. Efficient algorithms for searching through such large image
datasets are needed now more than ever. This chart has been copied directly from slide
62 of the talk “Internet Trends 2014 - Code Conference” given by the venture capitalist
Mary Meeker of Kleiner Perkins Caufield Byers (KPCB): http://www.kpcb.com/blog/

2014-internet-trends.

video sharing over the Internet with applications such as Periscope, involving a medium
that is many times the size of individual images or documents, will severely exacerbate
this torrent of data. In the near-term future the emergence of the Internet-of-Things (IoT)
and Smart Cities promise to add further fuel to this fire, hinting at a connected society
in which Internet linked sensors embedded in everyday objects, such as CCTV cameras
and thermostats, produce an abundance of data that is automatically captured, stored
and analysed so as to produce actionable insights for interested citizens and government
stakeholders (Albakour, Macdonald, & Ounis, 2015). The sheer scale of the data being
produced around the world brings with it a need for computationally efficient algorithms
that ensure the storage requirements and processing overhead do not grow with the quantity
of the data being produced.

In this survey we review the latest methods for performing fast nearest neighbour (NN)
search, in which the goal is to find the most similar data-point(s) to a query in a large
database without exhaustively comparing the query to all data-points. Similarity is typi-
cally judged by representing the data-points as fixed dimensional vectors in a vector space
and computing a distance metric such as the Euclidean or cosine distance. In this case
data-points with a sufficiently low distance are judged to be nearest neighbours. Due to its
generality and usefulness nearest-neighbour search finds application in many areas of Sci-

2

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

ence, ranging from the field of Information Retrieval (IR) where we wish to find documents
relevant to a query, to the problem of genomic assembly in the field of Bioinformatics. The
näive way to solve the nearest-neighbour search problem would be to compare the query
to every data-point in the database, a method known as brute-force search. Brute-force
search is only feasible in relatively small databases where performing the number of re-
quired comparisons between the data-points remains computationally tractable. Given the
linear scaling of the query time with respect to the dataset size it is impossible to exhaus-
tively search large-scale datasets consisting of millions to billions of data-points for nearest
neighbours in a reasonable amount of time. This problem is compounded in the streaming
data scenario where data-points need to be processed sequentially in real-time with po-
tentially no end to the amount of incoming data. To efficiently find nearest-neighbours in
large-scale datasets, algorithms are required that offer a query time that is independent of
the dataset size.

Hashing-based approximate nearest neighbour (ANN) search methods are a popular
class of algorithms that permit the nearest neighbours to a query data-point to be retrieved
in constant time, independent of the dataset size. Hashing has proved to be an extremely
useful method for ANN search over high-dimensional, large-scale datasets that are preva-
lent in the modern data-rich world. Hashing permits constant time search per query by
condensing both the database and the query into fixed-length compact binary hashcodes
or fingerprints. The hashcodes exhibit the neighbourhood preserving property that similar
data-points will be assigned similar (low Hamming distance) hashcodes. Crucially, unlike
cryptographic hash functions such as MD5 or SHA-1, the data-points need not be identical
to receive matching hashcodes. Rather the degree of similarity between the hashcodes is
a direct function of the similarity between the feature representation of the data-points.
This property is particularly ideal for the task of image retrieval where we rarely wish to
find only those images that are identical down to the pixel level. Most people would deem
two images to be related even if the semantically equivalent objects (e.g. a tiger) depicted
in both images are in widely different poses, and therefore the images have a completely
different pixel consistency.

This similarity preserving property enables the hashcodes to be used as the keys into
the buckets of hashtables so that similar, but not necessarily identical, images will collide
in the same buckets (Figure 2). This is a rather different use-case to the typical application
of hashtables in Computer Science in which it is imperative to avoid collisions between non-
identical data-points. In hashing-based ANN search we are actively encouraging collisions
between similar data-points. The bucketing of the data-points drastically reduces the com-
putational overhead of nearest neighbour search by reducing the number of comparisons
that are required between the data-points: at query time we need only compare our query
to those data-points colliding in the same buckets. There is no free lunch however as we
pay for the reduced query time with a non-zero probability of failing to retrieve the closest
nearest neighbours in the case where they happen to fall in different buckets. Nevertheless
this quantifiable non-zero false negative probability turns out to be an acceptable trade-off
in many application areas in which sub-optimal nearest neighbours can be almost as good
as finding the exact nearest neighbour (Dean, Ruzon, Segal, Shlens, Vijayanarasimhan, &
Yagnik, 2013; Petrović, Osborne, & Lavrenko, 2010).

3

Moran

110101

010111

111101

H

H

 Content Based IR

 Image: Imense Ltd

 Image: Doersch et al.

 Image: Xu et al.

Location Recognition

Near duplicate detection

010101

111101

.....

Query

Database

Query

Nearest
Neighbours

Hashtable

 Compute
 Similarity

Figure 2: Nearest neighbour search with hashcodes. Similarity preserving binary codes
generated by a hash function H can be used as the indices into the buckets of a hashtable
for constant time search. Only those images that are in the same bucket as the query
need be compared thereby reducing the size of the search space. The focus of the learning-
to-has field is learning the hash function H to maximise the similarity of hashcodes for
similar data-points. On the right-hand side we present examples of tasks for which nearest
neighbour search has proved to be fundamental: from content-based information retrieval
(IR) to near duplicate detection and location recognition. The three images on the right
have been taken from Imense Ltd (http://www.imense.com) and (Doersch et al., 2012),
(Xu et al., 2010), (Grauman & Fergus, 2013).

Hashing-based ANN has also shown great promise in terms of efficient query processing
and data storage reduction across a wide range of interesting application areas within IR
and Computer Vision. For example Petrović et al. (Petrović et al., 2010) present an efficient
method for event detection in Twitter that scales to unbounded streams through a novel
application of Locality Sensitive Hashing (LSH), a seminal randomised approach for ANN
search (Indyk & Motwani, 1998). In the streaming data scenario of (Petrović et al., 2010)
the O(N) worst case complexity of inverted indexing is undesirable, motivating the use
of LSH to maintain a constant O(1) query time4. Hashing-based ANN has also proved

4. This is only true if we ignore the hashing cost (cost of generating the hashcode) and assume that each
database data-point goes into its own hashtable bucket. In practice the LSH computational cost for
a single hashtable and a single data-point is a sum of the hashing cost (O(KD)), lookup cost (O(1))
and the candidate test cost (O(ND/2K)), where K is the hashcode length and assuming a uniform

4

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

particularly useful for search over dense and much lower dimensional (compared to text)
feature vectors, such as GIST (Oliva & Torralba, 2001), that are commonly employed in the
field Computer Vision. In one recent application of LSH within Computer Vision, similarity
preserving hashcodes have been successfully used for fast and accurate detection of 100,000
object classes on just a single machine (Dean et al., 2013).

The ANN search hashing models we survey all partition the input feature space into
disjoint regions with a set of hypersurfaces, either linear (hyperplanes) or non-linear. In
the case of linear hypersurfaces the polytope-shaped regions formed by the intersecting
hyperplanes constitute the hashtable buckets (Figure 3). The hashtable key for a data-
point is generated by simply determining which side of the hyperplanes the data-point
lies. Depending on which side it falls a ‘0’ or a ‘1’ is appended to the hashcode for that
data-point. By repeating this procedure for each hyperplane we can build up a hashcode
for each data-point that is the same length as the number of hyperplanes partitioning
the space. Intuitively, the hashcode can be thought of as an identifier that captures the
geometric position of the data-points within the input feature space with each bit encoding
the position of the data-point with respect to a given hyperplane. Algorithmically this
hashcode generation procedure can be accomplished in two separate steps performed in
a pipeline: projection followed by quantisation. This procedure is illustrated with a toy
example in Figure 3. Projection involves a dot product of the feature vector representation
of a data-point onto the hyperplane normal vectors positioned either randomly or in data-
aware positions in the feature space. The hyperplanes should ideally partition the space
in a manner that gives a higher likelihood that similar data points will fall within the
same region, and therefore assigned the same hashcode. In the second step the real-valued
projections are quantised into binary (‘0’ or ‘1’) by thresholding the corresponding projected
dimensions5 typically with a single threshold placed at zero for mean centered data.

Despite the success and wide application of algorithms for hashing-based ANN search
there still remains considerable downsides to the manner in which the projection and quanti-
sation steps are typically performed. Locality Sensitive Hashing (LSH), one of the arguably
most well-known and widely applied methods for hashing-based ANN search, sets the hash-
ing hyperplanes and the quantisation thresholds in a manner that is independent of the
distribution of the data. For example, in the variant of LSH for preserving the cosine sim-
ilarity, the normal vectors of the hashing hyperplanes are randomly sampled from a zero
mean unit variance multidimensional Gaussian distribution. This data-oblivious mecha-
nism for generating the hashing hypersurfaces runs a high risk of separating dense areas
of the feature space and therefore partitioning related data-points into different hashtable
buckets (e.g. points a and b in Figure 3). To ameliorate this low recall problem a typical
LSH deployment involves partitioning the data with multiple independent hashtables and
presenting the union of all the data-points in the colliding hashtable buckets as candidate
nearest neighbours. Unfortunately, the greater the number of hashtables the higher the

distribution of data-points to buckets. Observe that there is a trade-off between the hashing cost and
the candidate test cost, both of which are dependent on K. For example, in the situation where the
data-points are evenly distributed into their own hashtable bucket (N = 2K), the total computational
cost for LSH is actually sub-linear (O(D logN)).

5. We define a projected dimension as the collection of the real-valued projections (dot products) of all
data-points onto the normal vector to a hyperplane.

5

Moran

y

w2

w1

h1

h2

00

10 11

01

x

a

b

(a) Projection

w1

w2Projected Dimension #2

Projected Dimension #1

t1

t 2

10

10

b a

a b

(b) Quantisation

Figure 3: The projection and quantisation operations. In Figure (a) a 2D space is parti-
tioned with two hyperplanes h1 and h2 with normal vectors w1,w2 creating four buckets.
Data-points are shown as coloured shapes, with similar data-points having the same colour
and shape. The hashcode for each data-point is found by taking the dot-product of the
feature representation onto the normal vectors (w1, w2) of each hyperplane. The resulting
projected dimensions are binarised by thresholding at zero (Figure (b)) with two thresh-
olds t1, t2. Concatenating the resulting bits yields a 2-bit hashcode for each data-point
(indicated by the unfilled squares). For example the projection of data-point a is greater
than threshold t1 and so a ‘1’ is appended to its hashcode. Data-point a’s projection onto
normal vector w2 is also greater than t2 and so a ‘1’ is further appended to its hashcode.
The hashcode for data-point a is therefore ‘11’ which is also the label for the top-right
region of the feature space in Figure (a).

memory requirements needed for an LSH deployment. The quantisation thresholds are also
set in a data-independent manner, typically by thresholding at zero along a projected di-
mension. In this context a projected dimension is formed from collating the projections from

6

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

all data-points onto the normal vector to a hyperplane. Unfortunately, the region around
zero on a projected dimension is usually the area of highest point density which means
that there is a high chance of related data-points falling on opposite sides of the threshold
and therefore being assigned different bits. There is clearly a wide scope for improving
the retrieval effectiveness of LSH and many other influential but data-oblivious algorithms
for hashing-based approximate nearest neighbour search by tackling both of these issues.
This survey is dedicated to recent hashing models that overcome these shortcomings, with
a particular focus on Computer Vision applications.

This literature survey is structured as follows: the chapter begins in Section 2 with
an overview of the preliminaries and notation definition. In Section 3 we provide an in-
troduction to nearest neighbour (NN) search, why the problem is important and how it
can be solved. This introduction is then followed by a discussion in Section 3 as to why a
relaxed version of the problem is required, known commonly as approximate nearest neigh-
bour (ANN) search. In Section 4, we describe a seminal method, Locality Sensitive Hashing
(LSH), for solving the ANN search problem in a time constant in the number of data-points.
This is a self-contained introduction to LSH sufficient for researchers to understand the im-
portant aspects of the algorithm and how it can be applied in practice. The limitations
of LSH are discussed and we use those drawbacks as a motivation for a review of a host
of more recently proposed algorithms for ANN search that demonstrate a higher retrieval
effectiveness on the task of image retrieval. We divide this latter part of the review into
methods for binary quantisation (Section 5) and projection function learning (Section 6),
mirroring the two common stages of hashcode generation.

2. Preliminaries and Notation Definition

This survey adheres to the standard typography for vectors x (lowercase bold) and matrices
X (uppercase bold). The ijth entry of matrix X is denoted by an uppercase, non-bold letter
Xij . Vectors x = [x1, x2 . . . , xN]ᵀ are assumed to be column vectors formed by stacking
N scalar values. X = [x1,x2, . . . ,xN]ᵀ signifies the stacking of the N column vectors{
xi ∈ RD

}N
i=1

row-wise to form matrix X ∈ RN×D. We use the notation xc = X•c to refer

to the vector of elements in the cth column of matrix X. In a similar manner xr = Xr•
denotes the vector of elements in the rth row of matrix X. Functions are indicated by
lowercase, non-bold letters e.g d(., .). We summarise the notation used throughout this
review in Table 1.

Notation Definition

N Number of data-points in dataset
D Dimensionality of data-point feature representation
K Number of hashcode bits
L Number of hashtables
Q Number of query data-points
B Number bits per projected dimension
T Number of thresholds per projected dimension
M Iterations
C Randomly sampled data-points or cluster centroids

7

Moran

X ∈ RN×D Dataset of N data-points, dimensionality D
xr ∈ RD : xr = Xr• rth row of matrix X
xc ∈ RN : xc = X•c cth column of matrix X
Xij Element of matrix X in row i column j
q ∈ RD Query data-point
p ∈ RD Arbitrary database data-point
Y ∈ RN×K Projection matrix of N data-points, dimensionality K
yr ∈ RK : yr = Yr• Projected values for rth data-point
yc ∈ RN : yc = Y•c cth projected dimension
d : RD × RD → R Distance function e.g. Euclidean distance

qk : R→ {0, 1}B Quantisation function
D ∈ RN×N Matrix of data-point distances

B ∈ {−1, 1}N×K Hashcodes of N data-points each of length K bits

br ∈ {−1, 1}K : br = Br• Hashcode of rth data-point xr
hk : RD → {0, 1} Hash function

gl : RD → {0, 1}K Hash function concatenation [h1(.), h2(.), . . . , hK(.)]
S ∈ RN×N Sij = 1 if xi and xj are nearest neighbours, 0 otherwise
hk ∈ RD Hyperplane
wk ∈ RD Hyperplane normal vector
W ∈ RD×K Matrix of K hyperplane normal vectors
tk ∈ R Scalar threshold
T ∈ RK×T Matrix of thresholds for each projected dimension
tr ∈ RT : tr = Tr• Set of thresholds for rth projected dimension
κ : RD × RD → R Kernel function
γ ∈ R Kernel bandwidth parameter

‖X‖2F =
∑N

ij |Xij |2 Frobenius L2 norm of matrix

‖X‖1F =
∑N

ij |Xij | Frobenius L1 norm of matrix

X = diag(x) Places elements of vector x on diagonal of matrix X
sgn(a) ∈ {−1, 1} Sign function returning 1 for a > 0, and -1 otherwise
[a]+ Equal to a if a ≥ 0, and 0 otherwise

Table 1: Definition of the mathematical notation used throughout the review.

The research described in this survey all share the same problem definition. We are
given a dataset consisting of N points X ∈ RN×D = [x1,x2, . . . ,xN]ᵀ where each data-
point point xi ∈ RD is a D-dimensional vector of real-valued features. The objective is to

construct K hash functions
{
hk : RD → {0, 1}

}K
k=1

the output of which can be concatenated

as [h1(xi), h2(xi), . . . , hK(xi)] to yield a binary embedding function
{
gl : RD → {0, 1}K

}
that maps each data-point xi to a K-bit binary hashcode bi ∈ {0, 1}K . For the embedding
functions to be useful for nearest neighbour search we will require the bits to be selected
in such a way that similar points xi,xj will have similar hashcodes bi,bj , as measured
by an appropriate distance function in the hashcode space such as the Hamming distance.
We dedicate the remainder of this chapter to describing how similarity preserving hash

8

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

Data-Independent Data-Dependent

LSH
(Section 4)

SKLSH
(Section 6.2.1)

Unsupervised

Cross-Modal

Supervised

Unimodal

SH
(Section 6.3.2)

PCAH
(Section 6.3.1)

ITQ
(Section 6.3.3)

Projection Quantisation

SBQ
(Section 5.1)

DBQ
(Section 5.3)

HQ
(Section 5.2)

MHQ
(Section 5.4)

KSH
(Section 6.4.3)

BRE
(Section 6.4.2)

STH
(Section 6.4.4)

ITQ+CCA
(Section 6.4.1)

CVH
(Section 6.5.1)

PDH
(Section 6.5.4)

CRH
(Section 6.5.2)

CMSSH
(Section 6.5.3

IMH
(Section 6.5.6)

AGH
(Section 6.3.4)

GRH
(Section 6.4.5)

NPQ
(Section 5.5)

RCMH
(Section 6.5.5)

Deep Models
(Section 6.4.6)

Figure 4: Overview of one possible categorisation of the field of hashing-based ANN search.
The main categories are shown in the grey boxes while the actual models themselves are
highlighted in white alongside their relevant section number.

functions are constructed by relevant models from the literature. A birds-eye-view of the
structure of this survey is shown in Figure 4.

9

Moran

3. Approximate Nearest Neighbour (ANN) Search

In this section we first formally define the problem of nearest neighbour (NN) search which
we informally introduced in Section 1. We will then examine the relaxed version of NN
search known as approximate NN search and describe how it differs from alternative algo-
rithms for solving the NN search problem.

Nearest neighbour search can be defined as the problem of retrieving the closest data-
point NN(q) to a query q ∈ RD in a database of N data-points [x1,x2, . . . ,xN]ᵀ where
xi ∈ RD. The similarity between data-points is defined by a distance function of interest{
d(., .) : RD × RD → [0, 1]

}
. This variant of the problem is also known as 1-NN search and

is specified mathematically in Equation 1

NN(q) = argminxi∈Xd(xi,q) (1)

It is straightforward to generalise this problem definition to return the closest K neigh-
bours to the query. This variant is popularly referred to as k-NN search and is a fundamental
component in a wide range of different machine learning methods including non-parametric
kernel density estimation (Bishop, 2006), (Ulz & Moran, 2013), (Moran & Lavrenko, 2014).
The distance function d(., .) between the data-points is typically computed using a generic
distance metric such as the lp-norm (Equation 2)

dpnorm(xi,xj) = ‖xi − xj‖ρ

=

(D∑
k=1

|xik − xjk|ρ
) 1
ρ (2)

The parameter ρ ∈ R+. Setting ρ = 1 yields the Manhattan distance and ρ = 2 gives the
Euclidean distance while ρ < 1 introduces the Minkowski family of fractional distances.
The cosine distance presented in Equation 3 is another popular distance metric for NN
search that has proven particularly effective for document retrieval (Manning, Raghavan,
& Schütze, 2008), (Ravichandran, Pantel, & Hovy, 2005)

dcosine(xi,xj) = 1−
∑D

k=1 xikxjk√∑D
k=1 x

2
ik

√∑D
k=1 x

2
jk

(3)

We will also come across the Hamming distance extensively in this review as it is the
de-facto metric for comparing binary strings (Equation 4)

dhamming(bi,bj) =
D∑
k=1

δ[bik 6= bjk] (4)

The function δ(.) = 1 if its argument is true, and 0 otherwise. The Hamming distance
therefore counts the number of corresponding dimensions (bits) that are not equal in the
two hashcodes.

These generic distance metrics do not adapt to the distribution of the data, measuring
the distances between data-points in the same way regardless of the specifics of the dataset.

10

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

In applying both metrics in practice we implicitly hope that the resulting distances correlate
well with the specific notion of similarity required for the domain. For example, in the
field of image annotation that the Euclidean distance between the feature representation
of two images can tease apart an image of a cat from that of a dog. In many cases this is
an unrealistic assumption that leads to low retrieval effectiveness (Kulis, 2013)(Moran &
Lavrenko, 2014). Distance metric learning is an active research field dedicated to learning
distance metrics tuned to a specific dataset. These methods typically learn a scaling and
a rotation of the data so that the Euclidean distance in the transformed space correlates
better with, for example, class-based supervision. Perhaps unsurprisingly learnt metrics
have been shown to greatly improve the quality of NN retrieval over and above their non
data-adaptive counterparts such as the lρ-norm (Kulis, 2013). We pick up this thread again
in Section 6 where we discuss how this important idea of data-dependent distance functions
has inspired recent developments in the field of hashing-based ANN search.

To search for NNs to a query we need to construct a data-structure or algorithm that
takes our selected notion of distance and retrieves data-points that are close to the query
under that specific distance metric. Brute force search is a straightforward algorithm for
solving the nearest neighbour search problem with any desired distance metric. In brute-
force search the distance to every data-point in the database is computed and the data-
point(s) with the smallest distance to the query returned as the nearest neighbour(s). The
advantages of brute force search are its simplicity of implementation and its guarantee that
the closest nearest neighbours will eventually be retrieved. However, exhaustively comparing
the query to every data-point in the database gives a linear O(ND) time complexity which
quickly makes brute force search intractable for nearest neighbour search across datasets
with many data-points (N) and a moderate to high dimensionality (D). In this situation a
more informed approach to the nearest neighbour search problem is required.

The generality and importance of nearest neighbour search, described in detail in the
motivation for this review in Section 1, ensures that the problem remains an active research
area within many scientific disciplines including Information Retrieval (IR) and Computer
Vision. Efficient multidimensional indexing data-structures for NN search have been pro-
posed for data-points of low-dimensionality (usually D ≤ 10), with some of the more well
known examples of this kind being the KD-tree (Bentley, 1975), quad-tree (Finkel & Bent-
ley, 1974), X-tree (Berchtold, Böhm, Braunmüller, Keim, & Kriegel, 1997) and SR-tree
(Katayama & Satoh, 1997). Unfortunately it has been shown that methods relying on a
space partitioning or clustering of the input feature space can do no better than brute-
force search in high dimensions (Weber, Schek, & Blott, 1998). This result severely limits
the applicability of these algorithms to image and document collections where it is not
uncommon to find feature representations with hundreds, thousands or indeed millions of
dimensions. The impossibility of retrieving exact nearest neighbours in sub-linear time in
high dimensional spaces is one particular incarnation of the well-known “curse of dimen-
sionality” (Minsky & Papert, 1969).

Algorithms for approximate nearest neighbour search circumvent the curse of dimen-
sionality by relaxing the need for an optimal (exact) solution to the problem, in return
for a substantially improved bound on the query time. In many practical scenarios, for
example detecting a large number of object classes (Dean et al., 2013) or matching variable
sized sets of features (Grauman & Darrell, 2007), retrieving sub-optimal nearest neighbours

11

Moran

cR

x

R

Figure 5: The (c,R)-approximate NN problem: in many applications it is acceptable to
return a data-point (indicated with the circles) within a distance cR of the query point x,
where R is the distance to the exact NN and the approximation factor c > 1.

is an entirely acceptable compromise for a greatly reduced query time. In the theoretical
computer science literature the problem is commonly referred to as the (c,R)-approximate
NN decision problem. In this problem definition, we are happy to accept a nearest neigh-
bour within distance cR of the query, where c is an approximation factor (c > 1) and R is
the distance to the exact NN (Figure 5). The (c,R)-approximate NN decision problem is
formalised in (Andoni & Indyk, 2008)(Petrovic, 2012) and defined in Definition 3.1:

Definition 3.1. Randomised c-approximate R-near neighbour problem: given a set of N
data-points in a D dimensional space, return each cR-nearest neighbour of the query data-
point q with probability 1-δ, where δ > 0, R > 0.

The approximation factor c effectively determines the degree of sub-optimality in the
returned nearest neighbours that we are willing to tolerate. The greater the value of c the
more distant the returned nearest neighbour might be from the optimal nearest neighbour,
with the advantage of a reduction in the query time. This clear trade-off between effective-
ness and efficiency lies at the heart of effective algorithms for solving the (c,R)-approximate
nearest neighbour problem.

The R-near neighbour reporting problem (Andoni & Indyk, 2008), (Petrovic, 2012) is
similar but without the approximation factor c (Definition 3.2)

Definition 3.2. Randomised R-near neighbour problem: given a set of N data-points in
a D dimensional space, return each R-nearest neighbour of the query data-point q with
probability 1-δ, where δ > 0, R > 0

In Section 4, we will introduce Locality Sensitive Hashing (LSH), a family of algorithms
that provide a concrete method for solving these approximate nearest neighbour search
decision problems in constant time per query.

12

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

4. Locality Sensitive Hashing (LSH)

The objective for any successful model for hashing-based ANN search is to pre-process the
database X ∈ RN×D so that at query-time nearest neighbours can be found more efficiently
than a simple brute force search over the entire database. In this section we introduce
the core ideas behind Locality Sensitive Hashing (LSH) (Indyk & Motwani, 1998), one
of the most influential algorithms for ANN search and the first to provide a sub-linear
time solution to the randomised c-approximate R-near neighbour problem. LSH has found
wide-application in vision problems, from recognising 100,000 object classes on a single
machine (Dean et al., 2013), to pose estimation (Shakhnarovich, Viola, & Darrell, 2003),
bag-of-words indexing (Chum, Philbin, & Zisserman, 2008) and shape matching (Grauman
& Darrell, 2004). The hashing models we introduce later in this survey (Sections 5-6) can
all be thought of as extensions of LSH that try and overcome certain disadvantages with
the original algorithm. We will begin by giving a general overview of LSH, independent of
the similarity metric of interest. In Section 4.1 we will then discuss a concrete instantiation
of LSH for the inner product similarity.

The key idea behind LSH is to pre-process the database by assigning hashcodes to each
data-point in such a way that data-points that are closer in RD under some distance met-
ric
{
d(., .) : RD × RD → [0, 1]

}
have a higher probability of colliding in the same hashtable

bucket than data-points that are much further apart in RD. LSH therefore transforms near-
est neighbour search into the process of examining the contents of a small set of hashtable
buckets, which is likely to be many times more efficient than exhaustive brute force search
over every data-point. The question then arises as to how LSH generates hashcodes (i.e.
the indices into the hashtable buckets) which are the same for data-points that are “close”
in the original feature-space. To achieve this property, LSH uses what is known as locality
sensitive hash functions

{
hk : RD → U

}
that map RD to some universe U (for example,

binary bits or positive integers). The locality sensitive hash functions are drawn uniformly
at random from a hash function family H (Definition 4.1)

Definition 4.1. Locality sensitive hash function family: a hash function familyH is deemed
(R, cR, P1, P2) sensitive if for any two data-points p, q ∈ RD:

if d(p,q) ≤ R then PrH(h(p) = h(q)) ≥ P1

if d(p,q) ≥ cR then PrH(h(p) = h(q)) ≤ P2

where PrH(h(p) = h(q)) refers to the probability that two data-points hash to the same
value given a hash function h(.) chosen uniformly at random from H. If a locality sensitive
hash function family is to be useful for nearest neighbour search then we require P1 > P2 and
c > 1. In other words there should be a high probability P1 of two data-points p ∈ RD,q ∈
RD close by to each other (i.e. d(p,q) ≤ R) in RD colliding in the same hashtable bucket.
Conversely there should be a low probability P2 of more distant data-points (i.e. d(p,q) ≥
cR) colliding in the same hashtable bucket. In this way the output of a hash function h(.)
chosen uniformly at random fromH is intimately tied to the spatial arrangement of the data-
points in X as measured under a distance metric of interest

{
d(., .) : RD × RD → [0, 1]

}
.

Ideally we would like that P1 = 1 and P2 = 0 so that all data-points that are within
d(p,q) ≤ R of the query map to the same hashtable bucket and all data-points with distance
d(p,q) ≥ cR map to a different hashtable bucket. Note, the case R < d(p,q) < cR remains

13

Moran

unaddressed, but nevertheless R and cR can be made close at the expense of making P1

and P2 undesirably close (Rajaraman & Ullman, 2011).
Fortunately it is possible to construct a wide variety of useful hash function families that

have the property that P1 > P2 and c > 1. For example, locality sensitive hash function
families have so far been introduced for many distance functions of prime interest such as the
Lp distance in RD for p ∈ [0, 2) (Datar, Immorlica, Indyk, & Mirrokni, 2004), cosine distance
(inner product similarity) (Charikar, 2002), Jaccard distance (Broder, 1997) and L2-norm
on the unit hypersphere (Terasawa & Tanaka, 2007). Choosing the locality sensitive hash
function family H is an important decision that needs to be considered when implementing
an LSH system in practice. In a similar way that selecting an appropriate distance function
for brute force search is application dependent, so too is choosing a locality sensitive hash
function family. For example, the hash function family for the inner product similarity,
which draws its hash functions uniformly from a unit sphere, has proven to be successful for
detecting new events in high-volume document streams (Petrovic, 2012)(Osborne, Moran,
McCreadie, von Lünen, Sykora, Cano, Ireson, Macdonald, Ounis, He, Jackson, Ciravegna,
& O’Brien, 2014). We will expand on this particular hash function family in more detail
in Section 4.1. The LSH hash function family for the Euclidean distance (Datar et al.,
2004), which randomly samples hash functions from a D dimensional zero mean unit vari-
ance Gaussian distribution, has also found wide applicability in applications such as pose
estimation (Shakhnarovich, Darrell, & Indyk, 2006)(Matei, Shan, Sawhney, Tan, Kumar,
Huber, & Hebert, 2006). This hash function family relies on the Johnson-Lindenstrauss
lemma (Johnson & Lindenstrauss, 1984) as a guarantee that there will be limited distortion
to the pairwise distances in the lower-dimensional embedding space.

The usefulness of any locality sensitive hash function family for nearest neighbour search
is dependent on the gap between P1 and P2 which dictates the collision probabilities between
points in the range [0, R] in which the R-near neighbours are to be found and (cR,∞). If the
gap between P1 and P2 is small then a query will have a similar probability of mapping to
the hashtable bucket of a distant data-point as it will be to a close-by data-point. Without
a sufficient difference between P1 and P2 the quality of nearest neighbour search under LSH
will be poor with a high number of false positives and false negatives. The gap between
P1 and P2 can be amplified by concatenating together K randomly selected hash func-
tions to create an embedding function into a K dimensional space. This multidimensional
embedding function is given by Equation 5

gl(q) = [h1(q), h2(q), . . . , hK(q)] (5)

where gl(.) is drawn uniformly at random from function family G =
{
RD → UK

}
and

hk ∈ H. This concatenation of K hash functions increases the gap between P1 and P2,
amplifying the difference between the probabilities of collisions between nearby and far
data-points. For an embedding function gl(.) the probability P (gl(q) = gl(p)) that the
hashcodes for any two distant data-points p ∈ RD,q ∈ RD with d(p,q) ≥ cR will match
is given by P

′
2 = PK2 . This reduction in the number of false positives with increasing K

is the underlying motivation for using multiple bits in a hashcode: as K increases there
is a gradually lower probability that distant data-points will collide in the same hashtable
bucket as the query q. However, increasing K also reduces the probability of collision
between nearby data-points (by P

′
1 = PK1), and so while the precision increases through

14

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

elimination of false positives we will also suffer a decrease in recall due to the introduction of
false negatives. For a judicious choice of K, if P1 > P2, it is possible to keep probability P

′
1

bounded significantly away from zero, while moving probability P
′
2 close to zero (Rajaraman

& Ullman, 2011).

In practice for a large enough hashcode length K, we might find that very few close by
data-points (d(p,q) < R) collide in the same hashtable bucket as no data-points are likely
to share an identical hashcode. The number of buckets in a single hashtable grows at an
exponential rate (2K) as the hashcode length is increased and so many of these buckets will
be empty for a large enough setting of K. The other LSH parameter is the number L of
embedding functions sampled from G, with each embedding function indexing into one of
L independent hashtables. The value of L can be increased to counteract the lower level
of recall that arises from a longer hashcode length K. The probability that two hashcodes
will collide in the same hashtable bucket for at least one hashtable is then given by the
expression P

′′
1 = (1 − (1 − PK1)L). Even though using multiple hashtables will increase

probabilities P
′′
1 and P

′′
2 , it is possible to set L so as to increase probability P

′′
1 towards one,

while also keeping P
′′
2 bounded significantly away from one (Rajaraman & Ullman, 2011).

Therefore, the parameters K and L can be set in combination so as to cause probability
P
′′
1 to be close to one, while moving P

′′
2 close to zero, which is the property we seek for an

ideal locality sensitive hash function (an illustration of this effect for various settings of K
and L is shown in Figures 6-7). Of course, the higher the values of K and L the greater the
computation time required for the actual hashing.

The setting of L and K permits the practitioner trade-off of the precision and recall
achieved while choosing an appropriate overall computational cost. One possible strategy
for setting L and K is to use the probabilistic bounds on the failure probability offered by
LSH. The setting of L and K can be found by firstly deciding on an acceptable probability
δ < (1 − PK1)L of LSH failing to find an R-nearest neighbour with a specified similarity
(P1) to the query. The setting of L guaranteeing the failure probability δ for a given
hashcode length K is then given by L ≥ dlog(δ)/log(1 − PK1)e. The E2LSH6 package
recommends choosing the hashcode length K to minimize the mean query time for all data-
points a dataset. Some LSH implementations attempt to eliminate the need to choose these
parameters altogether, see for example LSH-forest (Bawa, Condie, & Ganesan, 2005). For
the practitioner, (Petrovic, 2012) provide an enlightening discussion on how the best fitting
L and K parameters were chosen for an LSH-based event detection system. This system
was successfully used for real-time detection, tracking, and monitoring of automatically
discovered events in social media streams (Osborne et al., 2014).

Having chosen the desired hash function family H and the setting of K and L there
are two final steps to using LSH for nearest neighbour search: pre-processing, in which the
database points are hashed using the L multidimensional embedding functions

{
gl : RD →

{0, 1}Ll=1 into the buckets of L hashtables gl(p) for l = {1 . . . L}; and querying, where the
query is also hashed using the same hash functions and the nearest neighbours retrieved from
the colliding hashtable buckets {g1(q), . . . , gl(q)}. Typically, the distance (e.g. Euclidean or
cosine) from the query to each of the data-points in this candidate list of nearest neighbours
is then computed and any data-points > R discarded. The pre-processing step is presented

6. http://www.mit.edu/~andoni/LSH/

15

Moran

Algorithm 1: LSH Pre-Processing Step (Petrovic, 2012)

Input: Data-points X ∈ RN×D, L embedding functions [g1(.), . . . , gL(.)] with
gl(.) = {hl1(.), . . . , hlK(.)}, hlk(.) selected uniformly from family H

Output: Data-points indexed into the buckets of L hashtables H
1 for i← 1 to L do
2 for j ← 1 to |X| do
3 Insert xj into bucket H[i][gi(xj)]
4 end

5 end
6 return H

Algorithm 2: LSH Querying Step (Petrovic, 2012)

Input: Query q ∈ RD, Database X ∈ RN×D, L functions [g1(.), . . . , gL(.)] with
gl = {hl1(.), . . . , hlK(.)} and hk selected uniformly at random from a hash
function family H, hashtables H

Output: The set S of R (strategy 2) nearest neighbours of q
1 for i← 1 to L do
2 for j ← 1 to |H[i][gi(q)]| do
3 Retrieve next data-point xj from bucket H[i][gi(q)]
4 if (d(xj ,q) < R) then // Query strategy 2

5 Put xj into retrieved set S
6 end

7 end

8 end
9 return S

in Algorithm 1 while the querying process is presented in Algorithm 2. The presentation
of the pre-processing and querying algorithms has been inspired by a similar specification
in (Petrovic, 2012). There are two LSH querying strategies and both are directly related
to the two variants of the approximate nearest neighbour decision problem presented in
Definitions 3.1-3.2. The strategy presented in Algorithm 2 solves the R-near neighbour
reporting problem (Definition 3.2) as all data-points in the colliding hashtable buckets are
examined. In the unlikely worst case scenario this latter strategy may cause the search to
examine every data-point in the database. The randomised c-approximate R-near neighbour
problem (Definition 3.1) is solved by stopping the search after the first L

′
= 3L data-points

have been retrieved. This strategy comes with an O(L) bound on the query time.

4.1 LSH with Sign Random Projections

In this survey we will be primarily interested in the locality sensitive hash function family for
the inner product similarity which traditionally has been used as a baseline for comparison
by existing research in the learning to hash literature. The inner product similarity is
defined in Equation 6.

16

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

d(p,q) =
D∑
k=1

pkqk

= pTq

(6)

Equation 6 can also be interpreted as the cosine similarity between two L2 normalised
vectors mapped on the unit sphere. The cosine similarity measures the closeness between
two data-points based on the angle (θ) between their respective vectorial representations
in the D-dimensional space, which could be a GIST descriptor (Oliva & Torralba, 2001)
for an image or a TF-IDF vector for a document. As the angle between the two vectors
widens their cosine similarity decreases, and vice-versa. The locality sensitive hash function
family for the cosine similarity Hcosine is formulated by intersecting the space with K
hyperplanes drawn randomly from a multidimensional Gaussian distribution with mean
zero and unit variance. Depending on what side of a hyperplane a data-point falls, its
hashcode is appended with either a ‘0’ or a ‘1’. The intuition is as follows: the greater
the angle between a query q ∈ RD and a database point p ∈ RD the more probable it is
that the space between the vectors will be partitioned by a randomly drawn hyperplane.
The greater the angle, the more often the intervening space will be partitioned by random
hyperplanes and the lower the number of bits the hashcodes will share in common. We have
achieved the desired property: the output of a hash function (randomly drawn hyperplane)
is less likely to match as the angle between two data-points is increased.

More formally, a randomly drawn hash function hk from Hcosine has the specification
given in Equation 7

hk(q) =
1

2
(1 + sgn(wᵀ

kq))

= qk(pk(q))
(7)

where sgn is the sign function adjusted so that sgn(0) = −1, wk ∈ RD denotes the normal
vector of hyperplane hk. We denote as

{
pk : RD → R

}
the projection function (a dot

product in this case) that maps a data-point onto a randomly chosen dimension. Here{
qk : R→ {0, 1}B

}
denotes the quantisation function (thresholding at zero with the sign

function in this case) that converts the projection of a data-point into one or more binary
bits. Equation 7 is the mathematical procedure for determining the position of a data-point
with respect to a separating hyperplane, with a ‘0’ or a ‘1’ output depending on the side.
With the hash function as specified in Equation 7, (Goemans & Williamson, 1995) showed
that the probability of a collision is given as in Equation 8.

PrHcosine(h(p) = h(q)) = 1− θ(p,q)

π
(8)

Equation 8 operationalises our earlier intuition of there being a lower collision proba-
bility with a greater angle θ (in radians) when applying a hash function of the form given
in Equation 7. Hcosine is therefore a (R, cR, 1 − R/π, 1 − cR/π)-sensitive hash function
family, where the angular distance R is measured in radians. The amplification strategy we
discussed in Section 4 for increasing the P1, P2 gap works equally as well for Hcosine. As
before, choosing the length of K with an appropriate setting of the number of hashtables

17

Moran

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 π/4 π/2 3π/4 π

P
r[

g(
p)

=
g(

q)
]

θ(p,q)

Probability of Collision Versus Angular Distance (LSH, Cosine)

K=1
K=2

K=10
K=20

Figure 6: Visualising the probability of two hashcodes g(p), g(q) matching against the
length of the hashcode key (K = 1, 2, 10, 20). The hash function family is Hcosine. As the
hashcode length becomes longer the two data-points must be close together (in terms of
angle) in order for their collision probability to be high. This is intuitive because if we draw
more hyperplanes (bits) there is a greater chance of the two data-points falling on different
sides of at least one of the hyperplanes, particularly if the data-points are spaced further
apart. This figure is adapted from a similar chart in (Petrovic, 2012).

L is crucial for retrieval effectiveness and efficiency in an end-application. We illustrate the
locality sensitive nature of Hcosine in Figures 6-7. In these figures we change the value of K
and L and observe the effect on the probability of a collision occurring in the hashtables.

The query time complexity is also dependent on L and K. For a single query data-point
the retrieval cost can be characterised by O(KDL) +O(1) +O(NDL

2K
). This is made up of

the hashing time (time spent generating the hashcodes) O(KDL), the lookup time (O(1) for
a good hashtable implementation) and the candidate test time (O(NDL

2K
)), which is the time

taken to exhaustively compute the distance from the query to the colliding data-points and
assuming a uniform distribution of data-points to buckets. As K is increased the hashing
time will increase but the candidate test time will fall as the hash functions become more
selective. Increasing the number of hashtables will increase both the hashing time and
candidate test time with the benefit of increasing the probability that close-by data-points
will collide in at least one bucket of a hashtable.

Equation 7 provides the foundation upon which the rest of this review is formed.
The models we discuss all propose novel formulations for defining the projection function{
pk : RD → R

}
and the quantisation function

{
qk : R→ {0, 1}B

}
so that retrieval effec-

tiveness is maximised, while also maintaining scalability of the algorithms to large datasets.

18

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 π/4 π/2 3π/4 π

P
r[

g
(p

)=
g
(q

)]
 i

n
 a

t
le

as
t

o
n
e

h
as

h
ta

b
le

θ(p,q)

Probability of Collision Versus Angular Distance (LSH, Cosine)

K=5,L=1
K=5,L=2

K=5,L=10
K=5,L=20

Figure 7: Probability of collision resulting from varying the number of hashtables (L =
1, 2, 10, 20) for fixed hashcode length K = 5. The hash function family is Hcosine. We can
see that as the number of hashtables increase there is a higher probability of two data-points
being close by colliding in at least one of the hashtable buckets, and a very low probability
of more distant data-points colliding. This is expected as with more hashtables we are more
likely to find a situation where none of the randomly generated hyperplanes separate the
two data-points. This figure is adapted from a similar chart in (Petrovic, 2012).

More specifically, the literature challenges the notion that a sign function is an optimal quan-
tisation strategy for converting the real-valued projection in Equation 7 to binary (Section
5 and secondly, that randomly sampled hyperplanes produce optimal hashcodes (Section
6. On the latter point, it is well known that LSH hyperplanes tend to lack discriminative
power with many hyperplanes (bits) and many hashtables being required for an adequate
level of precision and recall (Wang, Kumar, & Chang, 2012). This inefficiency is due to their
data-independent nature where the hashing hyperplanes are generated without regard to
the data distribution. This issue has recently stimulated research into hashing methods that
learn hash functions adapted to the distribution of the data. We discuss state-of-the-art
data-driven hash functions in Sections 5-6.

5. Quantisation for Nearest Neighbour Search

In this section we review previous related research in the field of binary quantisation for
hashing-based ANN search. We saw in Section 4.1 that one of the two crucial steps in
generating LSH-based binary hashcodes involves converting real-valued projections into bi-
nary bits. In this section we study in depth recently proposed algorithms for reducing the

19

Moran

(a) Vector Quantisation (b) Scalar Quantisation

Figure 8: In the context of nearest neighbour search two variations on quantisation are typ-
ically employed: vector quantisation (Figure (a)) partitions the feature space into Voronoi
cells (Jegou et al., 2011). Centroids are marked with a white cross while data-points are
shown as black dots. The distance between query and database points is computed by
determining the distance to their closest centroids. In contrast, scalar quantisation (Figure
(b)) is frequently used to binarise a real-valued projection resulting from a dot product
of a data-point with a hyperplane normal vector. The space is partitioned with multiple
such hyperplanes and each usually contribute 1-bit to the final hashcode. The hashcode
is effectively the index of the polytope-shaped region containing the associated data-point.
The data-points appearing in this example are a 2D PCA projection of the CIFAR-10 image
dataset.

information loss resulting from the discretisation of real-numbers into binary, and specifi-
cally methods that attempt to do better than simply taking the sign function in Equation
7. Generally speaking, quantisation refers to the process of reducing the cardinality of a
representation (such as numbers on the real-line) to a finite and discrete set of symbols
(e.g. binary bits). Quantisation has been extensively studied particularly within the field
of information theory (Gray & Neuhoff, 2006) and has also found wide engineering applica-
tion given the impossibility of storing and manipulating numeric values to infinite precision.
This review will necessarily only focus on quantisation methods that have been specifically
used in hashing-based ANN search methods.

Two main categories of quantisation have been proposed for nearest neighbour search:
scalar and vector quantisation, which are differentiated by whether the input and output of
the quantisation is a scalar or a vector quantity. Scalar quantisation is frequently applied to
quantise the real-values (projections) resulting from the dot product of the feature vector
of each data-point onto the normal vectors to a set of random hyperplanes partitioning the
feature space (Figure 8). As we will discover in Section 5.1, each dot product yields a scalar
value which is then subsequently quantised into binary (0/1) by thresholding. In contrast,
for vector quantisation, the feature representation of a data-point is associated with its
nearest centroid, out of a set of centroids discovered by the k-means algorithm (Lloyd, 1982).
In this way each input vector (data-point) is represented by a much smaller set of codebook

20

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

Projected Dimension #1

t1

10

y1

Figure 9: Single bit quantisation (SBQ) uses one threshold t1 ∈ R to binarise a projected
dimension: projected values (indicated by the coloured shapes) lower than the threshold
(on the left) are assigned a ‘0’ bit, while projected values greater than the threshold (on
the right) are assigned a ‘1’ bit.

vectors (centroids). K-means divides the space into Voronoi regions forming a more flexible
data-driven partitioning. We illustrate the partitions formed by vector quantisation and a
hyperplane based scalar quantisation in Figure 8. We will not cover vector quantisation
any further here, but we mention in passing that it has been found to be more effective
for nearest neighbour search in Computer Vision tasks due to lower reconstruction error
(Jegou et al., 2011). The downside is the need to store a lookup table at test time to read
off inter-cluster Euclidean distances using the centroid indices7. This computation has been
found to be 10-20 times slower than the Hamming distance computation between the binary
hashcodes on standard datasets (He, Wen, & Sun, 2013). Scalar quantisation needs no such
decoding step as the distances are computed directly from the hashcodes, an advantage
that has proved beneficial in applications such as mobile product search (Feng, 2012). Only
very recently have researchers attempted to combine the strengths of both approaches in
a unified quantisation algorithm: the reader is encouraged to consult (He et al., 2013) and
references therein for more detail on interesting work in this direction.

In the context of hashing-based ANN search a scalar quantiser
{
qk : R→ {0, 1}B

}
maps

a real-valued projection yi ∈ R to a single (Section 5.1) or multi-bit (Sections 5.3-5.4) bi-

nary codeword
{

ci = {0, 1}B |ci ∈ C, i ∈ {1, 2, . . . , T + 1}
}

with T denoting the number of

quantisation thresholds, B denoting the number of bits per projected dimension and C is the
binary codebook. In this review we follow (Kong, Li, & Guo, 2012) by defining a projected

dimension yk ∈ RNtrd as the set of real-valued projections
{
yki ∈ R

}Ntrd
i=1

of all data-points

[x1,x2 . . .xNtrd] for a given hyperplane hk, where a projection yki ∈ R is obtained by a
dot product yki = wᵀ

kxi. The quantisation function qk binarises each projected dimension
yk ∈ RNtrd independently by positioning one or more thresholds at selected points along
the dimension. Projected values falling into a given thresholded region are assigned the
codeword of that region. A simple illustration of this process is shown in Figure 9 where
the projected dimension is shown as a line with a sampling of data-points (indicated by the
coloured shapes) superimposed. In this toy example the quantiser uses a single threshold to
partition the projected dimension into two disjoint regions. The projections falling in the
region below the threshold are given the codeword ‘0’ while the projections falling in the

7. Another advantage of partitioning the space with hyperplanes is the exponential number (2K) regions
formed using just K-hyperplanes. Vector quantisation would require 2K centroids for a similar partition
granularity. (Jegou et al., 2011) show how 2K centroids can be learnt efficiently for large K using product
quantisation.

21

Moran

Method Encoding Optimisation Thresholds (T) Complexity Section

SBQ 0/1 Mean thresholding 1 O(1) 5.1

HQ 00/01/10/11 Spectral partitioning 1 and 2 O(CN+
trd) 5.2

DBQ 00/10/11 Squared error 2 O(Ntrd logNtrd) 5.3

MHQ NBC 1D K-means 3+ O(2BNtrd) 5.4

NPQ Any Semi-supervised 1+ O(N2
trdTF) 5.5

Table 2: Existing single (SBQ) and multi-threshold (HQ, DBQ, MHQ) quantisation schemes
categorised along the three main dimensions of variability. NBC stands for Natural Binary
Encoding and is explained in Section 5.4. C is the number of anchor points, Ntrd is the
number of training data-points, N+

trd is the number of training data-points with positive
projected value for the given projected dimension, B is the number of bits per projected
dimension, T is the number of thresholds, F is the number of objective function evaluations.
Time complexity is for positioning thresholds along a single projected dimension.

region above the threshold are assigned the codeword ‘1’. The codebook for this example is
{ci = {0, 1} |ci ∈ C, i ∈ {1, 2}}. In this way, quantisation transforms projected values that
live on the real-line into a discrete set of codewords from the specified codebook C. More for-
mally we denote as tk = [t1, t2, . . . , tT] the set of threshold positions along a single projected
dimension yk ∈ RNtrd where ti ∈ R with t1 ≤ t2 . . . ≤ tT . The two extremities of a projected
dimension are denoted as t0 = −∞ and tT+1 = +∞. The thresholds {ti ∈ R}Ti=1 partition a
given projected dimension into T+1 disjoint regions ri = {yj |ti−1 < yj ≤ ti, yj ∈ yk} where
i ∈ {1 . . . T + 1}. Most existing scalar quantisation schemes use T = 2B−1 thresholds for a
budget of B bits per projected dimension. Each of the resulting T + 1 thresholded regions{
ri ⊂ yk

}T+1

i=1
are associated with a unique codeword ci ∈ C.

The retrieval effectiveness resulting from quantisation is greatly affected by the selected
codebook and the positioning of the quantisation thresholds (Moran, Lavrenko, & Osborne,
2013a)(Kong et al., 2012) (Kong & Li, 2012a). The encoding scheme must ensure that the
relative distances between the data-points in the input space are maintained in the resulting
binary hashcodes. For example, if two data-points are distant in the original feature space
then their assigned codewords should also be distant in Hamming space, and vice-versa for
close data-points. Ideally the encoding scheme for the thresholded regions should impart
a smooth, gradual increase in Hamming distance as the distance between the data-points
in the original feature space increases. Correct positioning of the thresholds is also impor-
tant as a threshold dividing an area dense in true nearest neighbours will result in related
data-points falling into different regions and being assigned different codewords, increasing
the Hamming distance of their resulting hashcodes. If the threshold positions and/or the
encoding scheme are sub-optimal then the related data-points will be assigned hashcodes
with large Hamming distance severely limiting the effectiveness of any hashing algorithm
using that quantisation scheme. The state-of-the-art quantisation algorithms we review
in this section all propose an encoding scheme and threshold optimisation algorithm that
seek to faithfully preserve the relative distances between data-points in their corresponding
binary hashcodes.

22

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

Projected Dimension #1

t1

10

y1

Figure 10: Single Bit Quantisation (SBQ) uses one threshold t1 to binarise a projected
dimension: projected values (indicated by the coloured shapes) lower than the threshold
(on the left) are assigned a 0 bit, while projected values greater than the threshold (on the
right) are assigned a 1 bit.

The previous paragraph hints at three key properties that can be used to distinguish
and categorise existing methods of scalar quantisation8: the encoding scheme used to as-
sign symbols to each thresholded region, the manner in which the threshold positions are
determined, that is, whether a learning scheme is employed to optimise the positioning,
and the number of thresholds allocated per dimension. In Table 2 we provide an overview
of existing quantisation methods as categorised along these three dimensions of variability.
In the following sections we describe these existing quantisation schemes in detail. Specifi-
cally, in Section 5.1 we introduce the traditional method of Single Bit Quantisation (SBQ)
and in Sections 5.2-5.4 we describe the more recent multi-threshold quantisation schemes:
Hierarchical Quantisation (HQ), Double Bit Quantisation (DBQ) (Section 5.3), Manhattan
Hashing Quantisation (MHQ) (Section 5.4) and Neighbourhood Preserving Quantisation
(NPQ) (Section 5.5).

5.1 Single Bit Quantisation (SBQ)

Single Bit Quantisation (SBQ) is the method of binarisation employed in the vast majority
of existing hashing methods. A single threshold tk partitions a projected dimension yk into
two regions, with a ‘0’ bit assigned to projected values lower than the threshold and a ‘1’
bit assigned to projected values equal to or greater than the threshold. More formally given
a set of k hyperplane normal vectors [w1. . .wK], the kth hashcode bit for a data-point xi is
generated by SBQ as given in Equation 9.

hk(xi) =
1

2
(1 + sgn(wᵀ

kxi + tk)) (9)

In this quantisation scheme each hyperplane contributes one bit towards the hashcode for
a data-point. The data is typically zero-centred and the projected dimensions are thresh-
olded at the mean (tk = 1

Ntrd

∑Ntrd
i=1 wᵀ

kxi). For zero centered data this equates to the
threshold being placed directly at zero (tk = 0). No learning mechanism is used to optimise
the placement of the threshold in SBQ, although in some cases it might be placed at the
median of the data distribution rather than at the mean. Given the absence of a threshold
optimisation step SBQ is a computationally inexpensive operation requiring O(1) time9 for

8. We will use the term quantisation to refer to scalar quantisation throughout the remainder of this survey.
9. This increases to O(Ntrd) time for threshold learning if the median is used as the threshold.

23

Moran

Projected Dimension #1

t1

10
a b c

y1

Figure 11: The problem with Single Bit Quantisation (SBQ): true nearest neighbours such
points a, b are assigned different bits despite being close together along the projected dimen-
sion. Conversely points b, c located above the threshold, which are non-nearest neighbours,
are assigned the same bit (1), even though they are more distantly spaced along the pro-
jected dimension.

threshold learning and O(1) time for encoding a novel query data-point. SBQ is further
illustrated with a toy example in Figure 10.

The multi-threshold quantisation algorithms we describe in Section 5.2-5.4 all seek to
overcome a fundamental limitation of SBQ which arises from the use of a single threshold
for binarisation. In some cases SBQ may assign different bits to data-points that are located
close together along a projected dimension, while data-points that are located much further
apart can be assigned the same bits (Kong et al., 2012; Kong & Li, 2012a; Moran et al.,
2013a; Moran, Lavrenko, & Osborne, 2013b). This is contrary to the fundamental objective
of hashing in which close-by data-points should be assigned identical bits. Given this, it
should be expected that this limitation of SBQ can lead to reduced retrieval effectiveness.
This problem with SBQ is easily illustrated by considering a hypothetical true nearest
neighbour data-point pair in Figure 11. In this diagram the data-points a and b indicated
by the yellow stars are very close to the threshold but lie on opposite sides. Even though both
are close in the projected space they are assigned opposite bits, increasing the Hamming
distance of their hashcodes. The hash function, by placing the projections of the pair a, b
nearby along the projected dimension, has indicated that the corresponding data-points were
close together (as deemed by our distance metric of interest) in the original feature space10.
Despite this, SBQ assigns both opposite bits, effectively destroying the neighbourhood
structure encoded in the projections. The opposite is true for the data-points b, c indicated
by the yellow star and red circle located above the threshold. These non-nearest neighbours
are far apart along the projected dimension, indicating that the hash function determined
they were more distant in the original feature space. Nevertheless, SBQ has assigned the
same bit to both data-points b, c ensuring their resulting hashcodes are closer together in
terms of Hamming distance.

Unfortunately, this issue is likely to surface often in practice given that vanilla SBQ
places a threshold directly at zero and the highest point density along a projected dimen-
sion also usually happens to be in the region around zero. This pattern is true for many
projection functions commonly employed in practice (Figure 12). Partitioning a projected

10. We are of course relying here on the hash function placing data-points that are close-by in the original
feature space close by along the projected dimension. Randomised LSH projection functions guarantee
this in expectation while other projection functions seek to explicitly learn the hyperplanes so that related
data-points are encouraged to have similar projections. We cover the latter data-dependent methods in
Section 6.

24

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

C
ou

nt

Projected Value

Distribution of Projected Values (LSH, LabelMe 22k)

(a) Locality Sensitive Hashing (LSH)

 0

 100

 200

 300

 400

 500

 600

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

C
ou

nt

Projected Value

Distribution of Projected Values (PCA, LabelMe 22k)

(b) Principal Component Analysis (PCA)

Figure 12: Distribution of projected values for two randomly chosen LSH (Figure (a)) and
PCA (Figure (b)) projected dimensions on the LabelMe 22k image dataset (Torralba et al.,
2008). The images in this dataset are encoded as GIST features (Oliva & Torralba, 2001).
The region of highest projected value density is typically around zero, as is clearly the case
for these two dimensions. The Double Bit Quantisation algorithm (DBQ) (Kong & Li,
2012a) explicitly avoids placing a threshold close to zero as, given the high density of points
in that region, this is likely to separate many true nearest neighbours. DBQ is described in
Section 5.3.

dimension into multiple regions, and assigning each region a multi-bit encoding is an effec-
tive means of overcoming this issue with SBQ. The modus-operandi of all multi-threshold
quantisation schemes is maximal preservation of the neighbourhood structure encoded in
the projected dimension through a multi-bit codebook and a threshold optimisation algo-
rithm. We will now discuss one of the first proposed multi-threshold quantisation schemes
in Section 5.2.

5.2 Hierarchical Quantisation (HQ)

Liu et al., 2011 were the first to introduce the concept of multi-threshold quantisation
for hashing in which a single hyperplane contributes multiple bits to the hashcode. Their
quantisation algorithm, dubbed Hierarchical Quantisation (HQ), was introduced as a means
of quantising projections resulting from their Anchor Graph Hashing (AGH) model. It uses
only bK/2c of the available hyperplanes, assigning two bits per hyperplane. We describe
the projection learning component of AGH in detail in Section 6.3.4, while in this section
we focus solely on the quantisation algorithm assuming that we have already obtained the

desired projected dimensions
{
yk ∈ RNtrd

}K
k=1

. HQ consists of two steps performed in a
sequence: in the first step traditional SBQ is applied (Section 5.1), thresholding a given
projected dimension yk at zero (t1 = 0). Step one produces the first bit of the double-bit
encoding for a hyperplane. In the second step the projected dimension is quantised again,
this time using two new thresholds (t2, t3) that further partition the two regions formed by
SBQ at the first step.

25

Moran

The two thresholds (t2, t3) are jointly optimised so as to minimise the number of related
data-points falling on opposite sides of the dividing threshold resulting from applying SBQ
in the first step. Both quantisation steps are illustrated in Figure 13. (Liu, Wang, Kumar,
& Chang, 2011) formulate the threshold optimisation as a graph partitioning problem on
the graph Laplacian L = I − Ŝ of the low-rank approximate adjacency matrix Ŝ11. The
neighbourhood structure is encoded by Ŝ, where Ŝij > 0 indicates that i and j are neigh-
bours, and Ŝij = 0 indicates they are not. Ŝ is approximate in the sense that it is not
constructed by computing the N2

trd distances between the Ntrd data-points, but rather is
constructed from an anchor graph Z, a sparse matrix that holds the similarities between
the Ntrd data-points and a small set of C anchor points where C � Ntrd (Equation 10):

Zij =

exp(−d2(xj , ci)/γ)∑

i′∈〈j〉

exp(−d2(xj , ci′))/γ)
if i ∈ 〈j〉

0 otherwise

(10)

where γ is the kernel bandwidth,
{
d(., .) : RD × RD → [0, 1]

}
is any distance function of

interest such as the L2-norm and 〈j〉 ∈ {1 . . . R} are the indices of the R � C nearest

anchors to xj under distance metric d(., .). The C anchor points
{
ci ∈ RD

}C
i=1

can be
found by running the k-means algorithm over data-points in a training dataset. Using the
anchor graph, the adjacency matrix Ŝ can be computed as Ŝ = ZΛ−1Zᵀ where Λkk =∑Ntrd

i=1 Zik. This latter expression approximates the affinity between data-points xi,xj as
the inner product between their individual affinities to the C centroids. Compared to
the full adjacency matrix, Ŝ is sparse and low-rank which brings computational advantages
when extracting the required graph Laplacian eigenvectors (Section 6.3.4). (Liu et al., 2011)
construct an eigenvalue problem involving Z to solve for the K graph Laplacian eigenvectors
yk of the approximate adjacency matrix Ŝ. In the context of AGH these eigenvectors are the
projected dimensions that are thresholded to yield the hashcodes of the training data-points
(Equation 11).

hk(xi) =

{
1
2(1 + sgn(wᵀ

kxi − t2)), if wᵀ
kxi ≥ 0

1
2(1 + sgn(−wᵀ

kxi + t3)), if wᵀ
kxi < 0

(11)

Binarising a graph Laplacian eigenvector has the effect of partitioning the graph encoded
by Ŝ into two groups, with each of the K eigenvectors forming a different bi-partitioning
of the graph (Shi & Malik, 2000). In the context of hashing-based approximate nearest
neighbour search, the hope is that many of these graph cuts will result in true nearest
neighbours being within the same partition. The eigenvectors with the highest eigenvalues
are generally unreliable and do not produce an effective partitioning of the graph (Shi &
Malik, 2000). This observation motivates the creation of the two-step quantisation algo-
rithm of Liu et al., 2011 in which the lowest eigenvectors are responsible for generating most

11. The rank of a matrix is the number of linearly independent rows or columns.

26

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

Step 2

t 3

 1 0 1

t 2

 0

 1 0

Step 1

t1

a b

a b

y1

y1

Figure 13: Illustration of the Hierarchical Quantisation (HQ) algorithm of (Liu et al., 2011).
We use the data-points a (yellow star) and b (red circle) as examples. The quantisation
proceeds in two steps: in the first step SBQ thresholds the projected dimension into two
regions generating the first bit of the two bit encoding for the data-points. For data-point
a this is ‘0’ and for data-point b this is ‘1’. In the second step the regions formed by SBQ
are further partitioned with t2, t3 using a dynamic threshold optimisation algorithm. Data-
point a is assigned ‘0’ again and b is now assigned ‘0’, yielding hashcodes ‘00’ and ‘10’,
respectively. Nearby data-points falling on opposite sides of the SBQ threshold in Step 1
are therefore more likely to have the same bit assigned in Step 2, which is the case for our
two example data-points. This is the central tenet of the HQ algorithm.

of the hashcode bits. If we denote yk+ as the positive projected values of projected dimen-
sion

{
yk+ ∈ RNtrd |yki ≥ t1

}
, and

{
yk− ∈ RNtrd |yki < t1

}
the negative projected values, the

objective of the second level threshold optimisation is to minimise Equation 12

argmint2,t3 fᵀLf

where f =

[
y+ − t211

−y− + t312

]
subject to 1ᵀf = 0

(12)

Intuitively the objective function is attempting to position thresholds t2, t3 so that two
conditions are met. Firstly, connected nodes in Ŝ, that is true nearest neighbours, stay as
close as possible along the projected dimension (as fᵀLf =

∑
ij Ŝij(fi− fj)2), and secondly,

there is an equal number of opposing bits (‘0’ and ‘1’s) when the projected dimension is
binarised with thresholds t2, t3. This latter balance constraint (1ᵀf = 0) has previously
been shown to maximise the information captured by the bits (Weiss, Torralba, & Fergus,
2008). Liu et al., 2011 demonstrate that by setting to zero the derivatives of Equation 12,
the two thresholds t2, t3 minimising Equation 12 can be computed in closed form.

While Liu et al., 2011 find their multi-threshold quantisation algorithm more effective
than SBQ it suffers from lack of generality to other projection functions, being entirely
tied to the quantisation of graph Laplacian eigenvectors. The computational complexity
of solving for t2, t3 is approximately O(CN+

trd) (Liu et al., 2011), where N+
trd denotes the

27

Moran

number of positive projected values constituting yk+. Given the learnt thresholds the
time taken to generate a bit for a novel query point is O(1). HQ effectively front loads
the available bit budget onto the lowest graph Laplacian eigenvectors. Liu et al., 2011
demonstrate that only using half the number of eigenvectors and assigning each with two
bits yields higher retrieval effectiveness than using all available eigenvectors and assigning
each a single bit. Typically, the intrinsic dimension of many datasets of interest is low and
so the lower graph Laplacian eigenvectors (those with the smallest eigenvalues) are likely
to capture most of the neighbourhood structure, with the higher eigenvectors being more
informative of the input space. This insight is the seed that sparked the recent interest
in multi-threshold quantisation algorithms for ANN search. We will examine subsequent
research contributions in this area in chronological order continuing next to the Double Bit
Quantisation (DBQ) algorithm of Kong & Li (Kong & Li, 2012a).

5.3 Double Bit Quantisation (DBQ)

Double-Bit Quantisation (DBQ) (Kong & Li, 2012a) allocates two thresholds per projected
dimension and assigns two bits to the three resulting thresholded regions. Unlike HQ
(Section 5.2) it has the useful advantage of not being tied to any specific projection function.
For a K-bit hashcode DBQ therefore only uses bK/2c of the number of hyperplanes as SBQ.
DBQ uses the binary encoding scheme illustrated in Figure 14 which ensures that any two
adjacent regions only differ by unit Hamming distance. This property is crucial if the relative
distances between the data-points are to be maintained in the underlying binary encoding, a
key requirement for maximising retrieval effectiveness. DBQ also proposes a novel adaptive
thresholding algorithm for finding an optimal setting of the quantisation thresholds t1, t2.
Given a particular instantiation of the quantisation thresholds t1, t2, three sets r1, r2, r3 are
defined each containing the projected values falling within the corresponding region, that
is: r1 = {yi|yi ≤ t1, yi ∈ yk}, r2 = {yi|t1 < yi ≤ t2, yi ∈ yk}, r3 = {yi|t2 < yi, yi ∈ yk}. The
objective function Jdbq of DBQ is to minimise the sum of squared Euclidean distances of
the projected values falling within the three thresholded regions (Equation 13)

Jdbq(r1, r2, r3) =
∑
yi∈r1

(yi − µ1)2 +
∑
yj∈r2

(yj − µ2)2 +
∑
yl∈r3

(yl − µ3)2 (13)

where µi denotes the mean of the projected values in region ri. As the area of highest point
density along a projected dimension is in the region of zero (Figure 12), DBQ avoids placing
a threshold at zero by setting µ2 = 0 enforcing the property that t1 < 0 and t2 > 0. Given
this Jdbq can then be simplified as in Equation 16 (Kong & Li, 2012a)

Jdbq(r1, r2, r3) =
∑
yi∈yk

y2
i − 2

∑
yi∈r1

yµ1 +
∑
yi∈r1

µ2
1 − 2

∑
yl∈r3

yµ3 +
∑
yl∈r3

µ2
3, (14)

=
∑
yi∈yk

y2
i − |r1|µ2

1 − |r3|µ2
3, (15)

=
∑
yi∈yk

y2
i −

(
∑

yi∈r1 yi)
2

|r1|
−

(
∑

yi∈r3 yi)
2

|r3|
(16)

28

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

y12 thresholds/dimension

t 2

01 00 10

t1

Figure 14: Double Bit Quantisation allocates two thresholds t1, t2 to binarise a projected
dimension. The resulting three thresholded regions are assigned the two-bit encoding shown.
This encoding ensures that adjacent regions are only separated by a Hamming distance of
1.

where |ri| is the number of projected values (data-points) in region ri. Given that
∑

yi∈yk y
2
i

is a constant minimising Jdbq is equivalent to maximising J ′dbq (Equation 17).

J ′dbq(r1, r3) =
(
∑

yi∈r1 yi)
2

|r1|
+

(
∑

yj∈r3 yj)
2

|r3|
(17)

The objective function J ′dbq is maximised by the adaptive thresholding strategy pre-
sented in Algorithm 3. Algorithm 3 initialises the thresholds t1, t2 to values close to zero,
and then gradually moves both thresholds apart: t1 is moved towards negative infinity
(−∞) while t2 is moved towards positive infinity (+∞). The objective function J ′dbq is
evaluated at every projected value along the projected dimension. In tandem to this the
algorithm attempts to maintain the invariant that the mean of region r2 is zero i.e. µ2 = 0
(Line 9), which ensures that neither threshold partitions the densest region of the projected
dimension located around zero. The thresholds are moved while maintaining this property
by gradually shifting data-points from regions r1 and r3 into r2 (Lines 8-13): if the sum of
projected values in r2 is below zero then a positive projected value from r3 is moved into
r1 to increase the sum towards zero, and vice-versa. The objective function J ′dbq is then

computed (Line 15) on the new regions r1, r2, r3. If there is an increase in J ′dbq the thresh-
olds t1, t2 are updated to be the largest projected values in r1 and r2, which now define the
new boundaries between the regions. The algorithm terminates when all data-points have
been moved into region r2. Note that as all data-points along the projected dimension are
exhaustively examined DBQ guarantees to find t1, t2 that lead to the global maximum of
J ′dbq.

The implicit assumption made by DBQ is that the hash functions will minimise the
squared Euclidean distance between true nearest neighbours in the low-dimensional pro-
jected space, which equates to the projected values of any two true nearest neighbours
having low squared Euclidean distance along a given projected dimension. If this assump-
tion is correct then a clustering of the one-dimensional projected dimension based on a
squared error criterion will result in more true nearest neighbours being assigned similar
hashcodes (given that they will end up in the same thresholded region) versus an entirely
random threshold setting. While Kong & Li, 2012a demonstrate that this is a reasonable
assumption in practice, Moran et al. (Moran et al., 2013a) demonstrated that it is far
from optimal and significantly improved retrieval effectiveness can be attained with a semi-
supervised objective that does not entirely rely on the quality of the hash function that

29

Moran

Algorithm 3: Double Bit Quantisation (Kong & Li, 2012a)

Input: Projected values yk ∈ RN resulting from projection onto normal vector
wk ∈ RD of hyperplane hk ∈ RD

Output: Optimised thresholds t1 ∈ R, t2 ∈ R
1 r1 ←

{
yi|yi ≤ 0, yi ∈ yk

}
2 r2 ← ∅
3 r3 ←

{
yi|yi > 0, yi ∈ yk

}
4 Sort (ascending) projected-values in r1

5 Sort (ascending) projected-values in r3

6 Jmax ← 0
7 i← 1
8 while r1 6= ∅ or r3 6= ∅ do
9 if (sum(r2) ≤ 0) then

10 r2 ← r2 ∪min(r3) // Remove minimum value in r3

11 else
12 r2 ← r2 ∪max(r1) // Remove maximum value in r1

13 end
14 i← i+ 1

15 J ← J ′dbq(r1, r3) // Equation 17

16 if (J > Jmax) then
17 t1 ← max(r1)
18 t2 ← max(r2)
19 Jmax ← J

20 end

21 end
22 return t1, t2

produces the projections (Section 5.5). The threshold learning time complexity of DBQ is
O(Ntrd logNtrd) which arises from the pre-processing step that sorts the projected values
in regions r1 and r3 (Lines 4 and 5). DBQ has O(1) time complexity when using the learnt
thresholds to generate a bit for a novel query data-point.

5.4 Manhattan Hashing Quantisation (MHQ)

A primary disadvantage of both HQ and DBQ are their arbitrary restriction to two bits
per projected dimension. Kong et al., 2012 explored the effect of introducing more bits
per projected dimension in their Manhattan Hashing Quantisation (MHQ) model. MHQ
permits an arbitrary allocation of bits, where for B bits per projected dimension 2B − 1
thresholds are used to partition the dimension into disjoint regions. To generate a hashcode
of length K MHQ uses bK/Bc hyperplanes. In a similar manner to DBQ, MHQ introduces
a new encoding scheme and threshold optimisation algorithm, both designed to increase
the preservation of the relative distance between the data points in the resulting hashcodes.
We describe both contributions in this section.

30

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

The binary encoding scheme advocated by MHQ is illustrated in Figure 15. Each region
is encoded using natural binary encoding (NBC). The NBC codebook for each region is
simply obtained by proceeding from left-to-right along the projected dimension starting
with the region closest to t0 = −∞ and converting the integer index starting at zero (and
incremented by one for each region) to its corresponding NBC. For example, in Figure 15 to
obtain the NBC for the third region from the left for the bottom most projected dimension
we convert the integer ‘2’ to ‘010’. Under the constraint of Hamming distance it is clear that
the NBC encoding scheme does not preserve the relative distance between the data-points.
This is easily seen if we examine the encoding for the eight regions induced by setting seven
thresholds along a projected dimension (Figure 15). The encoding for the fourth region from
the left is 011, while the encoding for the adjacent region to the right is 100. The Hamming
distance between these two regions is 3 despite both being adjacent, while the Hamming
distance between region eight (111) - which is much further along the projected dimension -
is only one. In effect this means that any data-points which are projected far apart along the
projected dimension - and which are presumably far apart in the original feature space - will
be much closer together in the Hamming space, than data-points that were projected close
by along the projected dimension. Hashcodes generated with this encoding and compared
using Hamming distance will yield poor quality hashcodes and low retrieval effectiveness. To
mitigate this issue (Kong et al., 2012) propose taking the Manhattan distance between the
integer index corresponding to a given NBC codeword, rather than the Hamming distance
between the corresponding NBC codewords12. To illustrate how this method works we will
consider the example given by (Kong et al., 2012). Imagine we have generated the hashcode
000100 for data-point 1 and the hashcode 110000 for data-point 2. If B = 2, the Manhattan

distance
{
dMHQ(., .) : {0, 1}K × {0, 1}K → Z+

}
between the codewords is computed as in

Equation 18

dMHQ(000100, 110000) = dM (00, 11) + dM (01, 00) + dM (00, 00) (18)

= 3 + 1 + 0

= 4

If the number of bits per dimension B = 3 then the computation proceeds as in Equation
19.

dMHQ(000100, 110000) = dM (000, 110) + dM (100, 000) (19)

= 6 + 4

= 10

12. We note in passing that binary reflected Gray coding would not be suitable as a binary codebook for
nearest neighbour search. Gray coding has the special property that adjacent codewords differ by unit
Hamming distance which has proved beneficial for enabling error correction in digital communication
over analog channels (Gray, 1953). Gray coding is unsuitable for nearest neighbour search, however,
due to the fact that codewords for data-points located much further apart can also have unit Hamming
distance therefore breaking the neighbourhood structure.

31

Moran

y13 thresholds/dimension

t 2

1100

y11 threshold/dimension

10

01 10

t1 t 3

y17 thresholds/dimension

t 2

000

t1 t 6t 3 t 4 t5 t 7

001 010 011 100 101 110 111

t1

Figure 15: Manhattan Hashing Quantisation (MHQ) assigns T = 2B − 1 thresholds per
dimension, where B is the number of bits allocated per dimension. The encoding scheme
for the thresholded regions is natural binary code (NBC). Each region from the left to the
right is assigned an integer starting at 0 (on the left) and ending at 2B − 1 for the far right
region. This integer index is converted to its equivalent NBC giving the codeword for that
region.

Computing the Manhattan distance between the integer indices of each region leads to
remarkable increases in retrieval effectiveness as demonstrated in (Kong et al., 2012). This
is primarily due to the perfect preservation of the relative distance between the data-points:
the codeword for each adjacent thresholded region is a unit Manhattan distance apart and
there is a smooth increase in the Manhattan distance between any two regions the further
apart they are along the projected dimension. Furthermore, this encoding scheme gener-
alises easily to any desired number of thresholds because we are simply taking the integer
index of each region. The obvious downside to computing the Manhattan distance between
the integer indices of the thresholded regions is the slower distance computation versus
computing the Hamming distance. On most modern processors the Hamming distance can
be efficiently computed using a bitwise XOR between the hashcodes followed by a native
POPCOUNT instruction which counts the number of bits set to one. It is not clear in (Kong
et al., 2012) whether or not the Manhattan distance will become a bottleneck on large
datasets of millions of data points and dimensions. Some authors have recently offered
evidence that this may indeed be the case (Wang, Duan, Lin, Wang, Huang, & Gao, 2015b)
by showing that the Manhattan distance requires substantially more atomic operations on
the CPU than the Hamming distance.

The MHQ threshold optimisation algorithm is straightforward: k-means (Lloyd, 1982)

with 2B centroids {ci ∈ R}2
B

i=1 is used to cluster the projected dimension. The corresponding

2B − 1 thresholds {ti ∈ R}2
B−1
i=1 are computed from the centroids by taking the midpoint

between adjacent centroids (Equation 20).

32

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

ti =
(ci + ci+1)

2
(20)

MHQ requires O(2BNtrd) time for threshold learning along a single projected dimension
and O(1) time to generate a bit for a novel query point with the learnt thresholds.

5.5 Neighbourhood Preserving Quantisation (NPQ)

In contrast to previously discussed quantisation models such as AGH (Liu et al., 2011),
DBQ (Kong et al., 2012) and MHQ (Kong & Li, 2012a), Moran et al. (Moran et al.,
2013a) propose a quantisation algorithm, Neighbourhood Preserving Quantisation (NPQ),
that leverages a binary adjacency matrix S ∈ {0, 1}Ntrd×Ntrd , where Ntrd is the number of
training data-points (Ntrd � N), to guide the threshold positioning. Their unique hypoth-
esis is that the neighbourhood structure between the data-points in the input feature space
is a valuable signal for guiding the quantisation thresholds within the lower-dimensional
projected space. The adjacency matrix S therefore encodes the neighbourhood structure of
the data-points in the original feature space, where Sij = 1 if points xi and xj are considered
neighbours (a positive pair), and Sij = 0 otherwise (a negative pair). S can be generated,
for example, by computing Euclidean distance between Ntrd data-points and setting any
data-points within an ε-ball of each other as true nearest neighbours13. The pairwise affinity
matrix S specifies the pairs of points that should fall within the same thresholded regions
and therefore be assigned identical hashcodes from the codebook.

Moran et al. (Moran et al., 2013a) define an objective function for threshold posi-
tioning that directly leverages the neighbourhood structure encoded in S. For a fixed
set of thresholds tk = [tk1 . . . tkT] they define a per-projected dimension indicator matrix
Pk ∈ {0, 1}Ntrd×Ntrd with the property given in Equation 21:

P kij =

{
1, if ∃γ s.t. tkγ ≤ (yki , y

k
j) < tk(γ+1)

0, otherwise.
(21)

The index γ ∈ Z spans the range: 0 ≤ γ ≤ T , where the scalar quantity T denotes the
total number of thresholds partitioning a given projected dimension. Intuitively, matrix Pk

indicates whether or not the projections (yki , y
k
j) of any pair of data-points (xi,xj) fall within

the same thresholded region of the one-dimensional projected dimension yk ∈ RNtrd . Given
a particular instantiation of the thresholds [tk1 . . . tkT], the algorithm counts the number of
true positives (TP), false negatives (FN) and false positives (FP) across all regions. The
requisite TP, FP and FN counts can then be stated as in Equations 22-24

TP =
1

2

∑
ij

PijSij =
1

2
‖P ◦ S‖1 (22)

FN =
1

2

∑
ij

Sij − TP =
1

2
‖S‖1 − TP (23)

13. A fuller definition of ε-NNs can be found in Section 7.3.1

33

Moran

t 3t1 t 2

t 3t1 t 2

y1

y1

F1−measure : 0.31

F1−measure : 0.18

Figure 16: Maximisation of the F1-measure can lead to an effective setting of the quanti-
sation thresholds. In both diagrams we seek to position three thresholds along the same
projected dimension. In the top diagram the threshold positioning leads to an F1-measure
of 0.18. This is a rather low score which results from separating many of the true NNs
(indicated with the same colour and shape) in different regions. The threshold positions in
the lower diagram lead to a higher F1-measure, approximately twice as high, which arises
from capturing more true nearest neighbours in the same thresholded regions.

FP =
1

2

∑
ij

Pij − TP =
1

2
‖P‖1 − TP (24)

where ◦ denotes the Hadamard (elementwise) product and ‖.‖1 is the L1 matrix norm
defined as ‖X‖1 =

∑
ij |Xij |. Intuitively TP is the number of positive pairs that are found

within the same thresholded region, FP is the proportion of negative pairs found within the
same region, and FN are the proportions of positive pairs found in different regions. The
factor of 1/2 appears in Equations 22-24 as both P and S are symmetric matrices under
the ε-NN groundtruth paradigm and so each pairwise relationship between two points is
counted twice: for example if xi and xj are true nearest neighbours then Sij = 1 and
Sji = 1. The TP, FP and FN counts are combined using the familiar set-based F1-measure
from Information Retrieval (Equation 25):

F1(tk) =
2‖P ◦ S‖1
‖S‖1 + ‖P‖1

(25)

The application of an F1-measure based objective function is motivated by the highly
unbalanced nature of the adjacency matrix S: this matrix is usually very sparse, with
approximately 1% of the elements being positive pairs. The F1-measure is well known to be
much less affected by this imbalanced distribution between positive and negatives (as we are
not affected by true negatives) than, for instance, the classification accuracy (Chawla, 2005).
Figure 16 illustrates the computation of the F1-measure on a toy projected dimension. The
overall objective function optimised is given in Equation 26.

Jnpq(tk) = αF1(tk) + (1− α)(1− Ω(tk)) (26)

34

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

where α ∈ [0, 1] and the unsupervised term Ω(tk) is defined as given in Equation 27:

Ω(tk) =
1

σk

T+1∑
j=1

∑
i:yki ∈rj

{
yki − µj

}2
(27)

where rj =
{
yi|tj−1 ≤ yi < tj , yi ∈ yk

}
denotes the projections within thresholded region rj

with t0 = −∞, tT+1 = +∞, σk =
∑Ntrd

i=1

{
yki − µk

}2
, µk ∈ R denotes the mean of projected

dimension yk ∈ RN and µj ∈ R denotes the mean of the projections located in thresholded
region rj . Intuitively maximisation of Equation 26 encourages a clustering of the projected
dimension so that as many of the must-link (i.e. Sij = 1) and cannot-link (i.e. Sij = 0) con-
straints encoded in the adjacency matrix S are respected while also minimising the cluster
dispersion of the projections within each thresholded region. Equation 26 therefore fuses
two valuable signals in a complementary manner: the neighbourhood structure encoded in
the adjacency matrix which provides information on the pairwise relationships between the
data-points in the input feature space; and the neighbourhood information captured by the
projection function that was responsible for generating the projected dimensions in the first
place. This semi-supervised objective function is the main point of conceptual departure
from the previously discussed quantisation algorithms such as AGH (Section 5.2), MHQ
(Section 5.4) and DBQ (Section 5.3) which only leverage the structure in the projected
space.

The F1-measure term in Equation 26 is non-differentiable due to the discontinuous form
of Equation 21 at the threshold points tkγ , tk(γ+1). Continuous optimisation via gradient as-
cent is therefore difficult. Moran et al. (Moran et al., 2013a) apply evolutionary algorithms
and simulated annealing to directly optimise this objective function without appealing to a
continuous relaxation. In total, for K

′
= bK/Bc projected dimensions, the time complexity

of this optimisation is of O(K
′
N2
trdTF), where B denotes the number of bits per projected

dimension, T is the number of thresholds (T ∈ [1, 2, . . . , 15]) and F is the number of objec-
tive function evaluations (i.e. evaluations of Equation 26). The dependence on the square
of the number of training datapoints is of concern for large training datasets and dense
pairwise connectivity relationships between the points. Moran (Moran, 2016) mitigates this
concern somewhat by showing that, for the commonly used ε-NN groundtruth definition
(Section 7.3.1), the adjacency matrix for learning is highly sparse thereby allowing NPQ to
scale to large datasets and achieve a runtime commesurate with the k-means driven algo-
rithm of MHQ. In a follow-up publication Moran et al. (Moran et al., 2013b) further extend
their algorithm by exploring how allocating variable thresholds per projected dimension can
positively influence the retrieval effectiveness.

5.6 A Link to the Discretisation of Continuous Attributes

It is interesting to consider briefly how this research area relates to the well-studied area
of discretisation of continuous attributes in the field of machine learning (Dougherty, Ko-
havi, & Sahami, 1995)(Garcia, Luengo, Saez, Lopez, & Herrera, 2013). Several well-known
machine learning models such as Näıve Bayes (Bishop, 2006)(Yang & Webb, 2009) often
have continuous attributes transformed into nominal attributes by discretisation prior to
learning. The mechanism by which this continuous to discrete transformation is performed

35

Moran

shares many similarities to the quantisation process in the field of multi-threshold quanti-
sation for hashing. More specifically the attributes (dimensions) are partitioned with a set
of cut-points (thresholds) forming a non-overlapping division of the continuous domain. In
a similar manner to the quantisation algorithms we discussed in this section the real-valued
numbers within each thresholded region are assigned the corresponding discrete symbol
representing that region. These discrete symbols must be binary for the quantisation al-
gorithms studied in this section but need not be for the discretisation algorithms found in
machine learning. The discretisation literature is broad and varied and proposes a wealth
of algorithms for learning the cut-points, ranging from unsupervised (simply place the cut-
points at equal intervals) through to supervised (Fayyad & Irani, 1993) and multivariate
(each attribute is discretised jointly) (Mehta, Parthasarathy, & Yang, 2005), (Kerber, 1992).
Given the maturity of the discretisation research field we believe that there is significant po-
tential for these already established ideas to inform the design of future scalar quantisation
algorithms for hashing.

5.7 A Brief Summary

In this section we introduced five recently proposed algorithms for scalar quantisation in the
context of hashing-based ANN search. Each method takes a series of real-valued projections
and outputs binary bits which are concatenated to form the hashcodes for the data-points.
Each algorithm is similar in the sense that one or more thresholds are used to perform
the binarisation: if a value is above or below a threshold it is assigned a codeword (single
bit or multiple bits) of the associated region so formed. Single Bit Quantisation (SBQ)
is the standard method of quantisation used by most previous hashing models (Section
5.1). SBQ positions a single threshold, typically at zero along a projected dimension.
SBQ has the advantages of being simple and computationally efficient, but as we argued,
it can lead to high quantisation errors (related data-points being assigned different bits).
The multi-threshold quantisation algorithms, Hierarchical Quantisation (HQ) (Section 5.2),
Manhattan Hashing Quantisation (MHQ) (Section 5.4), Double Bit Quantisation (DBQ)
(Section 5.3) and Neighbourhood Preserving Quantisation (NPQ) (Section 5.5) all seek
to address this issue with SBQ using novel encoding schemes and threshold optimisation
algorithms. The manner in which the thresholds are optimised varied widely with each
algorithm: HQ relies on a spectral graph partitioning objective, MHQ and DBQ optimise
objections related to squared error and variance minimisation, and NPQ introduces a semi-
supervised objective. The encoding schemes also differ significantly between three of the
multi-threshold algorithms (MHQ, DBQ, HQ, NPQ), but all are designed so that the relative
distance between the data-points is maximally preserved in the resulting hashcodes. We
now turn our attention to a family of methods in Section 6 that learn the projections that
we have just quantised.

6. Projection for Nearest Neighbour Search

In Section 4.1, we identified two main steps - projection and quantisation - that are used to
generate similarity preserving hashcodes in the context of Locality Sensitive Hashing (LSH).
We discussed how both steps taken together and performed in a sequence effectively check
which sides of a set of hyperplanes a data-point falls, appending a ‘1’ to the hashcode if a

36

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

point falls on one side of a given hyperplane and a ‘0’ otherwise. In Section 5 we reviewed
prior art that focused solely on improving the quantisation step by threshold learning.
The quantisation algorithms we examined attempt to better preserve the neighbourhood
structure between the data-points during binarisation, improving upon simply taking the
sign of the projections in Equation 28

hk(xi) =
1

2
(1 + sgn(wᵀ

kxi + tk)) (28)

where wk ∈ RD is the hyperplane normal vector and tk ∈ R is the quantisation threshold.
Equation 28 is the popular linear hash function adopted in most hashing research. We
discussed in Section 5 that, apart from Anchor Graph Hashing (Liu et al., 2011), most
quantisation models operate independently of the projection stage and assume that the
projections to be binarised have already been generated by an existing projection method.
In this section we review the equally important step of projection and focus on algorithms
that seek to generate the projections in a way that preserves the relative distances between
the data-points along the resulting projected dimensions. In the case of the linear hash
function this is equivalent to positioning a set of K hyperplanes throughout the input
feature space in such a way that similar data-points are likely to fall within the same
polytope-shaped region. These regions constitute the hashtable buckets for indexing and
retrieval. To generate a projected dimension yk ∈ RNtrd from a hyperplane hk ∈ RD the

data-points
{
xi ∈ RD

}Ntrd
i=1

are projected onto the normal vector wk ∈ RD using a dot
product operation wᵀ

kxi. In Figure 17, we show geometrically the effect of the dot product
and how a projected dimension is formed using this operation.

In Section 4, we introduced Locality Sensitive Hashing (LSH) a seminal early method
for solving the ANN search decision problems given in Definitions 3.1-3.2. As we discussed
in Section 4.1, LSH for the inner product similarity samples hyperplanes uniformly from
the unit sphere, relying on an asymptotic guarantee that as the number of hyperplanes
increases the Hamming distance between the hashcodes will reflect the cosine similarity
between any two data-points14. Nevertheless, as we pointed out in Section 4, randomly
sampled LSH hyperplanes tend to lack discrimination and run a high risk of partitioning
regions of the input feature space dense in related data-points. In practice this means that
many hyperplanes (bits) and many hash tables are required for adequate retrieval effective-
ness. Unfortunately, longer hashcodes and more hashtables require a greater main memory
allocation for the LSH deployment. Recently researchers have turned to the question of
how best to generate more compact and discriminative hashcodes by learning hyperplanes
adapted to the distribution of the data (Liu et al., 2011; Liu, Wang, Ji, Jiang, & Chang,
2012; Weiss et al., 2008; Gong & Lazebnik, 2011; Raginsky & Lazebnik, 2009; Kulis &
Darrell, 2009; Zhang, Wang, Cai, & Lu, 2010). It is these methods that form the focus in
this part of the literature review.

Existing work on projection methods for hashing-based ANN can usefully be divided
into three sub-fields based on the degree to which the distribution of the data informs the
construction of the hashing hyperplanes: data-independent (Section 6.2), data-dependent

14. Goemans and Williamson (Goemans & Williamson, 1995) showed that the expected Hamming distance
between two bit vectors formed by hash functions sampled from Hcosine will approximate the angle
between the vectorial feature representation of the corresponding data-points in the input feature space.

37

M
e
th

o
d

T
y
p

e
L

e
a
rn

in
g

H
a
sh

F
u

n
c
tio

n
T

ra
in

in
g

C
o
m

p
le

x
ity

P
ro

p
e
rtie

s
S

e
c
tio

n

L
S

H
I

U
sg
n

(w
ᵀk x

+
tk)

O
(K

D
)

E
2

4.1
S

K
L

S
H

I
U

sg
n

(cos(w
ᵀk x

+
tk)

+
tk
′)

O
(K

D
)

E
2

6.2.1

P
C

A
H

D
U

sg
n

(w
ᵀk x

+
tk)

O
(m
in

(N
2tr
d D
,N

tr
d D

2))
E

2 ,E
3 ,E

4
6.3.1

A
G

H
D

U
sg
n

(w
ᵀk z

+
tk)

O
(N

tr
d C
K

)
E

1 ,E
2 ,E

3 ,E
4

6.3.4
IT

Q
D

U
sg
n

(R
W

ᵀx
)

O
(K

3)
E

1 ,E
2 ,E

3 ,E
4

6.3.3
S

H
D

U
sg
n

(sin
(
π2

+
jπ

(w
ᵀk x

)))
O

(m
in

(N
2tr
d D
,N

tr
d D

2))
E

1 ,E
2 ,E

3 ,E
4

6.3.2

S
T

H
D

S
sg
n

(w
ᵀk x

+
tk)

O
(N

tr
d D
K

+
M
N

2tr
d K

)
E

1 ,E
2 ,E

3 ,E
4

6.4.4
K

S
H

D
S

sg
n

(w
ᵀk κ

(x
)

+
tk)

O
(N

tr
d C
K

+
N

2tr
d C
K

+
N
tr
d C

2K
+
C

3K
)

E
1 ,E

2
6.4.3

B
R

E
D

S
sg
n

(w
ᵀk κ

(x
)

+
tk)

O
(K

N
2tr
d

+
K
N
tr
d

log
N
tr
d)

E
1 ,E

2
6.4.2

G
R

H
D

S
sg
n

(w
ᵀk κ

(x
)

+
tk)

O
(N

2tr
d K

)+
O

(N
tr
d D
K

)
E

1 ,E
2

6.4.5

C
V

H
D

S
sg
n

(w
ᵀk x

+
t xk),

sg
n

(u
ᵀk z

+
t zk)

O
(N

tr
d D

2
+
D

3),D
=
m
a
x

(D
x ,D

z)
E

2 ,E
3 ,E

4
6.5.1

C
M

S
S

H
D

S
sg
n

(w
ᵀk x

+
t xk),

sg
n

(u
ᵀk z

+
t zk)

O
(K

M
N
tr
d D

),D
=
m
a
x

(D
x ,D

z)
E

1 ,E
2

6.5.3
C

R
H

D
S

sg
n

(w
ᵀk x

+
t xk),

sg
n

(u
ᵀk z

+
t zk)

O
(D

2x D
z

+
D
x D

2z
+
D

3z)
E

1 ,E
2

6.5.2
P

D
H

D
S

sg
n

(w
ᵀk x

+
t xk),

sg
n

(u
ᵀk z

+
t zk)

O
(M

N
2tr
d K

)
E

1 ,E
2 ,E

4
6.5.4

IM
H

D
S

sg
n

(w
ᵀk x

+
t xk),

sg
n

(u
ᵀk z

+
t zk)

O
(N

3tr
d)

E
1 ,E

2 ,E
3 ,E

4
6.5.6

R
C

M
H

D
S

sg
n

(w
ᵀk x

+
t xk),

sg
n

(u
ᵀk z

+
t zk)

O
(M

N
tr
d D

x K
+
M
N
tr
d D

z K
+
M
S
K

)
E

1 ,E
2

6.5.5

T
a
b

le
3
:

C
atego

risa
tion

o
f

ex
istin

g
p

ro
jection

learn
in

g
algorith

m
s.

T
h

is
tab

le
is

in
sp

ired
in

p
art

b
y

th
e

categorisation
given

in
(W

an
g

et
al.,

201
0
a).

T
y
p

e
is

th
e

d
ata

d
ep

en
d

en
cy

of
th

e
algorith

m
:

d
ata

in
d

ep
en

d
en

t
(I)

or
d

ata
d

ep
en

d
en

t
(D

).
L

earn
in

g
is

th
e

learn
in

g
p

a
ra

id
gm

u
sed

:
u

n
su

p
erv

ised
(U

)
or

su
p

erv
ised

(S
).

S
ee

S
ection

6
for

d
etail

on
th

e
sp

ecifi
cs

of
each

h
ash

fu
n

ction
.

T
h

e
last

fi
ve

h
a
sh

fu
n

ctio
n

s
are

cross-m
o
d

al.
N

is
th

e
total

n
u

m
b

er
of

d
ata-p

oin
ts,

K
is

th
e

h
ash

co
d

e
len

gth
,
C

are
a

set
of

an
ch

or
d

a
ta-p

oin
ts

(C
�

N
tr
d),

N
tr
d

a
re

th
e

n
u

m
b

er
of

train
in

g
d

ata-p
oin

ts
(C

<
N
tr
d
�

N
),
M

are
th

e
n
u

m
b

er
of

iteration
s.

T
y
p

ica
lly

N
tr
d

=
1
000

-2
0
00,

K
=

3
2-128

an
d
C

=
300.

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

y

w2

w1

h1

h2

00

10 11

01

x

(a) Feature space partitioning

x

y

w2

(b) Projection onto normal vector w2

Figure 17: Illustration of the projection operation. Methods for projection partition the
feature space with a set of hyperplanes. In Figure (a) we show a partitioning of a two
dimensional feature space induced by two hyperplanes h1 and h2. To determine the bucket
index or hashcode of a data-point it is necessary to project the data-points onto the normal
vectors (w1, w2) followed by binary quantisation. In Figure (b) we show geometrically the
result of projection onto normal vector w2. The resulting projections form projected dimen-
sion y2 ∈ RNtrd . Section 6 examines existing work that seek to position the hyperplanes so
that many true nearest neighbours end up close to each other along the resulting projected
dimensions.

but unsupervised (Section 6.3) and data-dependent and supervised (Sections 6.4-6.5). The
projection methods we examine in this section are categorised in Table 3. We segment the
field into these three areas and review related work under each category in Sections 6.2-6.5.
The review will take us on a journey across a wide array of truly diverse techniques for
generating hash functions, from random projections, kernel functions, spectral methods to
boosting. We attempt to be as thorough as possible in our coverage of existing related work.
Nevertheless, the literature on projection is truly vast due to its popularity as a research
topic and therefore it will be impossible to provide an exhaustive coverage here due to space
constraints. Instead we focus in detail on the more well-known models across each category
whose authors have made the codebase freely available to the research community. We point
the interested reader to two recently published review articles of Wang et al. (Wang, Shen,
Song, & Ji, 2014) and Grauman and Fergus (Grauman & Fergus, 2013) for an additional
overview of this part of the field. Note further that all of the hashing models we review
restrict themselves to search over a single hash table (L = 1) as is the tradition in the
literature. Methods that explicitly learn multiple hashtables in a data-dependent manner
are an interesting sub-field but are out of the scope of this review. The reader is encouraged
to see Xu et al. (Xu, Wang, Li, Zeng, Li, & Yu, 2011) and Liu et al. (Liu, He, & Lang,
2013) for research in this direction.

39

Moran

6.1 The Four Properties of an Effective Hashcode

Before we discuss individual models for projection, we will firstly examine several properties
that contribute to making an effective hashcode for nearest neighbour search. The seminal
work on Spectral Hashing (SH) by Weiss et al. (Weiss et al., 2008) first codified four
properties of an effective hashcode (E1-E4):

• E1: The hashcode should have low Hamming distance to the hashcodes of similar
data-points.

• E2: The hashcode should be efficiently computable for a novel query data-point.

• E3: The bits of the hashcode should have equal probability of being 0 or 1.

• E4: The different bits of the hashcode should be pairwise independent.

While we have previously discussed the importance of the first property (E1) in the
context of LSH (Section 4) and binary quantisation (Section 5), we have so far not discussed
the remaining criteria (E2-E4). The second property (E2) is crucial for applying a hashing
scheme in practice. Given a novel data-point we should be able to rapidly compute its
hashcode so that the overall query time is kept to a minimum. This is known in the
learning to hash literature as out-of-sample extension. LSH has a straightforward and
computationally efficient method for out-of-sample-extension: simply multiply the query
data-point by the matrix where each column constitutes the normal vector of a randomly
sampled hyperplane followed by sign thresholding (Section 4). The last two properties
target the efficiency E3 and compactness E4 of the hashcode. Property E3 requires each
hyperplane to generate a balanced partition of the data by splitting the dataset into two
partitions of equal size i.e.

∑Ntrd
i=1 hk(xi) = 0. By the principle of maximum entropy this

will maximise the information captured by the associated bit (Baluja & Covell, 2008). This
constraint has the desirable effect of mapping an equivalent number of data-points to each
hashcode and therefore balancing the occupancy of the hashtable buckets15. At query time
we therefore avoid the degenerate case of having to examine an unnecessarily large number
of nearest neighbours in a given hashtable bucket. The fourth property E4 targets hashcode
compactness by eliminating any redundant bits that capture the same information on the
input feature space. Ideally any hashing scheme should seek to minimise the number of
bits in the hashcode to conserve storage and computation time. The vast majority of
the data-dependent projection schemes introduced since the seminal work of (Weiss et al.,
2008) attempt to learn hashing hyperplanes that generate hashcodes with as many of these
four properties as possible. We will study the extent to which these properties can be
simultaneously preserved during the optimisation of the hashing hyperplanes in Sections
6.2-6.4.

15. Wang et al. (Wang et al., 2012) showed how the NP-hard property E3 could be relaxed (and therefore
implemented) by showing that it is equivalent to maximising the variance for the kth bit. Enforcing
property E3 might be sub-optimal, however, if it causes a cluster of related data-points to be partitioned
into separate buckets. Usually such a situation can be remedied by using multiple independent hashtables.

40

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

6.2 Data-Independent Projection Methods

Aside from Locality Sensitive Hashing (LSH) which we reviewed in detail in Section 4,
we will discuss one other influencial data-independent hashing method, Locality Sensitive
Hashing from Shift Invariant Kernels (SKLSH) (Raginsky & Lazebnik, 2009) that extends
LSH to the preservation of kernel similarity (Section 6.2.1).

6.2.1 Locality Senstive Hashing from Shift Invariant Kernels (SKLSH)

Locality Sensitive Hashing from Shift Invariant Kernels (SKLSH) extends LSH to the
preservation of similarity between data-points as defined by an appropriate kernel func-
tion

{
κ : RD × RD → R

}
such as the Gaussian kernel κ(xi,xj) = exp(−γ‖xi − xj‖2/2) or

the Laplacian Kernel κ(xi,xj) = exp(−γ‖xi − xj‖1/2) where γ ∈ R is the kernel band-
width parameter. In essence the method is similar to LSH but with a different definition
of the hash function family H due to the different similarity preservation required. The

crux of this hashing model is to construct an embedding
{
g : RD → {0, 1}K

}
such that if

two data-points are similar as defined by the kernel function i.e. κ(xi,xj) ≈ 1 then there
will be a high degree of overlap between their hashcodes i.e. dhamming(g(xi), g(xj)) ≈ 0,
and vice-versa for the situation when κ(xi,xj) ≈ 0. To construct a mapping with this
property Raginsky and Lazebnik (Raginsky & Lazebnik, 2009) formulate a low-dimensional
projection function given by ΨK : RD → RK . This projection uses the random Fourier
features of Rahimi and Recht (Rahimi & Recht, 2007) that provide a guarantee that the
inner product between the two transformed data-points approximates the output of a shift
invariant kernel16 Ψk(xi) · Ψk(xj) ≈ κ̂(xi − xj). The random Fourier features mapping is
given in Equation 29

Ψk(xi) =
√

2cos(wᵀ
kxi + tk) (29)

where for the Gaussian kernel wk ∼ N (0, γID×D) and tk ∼ Unif [0, 2π]. The contribution
of Raginsky and Lazebnik (Raginsky & Lazebnik, 2009) is to use this embedding as the
centerpiece of a novel hash function (Equation 30)

hk(xi) =
1

2
[1 + sgn(cos(wᵀ

kxi + tk) + tk′)] (30)

where sgn denotes the sign function adjusted so that sgn(0) = −1 and tk′ ∼ Unif [−1, 1].
Raginsky and Lazebnik (Raginsky & Lazebnik, 2009) provide a proof that hashing the
data-points with K randomly sampled hash functions will yield a binary embedding whose
Hamming distance approximates the desired shift invariant kernel similarity. As the hy-
perplanes are sampled randomly the training time complexity of this algorithm is a low
O(DK). SKLSH satisfies property E2 of an effective hashcode, namely efficient computa-
tion of hashcodes.

6.3 Data-Dependent (Unsupervised) Projection Methods

In this section we will provide a critical appraisal of relevant related work that learns the
hashing hyperplanes in a data-dependent manner but without the need for supervisory

16. A shift invariant kernel is defined as: κ(xi,xj) = κ̂(xi − xj).

41

Moran

information in the form of user provided pairwise constraints on data-point similarity or
class labels. All of the unsupervised data-dependent hashing models we review in this section
learn the hashing hyperplanes by formulating a trace minimisation/maximisation problem
which is solved in closed form as an eigenvalue problem or using singular value decomposition
(SVD). These hashing methods rely directly on well established methods of linear and
non-linear dimensionality reduction, specifically Principal Components Analysis (PCA) and
Laplacian Eigenmaps (LapEig). Given the widespread use of matrix factorisation in the
learning to hash literature, including many methods we do not review here, we give a brief
introduction to this important solution strategy before we review the individual hashing
algorithms themselves in Section 6.3.1-6.3.417.

There are effectively two main strategies for performing a dimensionality reduction on
a dataset X ∈ RN×D to obtain a new dataset Y ∈ RN×K where K � D. The first
method involves finding an explicit linear transformation of the data characterised by a
projection matrix W ∈ RD×K into the lower dimensional space (Y = XW). PCA is a
well-known member of this projective category. The second method computes a non-linear
low-dimensional embedding Y ∈ RN×K directly, without first finding an explicit mapping
function. These latter methods, of which LapEig is a prime example, typically impose
neighbourhood constraints such that close by data-points in the original space are close-by
in the reduced space. Despite these differences, both categories can be neatly unified by a
standard trace maximisation objective function (Equation 31)

argmaxV∈RN×K tr(VᵀAV)

subject to Vᵀ1 = 0

VᵀBV = IK×K
(31)

where A is a symmetric matrix, B is positive definite matrix, V is an orthonormal18 ma-
trix and tr(A) =

∑
iAii. The exact specification of these matrices is projection function

dependent. We will concretely define A, B, V including their dimensionalities in Sections
6.3.1-6.3.4. But as a way of proving an immediate intuitive example, in the context of Prin-
cipal Component Analysis (PCA) we have A = XᵀX, V = W ∈ RD×K and B = I ∈ RD×D.
Therefore maximising the trace (Equation 31) in this case is equivalent to finding the prin-
cipal directions in the data that capture the maximum variance in the input feature space.

The trace maximisation in Equation 31 can be solved as a general eigenvalue problem
Avi = λiBvi, where vi is the ith eigenvector with eigenvalue λi (Saad, 2011), (Kokiopoulou
et al., 2011). This part of the learning to hash literature can now be distilled to its essence:
in order to learn a set of data-dependent hash functions we shape our desired hashing
optimisation problem into a form that resembles this template (Equation 31) and then we
can simply solve for the K eigenvectors of a standard eigenvalue problem. This particular
optimisation problem is easily solved using off the shelf solvers such as eigs or svd in
Matlab. The main work in deriving an unsupervised data-dependent hash function can be
summarised with the following standard four-step procedure:

17. For more detail on trace optimisation and eigenproblems for dimensionality reduction the reader is
pointed to the excellent article of Kokiopoulou et al. (Kokiopoulou, Chen, & Saad, 2011).

18. An orthonormal matrix V is a square matrix with real values whose columns and rows are orthogonal
unit vectors. That is, V has the property VᵀV = VVᵀ = I, where I denotes the identity matrix.

42

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

Anchor Graph
Hashing

Spectral
Hashing

PCA-Hashing

Iterative
Quantisation

 Rotate data to
 balance variance

 Minimise the sum of squared
 Euclidean distances between
 projections of related data-points

Sinusoidal
binarisation

Maximise
variance of
projected
values

Figure 18: The data-dependent (unsupervised) hashing models are intimately related. This
diagram illustrates one interpretation of that relationship where PCA is very much the
centerpiece. The directed arcs are labelled with the operation necessary to transform one
model into another model pointed to by the arc. See Section 6.3 for a full description of
the four models.

1. Manipulating the problem into a matrix trace minimisation/maximisation (Equation
31).

2. Solving the optimisation objective as an eigenvalue problem or by performing a SVD.
The K eigenvectors or right-singular vectors are the normal vectors of the hashing
hyperplanes.

3. Dealing with the imbalanced variance resulting from the matrix factorisation.

4. Construct an out-of-sample extension in the case of a non-projective mapping.

These four design principles are apparent in all four data-dependent hashing methods
we review in this section. Specifically we survey PCA hashing (PCAH) (Section 6.3.1),
Spectral Hashing (SH) (Section 6.3.2), Iterative Quantisation (ITQ) (Section 6.3.3) and
Anchor Graph Hashing (AGH) (Section 6.3.4). In three out of four of the methods PCA
extracts the directions of maximum variance which are then used as the hashing hyperplanes
(PCAH, SH, ITQ). The contributions of the majority of these approaches lie in Step 3 where
a sensible strategy is sought for minimising the impact of the imbalanced variance across
hyperplanes, a phenomenon that reduces the quality of the hashcodes from lower principal
components. The final method, AGH, takes a different tact (Section 6.3.4) and computes
an eigenfunction extension of graph Laplacian eigenvectors, largely basing the hashcode
learning on the Laplacian Eigenmap dimensionality reduction algorithm. The objective of

43

Moran

all of the presented algorithms is to learn K hash functions
{
hk : RD → {0, 1}

}K
k=1

that can
be concatenated to generate hashcodes for unseen data-points.

We present a diagram summarising one interpretation of the relationship between these
hashing algorithms in Figure 18.

6.3.1 Principal Components Analysis Hashing (PCAH)

Principal components analysis (PCA) (Hotelling, 1933) has proven to be by far the most
popular low dimensional embedding for data-dependent hashing schemes, with a large body
of seminal works manipulating a PCA embedding to achieve superior retrieval accuracy over
unsupervised hashing schemes (Kong & Li, 2012b; Gong & Lazebnik, 2011; Weiss et al.,
2008; Wang et al., 2012). We therefore begin the review by examining the most basic
instantiation of a PCA-based hashing scheme: namely computing the principal directions
of the data and using the singular vectors with the highest singular values directly as the
hashing hyperplanes without any further modification (Wang, Kumar, & Chang, 2010b).

We assume without any loss of generality that the training data in X ∈ RNtrd×D has
been centred by subtracting off the mean i.e.

∑Ntrd
i=1 xi = 0. The standard maximum

variance PCA objective can then be stated as in Equation 32

argmax{wk∈RD}Kk=1

1

Ntrd

∑
k

wᵀ
kX

ᵀXwk

=
1

Ntrd
tr(WᵀXᵀXW)

subject to WᵀW = I

(32)

where tr(A) =
∑

iAii denotes the matrix trace operator and W ∈ RD×K is the matrix
with columns wk. The constraint WᵀW = I requires the learnt hyperplanes to be pairwise
orthogonal which can be thought of as a relaxed version of the pairwise independence
property for bits (property E4 in Section 6.1). Equation 32 is identical to Equation 31 with

A = XᵀX, V = W and B = I. Therefore the
{
wk ∈ RD

}K
k=1

maximising Equation 32 are
exactly the right singular vectors with the largest singular values which can be obtained
using SVD on X ∈ RNtrd×D in O(min(N2

trdD,NtrdD
2)) operations. The PCA solution

W ∈ RD×K , where each column constitutes a principal component, can be interpreted as a
rigid rotation of the feature space such that each succeeding coordinate captures as much of
the variance of the input data as possible. For a K-bit hashcode it is common to take the
K right-singular vectors with the highest singular values as the hashing hyperplanes while
tk is set to zero given that the data is mean-centered. The PCAH hash function is given in
Equation 33.

hk(xi) =
1

2
(1 + sgn(wᵀ

kxi)) (33)

Using PCA to generate hash functions can be thought of as attaining properties E2, E3, E4

of an effective hashcode as identified in Section 6.1.

While the use of PCA is popular within the learning to hash literature, we mention here
a number of disadvantages with using this matrix factorisation for generating hashcodes.

44

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

Figure 19: Plot displaying the PCA principal components w1 ∈ RD, w2 ∈ RD (shown as
perpendicular lines) for the data-points indicated by the black dots. Data has been aligned
to the principal axes. The two principal components point in the directions of greatest
variance of the data. These components are used as the vectors normal to the hashing
hyperplanes in the PCA hashing (PCAH) algorithm.

Firstly, SVD is computationally expensive making this approach generally unattractive for
databases with a large number of data-points and/or of a high dimensionality. Secondly,
the number of bits K can never be greater than the dimensionality of the dataset D. In a
practical hashing deployment, we first generate a very long hashcode for a data-point and
then divide the hashcode up into L segments each of which provide the indices into the
buckets of L hashtables. The fact that we must always have K ≤ D means that PCAH
effectively places a restrictive upper bound on the number of hashtables L and hashcode
lengths K we can use with this method. Finally, the singular vectors with the lowest
singular values are likely to be unreliable, capturing little variance in the feature space.
Using these singular vectors as hyperplane normal vectors in Equation 33 is likely to result
in poor quality hashcodes that do not discriminate well between data-points. This latter
issue, which we term the imbalanced variance problem, resulted in a flurry of additional
research that specifically examined how best to extract the most information from the
singular vectors with the highest singular values (Sections 6.3.2, 6.3.4) or that transform
the original data-space so that the learnt hyperplanes capture an equal amount of the
variance (Section 6.3.3).

6.3.2 Spectral Hashing (SH)

Spectral Hashing (Weiss et al., 2008) (SH) was one of the earliest proposed schemes for
data-dependent hashing and can be seen as the spark that ignited interest in data-dependent
hashing within the field of Computer Vision. SH provides a standard framework for graph-
based hashing and is central to unsupervised and supervised hashing models proposed

45

Moran

later in the learning to hash literature. As we discussed in Section 6.1, SH placed the
requirements of an “effective hashcode” on a firm theoretical grounding by introducing
four properties (E1, E2, E3, E4) that such hashcodes should exhibit. In contrast to simply
binarising the projections onto the firstK principal components as is done in PCAH (Section
6.3.1), a procedure which is unlikely to generate hashcodes with the desired properties, SH
examines the extent to which we can integrate three of the properties E1, E3, E4 directly
into the optimisation problem as the objective function (E1) and constraints (E3, E4). The
optimisation problem introduced by SH is given in Equation 34

argminY∈RNtrd×K
∑
ij

Sij‖yi − yj‖2

= tr(Yᵀ(D− S)Y)

subject to Y ∈ {−1, 1}Ntrd×K

Yᵀ1 = 0

YᵀY = NtrdI
K×K

(34)

where Dii =
∑

j Sij is the diagonal degree matrix of the adjacency matrix S ∈ RNtrd×Ntrd .
Weiss et al. (Weiss et al., 2008) assume that the Euclidean distance between the input
data-points is to be preserved and therefore Sij = exp(−‖xi − xj‖2/γ2) is an appropriate
similarity, where γ ∈ R is the kernel bandwidth parameter.

This objective function seeks to learn hashcodes
{

yi ∈ {−1, 1}K
}Ntrd
i=1

where the average

Hamming distance between similar neighbours is minimised, while satisfying bit balance and
bit independence constraints. The constraint Yᵀ1 = 0 codifies property E3 in requiring the
bits to form a balanced partition of the feature space while constraint YᵀY = NtrdI

K×K

seeks bits that are pairwise uncorrelated which approximates property E4. Unfortunately
this optimisation problem is NP-hard even for a single bit, which can be proved with a
reduction to the balanced graph partitioning problem which is well known to be NP-hard19.
In order to make the optimisation problem tractable Weiss et al. (Weiss et al., 2008) use
the spectral relaxation trick (Shi & Malik, 2000) removing the integrality constraint and
letting the projection matrix Y ∈ RNtrd×K consist of real numbers (Equation 35).

argminY∈RNtrd×K tr(Yᵀ(D− S)Y)

subject to Y ∈ RNtrd×K

Yᵀ1 = 0

YᵀY = NtrdI
K×K

(35)

Equation 35 is identical to Equation 31 with A = D− S and V = Y. The solutions of
Equation 35 are therefore theK eigenvectors with minimal eigenvalue of the graph Laplacian
D − S20. The rows of the spectral embedding matrix Y ∈ RNtrd×K can be interpreted as
the coordinates of each data-point in the low-dimensional embedding. Solving Equation 35

19. The interested reader is pointed to Weiss et al. (Weiss et al., 2008) for a proof.
20. The trivial eigenvector 1 with eigenvalue 0 is ignored.

46

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

ensures that data-points deemed close by the neighbourhood graph S ∈ {0, 1}Ntrd×Ntrd are
mapped nearby in the embedded space, preserving the local distances. The time complexity
of solving Equation 35 is approximately O(N2

trdK). Unfortunately, the graph Laplacian
eigenvectors obtained in this way will only generate the hashcodes for the Ntrd training data-
points leaving open the question of out-of-sample extension. A common way of solving this
problem in the context of spectral methods is to compute the Nyström extension (Bengio,
Paiement, Vincent, Delalleau, Roux, & Ouimet, 2004)(Williams & Seeger, 2001). However
without making a suitable approximation (see Section 6.3.4) this procedure is just as costly
(O(NtrdK)) as performing a brute-force search through the database making it unattractive
for encoding unseen data-points at query time. To circumvent this issue Weiss et al. (Weiss
et al., 2008) make a simple approximation by assuming the projected data is sampled from
a multi-dimensional uniform distribution. In doing so they show that an efficient out-
of-sample extension can be obtained by simply computing the one-dimensional Laplacian
eigenfunctions given by Equation 36.

Ψkj(y
k
i) = sin(

π

2
+

fπ

bk − ak
yki) (36)

with eigenvalues given by Equation 37:

λkf = 1− e−
γ2

2
| fπ
bk−ak

|2
(37)

along the principal directions given by PCA, where f ∈ {1 . . .K} is the frequency, ak, bk are
parameters of a uniform distribution estimated for projected dimension k and yki ∈ R de-
notes the projection of data-point xi onto the kth principal direction. For ease of exposition
we split the SH algorithm into a training step in which the parameters of the uniform dis-

tribution approximation {ak, bk}Kk=1 and the PCA principal directions
{
wk ∈ RD

}K
k=1

are
estimated and an out-of-sample extension step in which the hashcodes of novel data-points
are generated. Both steps are summarised in A and B below:

(A) Hash function training:

1. Extract K eigenvectors
{
wk ∈ RD

}K
k=1

by computing PCA on the training database

X ∈ RNtrd×D and stack as the columns of matrix W ∈ RD×K .

2. Project X ∈ RNtrd×D onto the principal directions
{
wk ∈ RD

}K
k=1

by computing

Y = XW where Y ∈ RNtrd×K

3. Estimate a uniform distribution (ak, bk)
K
k=1 for each projected dimension by computing

the maximum bk and minimum ak extent of each dimension where ak = min(yk),
bk = max(yk)

4. For each projected dimension yk ∈ RNtrd computeK analytical eigenfunctions {Ψkf}Kf=1

and their associated eigenvalues {λkf ∈ R}Kf=1 given by Equations 36-37.

47

Moran

5. Sort the K2 eigenvalues and select the K analytical eigenfunctions from
{

Ψ̄kj

}K
k,j=1

with the smallest overall eigenvalues. Denote these as
{

Ψ̄k

}K
k=1

, their correspond-

ing normal vectors as
{
w̄k ∈ RD

}K
k=1

and the parameters of the associated uniform

distributions
{
āk, b̄k

}K
k=1

. Retain all three sets for out-of-sample extension.

(B) Out-of-sample extension:

1. Compute the K-bit hashcode g(q) = [h1(q), h2(q), . . . , hK(q)] for query q with the K

hash functions defined as in Equation 38 using
{

Ψ̄k, w̄k, āk, b̄k
}K
k=1

retained in Step 5
of the pre-processing stage. Using Equation 36 in the hash function can be thought
of as a sinusoidal partitioning to be contrasted with the cosine partitioning of the
projected dimension of SKLSH (Section 6.2.1).

hk(q) =
1

2
(1 + sgn(Ψ̄k(w̄

ᵀ
kq)) (38)

The computational complexity of this algorithm is dominated by the O(min(N2
trdD,Ntrd

D 2)) operations required to perform PCA on the database. SH prefers to select directions
that have a large spread |bk − ak| and low spatial frequency f . For low-dimensional data
(D ≈ K) SH commonly chooses multiple sinusoidal eigenfunctions with gradually higher
frequencies for those eigenvectors that are pointing in the directions of greatest variance.
To see this, note that the greater the variance of a projected dimension yk the greater the
range of |bk−ak| and the lower the value of the corresponding eigenvalue given by Equation
37. In low-dimensional settings SH therefore has the desirable property of assigning more
bits to the directions of highest variance in the input space, effectively up weighting the
contribution of more informative hyperplanes in the Hamming distance computation. This
somewhat overcomes the issue of PCAH in which we are progressively forced to pick orthog-
onal directions that capture less and less of the variance in the input space. Front loading
the bits onto the most informative hyperplanes is one way of overcoming the imbalanced
variance problem (Section 6.3.1) and usually leads to a higher retrieval effectiveness (Liu
et al., 2011; Moran et al., 2013b). In high dimensional settings (D � K) where the top
eigenvectors capture a similar degree of variance, SH degenerates into PCAH by selecting
each PCA hyperplane only once.

Despite the higher retrieval effectiveness versus LSH reported in Weiss et al. (Weiss
et al., 2008) the unrealistic assumption of a uniform distribution has proved to be a con-
siderable limitation of this method. The Anchor Graph Hashing (AGH) algorithm of Liu
et al. (Liu et al., 2011) seeks to overcome this issue by making a clever approximation that
permits an efficient application of the Nyström method for out-of-sample extension. We
examine AGH in Section 6.3.4.

6.3.3 Iterative Quantisation (ITQ)

While Spectral Hashing (SH) implicitly allocates more bits to the hyperplanes that capture
a greater proportion of the variance in the input space in order to counteract the imbalanced

48

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

Algorithm 4: Iterative Quantisation (ITQ) (Gong & Lazebnik, 2011)

Input: Data-points X ∈ RNtrd×D, PCA hyperplanes W ∈ RD×K , number of
iterations M , randomly initialised rotation matrix R ∈ RK×K

Output: Optimised rotation matrix R ∈ RK×K
1 Y ← XW // Project data onto PCA hyperplanes

2 for m← 1 to M do
3 B← sgn(YR) // Rotate data using R and quantise

4 SΩŜᵀ ← SV D(BᵀY) // Perform SVD on BᵀY

5 R← ŜSᵀ // Rotation minimising Eq 39 for fixed B

6 end
7 return R

variance problem, Iterative Quantisation (ITQ) seeks to balance the variance across PCA
hyperplanes through a learnt rotation of the feature space21. ITQ introduces an iterative
scheme reminiscent of the k-means algorithm to find a rotation of the feature space R ∈
RK×K so that the resulting projections onto the principal directions W ∈ RD×K will
minimise the quantisation error specified in matricial form in Equation 39

argminB∈RNtrd×K ,R∈RK×K ‖B−YR‖2F
where B ∈ {−1, 1}Ntrd×K

subject to RᵀR = KIK×K

(39)

Equation 39 is similar to the orthogonal Procrustes22 problem (Schönemann, 1966) in which
we seek to transform one matrix into another using an orthogonal transformation matrix
in such a way as to minimise the sum of the squares of the resulting residuals between
the target matrix and the transformed matrix. In this case Equation 39 seeks a rotation
matrix R ∈ RK×K so that the squared Euclidean distance between the projection vectors
Y ∈ RNtrd×K and their associated binary vectors B = sgn(XW) is minimised, where PCA
hyperplanes are stacked in the columns of W. This optimisation is challenging as both
matrices B ∈ RNtrd×K and R ∈ RK×K are initially unknown. To learn the optimal R
we need to know optimal B and to learn the optimal B we need to know the optimal R.

21. We comment briefly on why ITQ is considered a method of projection in this survey, rather than quan-
tisation. In Section 5, we defined a quantisation algorithm as one which learns one or more thresholds
along a projected dimension that are then subsequently used in a thresholding operation to convert the
real-valued projections to binary. ITQ is therefore not strictly a quantisation algorithm under the defini-
tion as it does not directly convert real-valued projections to binary relying instead on SBQ (Section 5.1)
for quantisation. We therefore categorise ITQ as a method for data-dependent projection as it works
directly with the PCA hyperplanes rotating the data so that the resulting projections better preserve
the locality structure of the input data-space.

22. For the interested reader this problem is named after a particular grisly Greek myth involving the
protagonist Procrustes, a villain who offered unwitting travelers their much needed rest on a “magic”
bed that could perfectly accommodate any visitor no matter their height. Unfortunately, Procrustes had
a penchant for removing the arms and legs of his guests so that they could be perfectly accommodated
on the bed.

49

Moran

Figure 20: The effect of an ITQ rotation of the feature space. Here we show the same data
as in Figure 19 but rotated by R ∈ RK×K as found by ITQ over 100 iterations. The variance
is more evenly distributed between the two hyperplanes (indicated as perpendicular lines)
and the quantisation error is lower (no longer does a hyperplane directly cut through a
cluster center). This is the optimisation objective of ITQ (Gong & Lazebnik, 2011).

This chicken and egg type problem can be solved with an iterative scheme akin to k-means
that starts off with a random guess for R, before refining the matrix through a two-step
optimisation procedure in which both matrices are learnt individually with the other fixed
(Gong & Lazebnik, 2011). The iterative ITQ algorithm is presented in Algorithm 4.

The key step in the ITQ algorithm is shown in Line 4 of Algorithm 4. In Hanson and
Norris (Hanson & Norris, 1981) and Arun et al. (Arun, Huang, & Blostein, 1987) it is shown
that with a fixed target matrix B the sought after transformation R minimising the squared
Euclidean distance can be obtained from the singular value decomposition (SVD) of matrix
BᵀY. With a fixed R, Gong and Lazebnik (Gong & Lazebnik, 2011) show that the optimal
B minimising Equation 39 can be obtained simply by using single bit quantisation (Section
5.1) (Line 3). In addition to properties E1-E2, ITQ approximately conserves properties
E3 and E4 of an effective hashcode introduced in Section 6.1. The balanced partition
property (E3) is met by maximising the variance of the projections using PCA which was
shown in Wang et al. (Wang et al., 2010b) to be a good approximation to conserving
E3. E4 is approximately met by computing PCA on the data as the resulting hyperplanes
will be orthogonal, a relaxed version of the pairwise independence property. The most
computationally expensive step of ITQ is in Line 4 where the SVD of a K × K matrix
is computed. This step takes O(K3) operations, where K is the hashcode length. The
learnt rotation matrix can then be used to construct an ITQ hashcode for an unseen query
data-point q ∈ RD as given in Equation 40

gl(q) =
1

2
(1 + sgn(RWᵀq)) (40)

50

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

where we assume the data has been mean-centered so that the quantisation threshold tk = 0.

We conclude with two observations on the ITQ algorithm. Firstly, such iterative two-
step algorithms are a common and effective recipe for solving difficult optimisation problems
within this field and crop up time and again in the literature. The need for a two-step
algorithm is tied to the NP-hard problem of directly finding the optimal binary hashcodes.
This issue can be tackled by making a continuous relaxation of Y ∈ RNtrd×K as we first
observed in the context of SH (Section 6.3.2). In this case a two-step procedure will find the
best continuous approximation to the hashcodes followed by a second step that quantises
the projections to generate the bits using either SBQ or one of the more sophisticated
binarisation schemes introduced in Section 5. Being an approximation this process will
produce sub-optimal hashcodes and so the challenge in most data-dependent projection
models is to minimise the error in the continuous-to-binary conversion by learning the
hashing hyperplanes in such a way that the resulting projections are more amenable to
accurate binarisation. This algorithmic pattern is clearly evident in ITQ. Only recently
have authors turned to the more difficult problem of formulating data-dependent hashing
algorithms that optimise for the binary hashcodes directly without making a continuous
relaxation. The reader is encouraged to see Section 6.4.2 and Liu et al. (Liu, Mu, Kumar,
& Chang, 2014) for an overview.

6.3.4 Anchor Graph Hashing (AGH)

We previously described the Hierarchical Quantisation (HQ) algorithm employed by Anchor
Graph Hashing (AGH) in Section 5.2. In this section we focus exclusively on the AGH
component that learns the projection function. AGH examines the same relaxed objective
function as SH which we repeat in Equation 41 for reading convenience

argminY∈RNtrd×K tr(Yᵀ(D− S)Y)

subject to Y ∈ RNtrd×K

Yᵀ1 = 0

YᵀY = NtrdI
K×K

(41)

The computational bottlenecks involved with this objective function are two-fold: firstly
the similarity matrix S ∈ RNtrd×Ntrd requires O(N2

trdD) computations to construct. Sec-
ondly as for any hashing method we need to compute the hashcodes for unseen query

data-points using K hash functions
{
hk : RD → {0, 1}

}K
k=1

. Unfortunately solving Equa-
tion 41 and binarising the resulting eigenvectors will only provide the hashcodes for the
training data-points used to construct the adjacency matrix S ∈ RNtrd×Ntrd . We need to

extend the K graph Laplacian eigenvectors to K eigenfunctions
{

Ψk : RD → R
}K
k=1

which
we can combine with an appropriate quantisation method to form the hash functions that
will encode any data-point (seen or unseen). As mentioned in Section 6.3.2 this out-of-
sample extension can be derived using the Nyström method (Bengio et al., 2004)(Williams
& Seeger, 2001) requiring O(NtrdK) time for one data-point. Clearly this time complexity
is not amenable to online hashcode generation for out-of-sample query data-points. The key
takeaway message of the AGH algorithm is that a sparse, low-rank approximation of S can

51

Moran

be implicitly manipulated through operations on a truncated similarity matrix Z ∈ RNtrd×C
(C � Ntrd) known as the anchor graph. The approximate similarity matrix Ŝ ∈ RNtrd×Ntrd ,
which never needs to be explicitly computed, permits eigenfunction extension of the graph
Laplacian in a time independent of the number of data-points while avoiding the need to
manipulate the full dense similarity matrix S. Furthermore, by computing the Nyström
extension AGH is able to avoid the unrealistic separable uniform distribution assumption
made by Spectral Hashing (Section 6.3.2).

More specifically the centerpiece of the AGH method is the concept of the anchor graph
Z ∈ RNtrd×C , an approximation of a full data affinity graph, that only consists of the
similarities from Ntrd data-points to a small set of C anchors rather than the complete
pairwise similarities between N2

trd data-points. These anchors are simply computed by

running k-means over the training dataset and selecting the centroids
{
ci ∈ RD

}C
i=1

as the
C anchor data-points. We first presented the anchor graph formulation in Equation 10 in
the context of the Hierarchical Quantisation (HQ) method which for convenience we repeat
in Equation 42

Zij =

exp(−d2(xj , ci)/γ)∑

i′∈〈j〉

exp(−d2(xj , ci′))/γ)
if i ∈ 〈j〉

0 otherwise

(42)

where γ is the kernel bandwidth,
{
d(., .) : RD × RD → [0, 1]

}
is a distance function and

〈j〉 ∈ {1 . . . R} are the indices of the R � C nearest anchors to xj under the distance
metric d(., .). As the number of anchors is much less than the number of data-points
(C � Ntrd), constructing the anchor graph is O(NtrdCD) rather than O(N2

trdD) for S.
Liu et al. (Liu et al., 2011) show that the full similarity matrix Ŝ can be approximated
as Ŝ = ZΣ−1Zᵀ where Σ = diag(Zᵀ1). The approximate similarity matrix Ŝ has the
computationally attractive properties of being sparse and low rank. The low rank property
is exploited in the graph Laplacian eigenvector extraction by solving the eigenvalue system of
the small C×C matrix Σ1/2ZᵀZΣ−1/2. Given a bit budget of K in the hierarchical variant of
their algorithm, Liu et al. (Liu et al., 2011) select K

′
= K/2 of the C eigenvectors with the

highest eigenvalues as the hashing hyperplane normal vectors. Stacking the K
′

eigenvectors
columnwise in matrix V in descending order of eigenvalue and the corresponding eigenvalues

on the diagonal of matrix Λ, the required graph Laplacian eigenvectors Y ∈ RNtrd×K
′

can
be computed as given in Equation 43.

Y =
√
NtrdZΣ−1/2VΛ−1/2 = ZW (43)

The training time complexity of computing Y is O(NtrdCK
′
). The columns of the matrix

W ∈ RC×K
′

can be seen as the normal vectors of K
′

hyperplanes partitioning the space
RC formed by the non-linear mapping in Equation 42. Liu et al. (Liu et al., 2011) show
that an out-of-sample extension can be achieved in two steps: firstly, the unseen query
data-point q is non-linearly projected into the space RC by computing the similarity of q

to the C cluster centroids
{
ci ∈ RD

}C
i=1

using Equation 42. This operation results in a

52

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

sparse transformed vector z ∈ RC which can also be interpreted as a kernelised feature map
(Murphy, 2012). This step is subsequently followed by a linear projection of z onto the k-th
hyperplane wk ∈ RC partitioning the space RC . The AGH hash function is formed from
both steps (Equation 44)

hk(q) =
1

2
(1 + sgn(wᵀ

kz)) (44)

where we again assume the data is mean centered so that tk = 0.

This hash function can be thought of as non-linearly mapping the data into a space where
it is more likely to be linearly separable by linear decision boundaries. Given an unseen
query data-point computing this out-of-sample extension takes O(CD+CK

′
) operations, a

testing time complexity that is a marked improvement over the O(NtrdK) time complexity
of the Nyström method23. Rather than generate one bit per hash function as suggested
by Equation 44, the most accurate variant of AGH generates two bits for each of the
resulting projected dimensions yk = Y•k with k ∈ [1, . . . ,K

′
]. We previously discussed this

Hierarchical Quantisation (HQ) algorithm in detail in Section 5.2.

6.3.5 A Brief Summary

In this section we surveyed a selection of the more well-known unsupervised algorithms
that position the hashing hyperplanes based on the distribution of the data. We reviewed
Principal Components Analysis Hashing (PCAH) (Section 6.3.1), Iterative Quantisation
(ITQ) (Section 6.3.3), Spectral Hashing (SH) (Section 6.3.2) and Anchor Graph Hashing
(AGH) (Section 6.3.4). We saw that all three models reviewed are closely related in their
application of a well-known dimensionality reduction method, either Principal Components
Analysis (PCA) or Laplacian Eigenmaps (LapEig), to learn the hashing hyperplanes.

Three out of four of the hashing models (PCAH, SH, ITQ) used PCA, setting the
hashing hyperplanes to be the right singular vectors resulting from a SVD on the data
matrix. Two of these models (SH, ITQ) highlighted the issue of variance imbalance in
which the hyperplanes capturing a smaller amount of the variance are much less reliable
for hashing. The upshot of this is that PCAH retrieval effectiveness declines markedly
with longer hashcode lengths due to the incorporation of lower quality hyperplanes into
the hashcode generation. To counter this degradation in performance SH assigns more
hashcode bits to the hyperplanes with higher variance while ITQ rigidly rotates the feature
space to explicitly balance the variance across hyperplanes. All three models show higher
retrieval effectiveness than PCAH which assigns one bit per hyperplane or simply uses the
PCA hyperplanes as is.

We also discussed how the AGH algorithm took a different strategy to the PCA-based
hashing algorithms by using a LapEig-inspired dimensionality reduction. In this scenario a
nearest neighbour graph was built from the input data which was then used in an eigenvalue
problem to extract graph Laplacian eigenvectors. Given that LapEig is a non-projective
dimensionality reduction these eigenvectors were shown to yield the hashcodes for only
those data-points used in the neighbourhood graph computation. An appealing property of

23. Assuming D � Ntrd, which is generally true for the most common image features such as Gist and
SIFT.

53

Moran

AGH is its computationally efficient method, based on the Nyström method of (Williams
& Seeger, 2001), for out-of-sample extension to unseen data-points.

Aside from AGH which makes an honest attempt at reducing the computational com-
plexity at training time, the downside with most of these hashing algorithms is the severe
computational penalty O(min(N2D,ND2)) required for solving the SVD or eigenvalue
problem making their application intractable for large-scale datasets of high dimensional-
ity. Indeed, as we will see in forthcoming sections most data-dependent hashing models
(both supervised and unsupervised) generally rely on a matrix factorisation.

6.4 Data-Dependent (Supervised) Projection Methods

In Section 4 and Sections 6.2-6.3 we reviewed a selection of state-of-the-art data-independent
and data-dependent hashing models. The data-independent models preserve a similarity,
such as the cosine or a kernel similarity, that is non data-adaptive and is therefore unlikely
to do very well at capturing a user-defined notion of similarity across many different tasks.
Moreover, the data-dependent (unsupervised) models assume, for example, that discrimi-
native hashcodes can be generated from projected dimensions that capture the maximum
variance in the input space. This relies on variance being a quantity that can effectively
distinguish between unrelated data-points, an assumption which may not be valid in many
datasets of practical interest, such as image datasets collated “in the wild” from the WWW
that depict images of varying topic, quality and resolution. This is exacerbated by the
well-known semantic gap problem in computer vision which highlights the gulf between the
statistics of the images captured by low-level image features such as Gist and SIFT and the
high-level semantic concepts that are depicted in the image (Smeulders, Worring, Santini,
Gupta, & Jain, 2000). A robust way of linking these two domains is one of the grand
challenges in the fields of object recognition, image retrieval and image annotation (Moran
& Lavrenko, 2015a).

To mitigate the difficulties arising from the semantic gap and capture the complex
relationships between data-points found in real-world datasets, such as whether two images
depict a cat or a person, it is generally much better to learn a hash function from a small
amount of available supervision in the form of human annotated class labels or pairwise
cannot-link or must-link constraints that specify which data-point pairs should or should
not have the same hashcodes24. In the visual search domain, Grauman et al. (Grauman &
Fergus, 2013) highlight potential sources of supervisory information ranging from explicit
labelling of a subset of the database, to known correspondences between points in image
pairs and user feedback on image search results. It is this category of hashing model that
we review in this section. In general, we define a supervised hashing model as a model
that leverages the same type of information (e.g. class labels, metric distances) in the hash
function learning algorithm that was also used to compute the groundtruth information for
evaluation purposes. In Figure 21, we illustrate a situation in which learning hyperplanes
based on pairwise labels yields a more effective bucketing of the space than one based purely
on captured variance.

24. Listwise and triplet-based supervision has also been used to learn supervised hashing models, but we
do not consider this type of learning algorithm in this review. The reader should consult Wang et al.
(Wang, Liu, Kumar, & Chang, 2015a) for more information on these type of models.

54

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

y

w1

h1
 0

 1

x

(a) Unsupervised

y

w1

h1

 0 1

x

(b) Supervised

Figure 21: Supervised versus unsupervised projection function learning. Illustration of a
situation where learning hashing hyperplanes based on pairwise user provided constraints
can yield a more effective bucketing of the space than a partitioning based on maximum
variance. Points with similar shapes and colours are 1-nearest neighbours. In Figure (a)
hyperplane h1 ∈ RD is learnt via PCA with its normal vector w1 ∈ RD pointing in the
direction of maximum variance in the data. Projecting data-points onto the normal vector
w1 ∈ RD places related data-points (indicated by the same shapes) into different buckets. In
contrast Figure (b) illustrates the effect of constraining the hyperplane positioning by using
a set of must-link (show as dotted lines) and cannot-link (shown as solid lines connecting the
data-points) constraints. We only show a subset of the constraints for clarity. In this case
all related data-points fall within the same bucket as each other yielding a more effective
partitioning of the space.

In a similar manner to the data-dependent (unsupervised) models, we restrict our atten-
tion to a selection of the most well-known baselines from the literature and whose authors
have made the codebase freely available to the research community. We review ITQ with a
Canonical Correlation Analysis (CCA) embedding (ITQ + CCA) (Gong & Lazebnik, 2011),
Supervised Hashing with Kernels (KSH) (Liu et al., 2012), Binary Reconstructive Embed-
ding (BRE) (Kulis & Darrell, 2009), Self-Taught Hashing (STH) (Zhang et al., 2010) and
Graph Regularised Hashing (GRH)(Moran & Lavrenko, 2015a). These five models funda-
mentally differ only in how they use the available labels to derive an error signal that can
then be used to adjust the positioning of the hashing hyperplanes. For example, BRE and
KSH frame similar objective functions that attempt to minimise the difference between the
labels and the hashcode distances (BRE and KSH). STH uses the LapEig objective which
minimises the difference between the projections of data-points with the same label, GRH
uses a random walk over a neighbourhood graph to enforce consistency betweent the bits
of similar data-points, while ITQ+CCA frames an objective that maximises the correlation
of the labels and data-point projections. The relationship between these five supervised
hashing models is summarised in Figure 22.

55

Moran

Supervised Hashing
with Kernels

ITQ-CCA
Binary Reconstructive

Embedding

Self Taught
Hashing

Minimise the sum of squared
Euclidean distances between
projections of related data-points

Minimise difference between
label and hashcode Hamming
distance

Minimise difference between
label and inner product of the
projections

Maximise correlation of
label and the data-point
projections

Graph Regularised
Hashing

Maximise margin of
dissimilar data-point
projections

Figure 22: Relationship between the five supervised hashing models reviewed in this section.
The labels on the arrows indicate the transformation necessary to convert between the
different models. The fundamental difference between the models arises in how the available
labels are related to the projections/hashcodes so as to compute an error signal to adjust
the hashing hyperplanes.

6.4.1 ITQ + Canonical Correlation Analysis (CCA)

We reviewed the unsupervised variant of Iterative Quantisation (ITQ) in Section 6.3.3. ITQ
learns an orthogonal rotation matrix R ∈ RK×K that transforms PCA projected data in
a way that minimises the error of mapping the data to the vertices of a binary hypercube.
ITQ is independent of the method for generating the orthogonal hashing hyperplanes W =
[w1,w2, . . . ,wK] where wk ∈ RD, which in the case of the original algorithm was PCA. It
is therefore straightforward to make ITQ into a supervised algorithm by using a supervised
embedding to learn the hashing hyperplanes rather than PCA. (Gong & Lazebnik, 2011)
replace PCA with Canonical Correlation Analysis (CCA) (Hardoon, Szedmak, & Shawe-
Taylor, 2003) a well-known multi-view dimensionality reduction technique that explores the
interaction between data vectors in two different feature spaces X and Z. Assume we have
Ntrd training data-points in matrix X ∈ RNtrd×Dx and their associated labels in matrix
Z ∈ RNtrd×Dz , where usually Dx 6= Dz. Each row of matrix Z is a binary indicator vector
zi ∈ {0, 1}Dz where a ‘1’ indicates that the data-point xi is tagged with that label and
a ‘0’ otherwise. The CCA algorithm finds two hyperplane normal vectors wk ∈ RDx and
uk ∈ RDz so that the projections Xwk and Zuk are maximally correlated (Equation 45).

56

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

argmaxwk∈RD,uk∈RD
wkXZuk√

wᵀ
kX

ᵀXwku
ᵀ
kZ

ᵀZuk

subject to wᵀ
kX

ᵀXwk = 1

uᵀ
kZ

ᵀZuk = 1

(45)

This objective function can be maximised by solving the following generalised eigenvalue
problem (Gong & Lazebnik, 2011)

XᵀZ(ZᵀZ + ρI)−1ZᵀXᵀwk = λ2
k(X

ᵀX + ρI)wk (46)

where λk is the eigenvalue and ρ is a regularisation constant set to 0.0001 in (Gong
& Lazebnik, 2011). Repeatedly solving Equation 46 for directions that are orthogonal
to all previously discovered hyperplanes gives K orthogonal hyperplanes with normals
W = [w1,w2, . . . ,wK] whose positioning in the feature space have been influenced by the
supervisory signal. Having learnt the hyperplanes W ∈ RD×K in modality X the remainder
of the ITQ+CCA algorithm proceeds in the same way as for the unsupervised variant of
ITQ (Section 6.3.3). If we denote D = max(Dx, Dz), then the computational complexity of
ITQ+CCA is bounded by O(NtrdD

2 +D3). This is made up of the O(NtrdD
2) operations

required to compute the covariance matrices and the O(D3) operations arising from the
matrix multiplications, inversion and solving the eigenvalue problem (Rasiwasia, Mahajan,
Mahadevan, & Aggarwal, 2014). Following a similar line of argument to ITQ, ITQ+CCA
approximately preserves properties E1-E4 of an effective hashcode.

6.4.2 Binary Reconstructive Embedding (BRE)

Binary Reconstructive Embedding (BRE) is the only projection method we consider that
does not make use of the spectral relaxation trick to circumvent the NP-hard optimisation
problem of learning binary hashcodes directly. We were first introduced to this continuous
relaxation in the context of Spectral Hashing (Section 6.3.2). Without making the spectral
relaxation and dropping the sign function from the optimisation objective many approaches
to data-dependent hashing are discontinuous and non-differentiable. The contribution of
BRE is a novel optimisation objective and a coordinate descent algorithm that solves the
discrete optimisation problem directly without appealing to a continuous relaxation. As we
have seen before in this literature review many methods solve for a matrix Y ∈ RNtrd×K
of real-numbers and then binarise this matrix to reveal the hashcodes using, for example,
single bit quantisation (SBQ). These two steps are disconnected and there is therefore
no guarantee that the real-values in Y ∈ RNtrd×K will reliably map to accurate binary
hashcodes particularly if they are close to the threshold boundary (which is typically at
zero for mean centered data). BRE brings both steps into the optimisation objective by
retaining the sign function. We present the supervised variant of the BRE objective function
in Equation 47

57

Moran

argminW∈RD×K
∑

ij∈S∈{0,1}Ntrd×Ntrd

{
(1− Sij)−

1

K
‖g(xi)− g(xj)‖22

}2

subject to g(xi) = [h1(xi), h2(xi), . . . , hk(xi)]
ᵀ

where hk(xi) =
1

2
sgn(1 +

C∑
j=1

Wjkκ(xj ,xi))

(47)

where S ∈ {0, 1}Ntrd×Ntrd is an adjacency matrix with Sij = 1 indicates xi and xj are
related and 0 otherwise. Ntrd data-points (C < Ntrd � N) are sampled from the dataset
to construct S and C data-points are sampled uniformly at random as the anchor points
for efficient kernel computation. W ∈ RC×K is initialised randomly, κ is a kernel function{
κ : RD × RD → R

}
. Kulis and Darrell (Kulis & Darrell, 2009) set κ to be the linear kernel

in the original publication.

The objective function in Equation 47 attempts to make the normalised Hamming dis-
tance low for those data-point pairs with Sij = 1, and large otherwise. No part of this
objective encourages the conservation of properties E3 and E4 of an effective hashcode. In
the case of both objective functions a kernelised feature map

{
κ : RD × RD → R

}
is com-

puted against a small number C of randomly sampled data-points from the training dataset,

and the mapped data projected onto a set of K hyperplane normal vectors
{
wk ∈ RC

}K
k=1

.
This formulation of the hash function is similar to that of Anchor Graph Hashing (Equa-
tion 44) except AGH maps the data non-linearly using an RBF kernel and uses k-means
centroids as the C samples to construct the kernel. The retrieval effectiveness of BRE may
benefit from a non-linear kernelised feature map although this formulation was not explored
in the original publication.

Perhaps the most interesting contribution of BRE is the optimisation algorithm used
to minimise Equation 47 with the sign function intact. To optimise the non-differentiable
objective function, Kulis and Darrell (Kulis & Darrell, 2009) formulate a coordinate descent
algorithm that cycles through each hash function one by one and finds the value minimising
Equation 47 of a randomly chosen element Wjk of each hyperplane W•k, while holding
the remaining hyperplanes constant. Kulis and Darrell (Kulis & Darrell, 2009) provide
a closed form solution for computing the optimal Wjk in O(N2

trd) time. This procedure
is repeated for the remaining hash functions. In total one iteration through all K hash
functions takes O(KN2

trd + KNtrd logNtrd) operations25. BRE meets properties E1-E2 of
an effective hashcode. The hashcode bits generated by BRE are correlated (property E3

is not conserved) given that the coordinate descent algorithm cycles through each hash
function in turn updating the current hash function based on the optimised hyperplane
normal vectors of previously examined hash functions. The benefit of tackling the discrete
optimisation problem directly has recently garnered renewed attention in Liu et al. (Liu
et al., 2014) and Shen et al. (Shen, Shen, Liu, & Tao Shen, 2015).

25. For ease of presentation we assume each of the Ntrd training data-points forms Ntrd-1 supervisory
pairs with the other Ntrd-1 training data-points in S. In practice, for computational tractability, BRE
randomly selects a much smaller sample of pairs (e.g. 0.05Ntrd) for each training datapoint.

58

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

6.4.3 Supervised Hashing with Kernels (KSH)

Supervised Hashing with Kernels (KSH) formulates a kernelised hash function in a similar
manner to AGH (Section 6.3.4) and BRE (Section 6.4.2) but proposes an entirely different
and spectrally relaxed optimisation algorithm (Liu et al., 2012). KSH exhibits the highest
retrieval effectiveness compared to the supervised hashing models we discuss in this section
and frequently appears in the literature as the de-facto baseline for comparison on the
standard image datasets considered in this review. The familiar kernelised hash function is
presented in Equation 48

hk(q) = sgn(

C∑
j=1

Wjkκ(xj ,q) + tk) (48)

where κ is the kernel function κ : RD×RD → R, tk ∈ R is a scalar threshold and W ∈ RC×K
is a set of K hyperplane normal vectors. As for BRE and AGH a small number of C
(C � N) data-points are sampled uniformly at random from the dataset X ∈ RN×D to
compute the required kernel similarities. In addition, Ntrd data-points (C < Ntrd � N) are
sampled from the dataset to construct the adjacency matrix S ∈ {−1, 1}Ntrd×Ntrd , which
acts as the training samples for learning the hash functions. The objective function of KSH
(Equation 49) is very similar to the supervised BRE objective function, the only salient
difference being the removal of the sign function and the computation of the inner product
(gᵀ(xi)g(xj)) between a pair of hashcodes for data-points xi,xj , rather than the Euclidean
distance.

argminW∈RC×K
∑

ij∈S∈RNtrd×Ntrd

{
Sij −

1

K
gᵀ(xi)g(xj)

}2

subject to g(xi) = [h1(xi), h2(xi), . . . , hK(xi)]
ᵀ

hk(xi) = sgn(

C∑
j=1

Wjkκ(xj ,xi))

(49)

Recall from Section 6.4.2 that BRE retains the sign function and tackles the resulting
NP-hard optimisation problem via a coordinate descent algorithm that measures the impact
of flipping bits on the objective function value. In contrast KSH drops the sign function and
performs the hashcode optimisation over a continuous space that admits a more efficient
parameter update via gradient descent. KSH optimises each of the K hash functions sequen-

tially by firstly initialising each hyperplane normal
{
wk ∈ RC

}K
k=1

by solving an eigenvalue
problem which is then followed by a gradient descent optimisation to further refine the
hyperplanes. To see how the KSH sequential optimisation algorithm works more clearly, we
drop the sign function and rewrite Equation 49 to iterate over the K hash functions rather
than data-point pairs (Equation 50)

59

Moran

argminW∈RC×K

K∑
k=1

‖KS− yk(yk)ᵀ‖2F

where yki =

C∑
j=1

Wjkκ(xj ,xi)

(50)

where we have assumed that the data is mean centered, and therefore tk = 0. Recall from
Table 1 that the notation yk signifies the kth column of the projection matrix Y ∈ RNtrd×K .
It is possible to approximately solve Equation 50 by simply optimising each hyperplane
individually giving K independent optimisation problems. Instead KSH opts for a solution
strategy similar to that of BRE where the hyperplanes are solved in a sequential manner
thereby instilling a degree of dependence between the hashcode bits. In the case of KSH
this dependence is captured with a residue matrix R ∈ ZNtrd×Ntrd+ defined in Equation 51

Rk−1 = KS−
k−1∑
l=1

yl(yl)ᵀ (51)

The magnitude of R is related to the number of mismatches between the signs of data-
point pairs where Sij = 1 in the adjacency matrix. The higher the number of mismatches
for a given data-point pair (xi,xj) over the previous k-1 hash functions the greater the
value of the corresponding element Rk−1

ij and the greater the influence that pair will have

on learning of the kth hash function. In this way the hash function learning is gradually
biased towards correctly labelling those data-point pairs that were incorrectly labelled by
hyperplanes learnt earlier in the optimisation procedure. Liu et al. (Liu et al., 2012) show
that the objective function in Equation 50 can be reduced to Equation 52

argmaxwk∈RC (Kwk)
ᵀRk−1(Kwk)

where Kij = κ(xi,xj)

subject to (Kwk)
ᵀ(Kwk) = L

(52)

where K ∈ RNtrd×C is the kernel matrix. Comparing the form of Equation 52 to the stan-
dard eigenvalue problem template presented in Equation 31 we can immediately see that
the solution to this optimisation problem is the eigenvector with the largest eigenvalue of
KᵀRk−1Kwk = λKᵀKwk. In the KSH algorithm this eigenvector constitutes the initialisa-
tion point for the kth hyperplane normal wk ∈ RC . The position of this hyperplane is further
refined via gradient descent from the gradient of a sigmoid smoothed relaxation of Equation
52. The remaining hashing hyperplanes are then learnt by updating the residue matrix and
sequentially repeating the eigenvector initialisation and gradient descent refinement steps
for each.

Despite being a non-linear model, KSH maintains a computationally tractable optimi-
sation algorithm with time complexity O(NCK +N2

trdCK +NtrdC
2K +C3K) by limiting

the number C,Ntrd
26 of sampled data-points used to construct the hash functions and by

26. Typically Ntrd = 1000 and C = 300.

60

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

making a continuous (real-valued) approximation to the binary hashcodes. KSH does not
enforce constraints E3-E4 of an effective hashcode, but does ensure E1, E2 with highly
discriminative hashcodes and fast out-of-sample-extension to unseen query data-points.

6.4.4 Self-Taught Hashing (STH)

Self-taught hashing (STH) (Zhang et al., 2010) employs a two-step procedure for learning
the hashing hyperplanes. The first step involves a Laplacian Eigenmap dimensionality
reduction which is followed by a second step that learns the hyperplanes for out-of-sample
extension to unseen query data-points. STH is therefore reminiscent of the unsupervised
data-dependent hashing models Anchor Graph Hashing (AGH) (Section 6.3.4) and Spectral
Hashing (SH) (Section 6.3.2). The first step of STH is identical to that of SH in which K
graph Laplacian eigenvectors are extracted from the graph Laplacian L = D − S. We
present the now familiar graph Laplacian optimisation objective in Equation 53

argminY∈RNtrd×K tr(Yᵀ(D− S)Y)

subject to Y ∈ RNtrd×K

YᵀD1 = 0

YᵀDY = NtrdI
K×K

(53)

where tr(A) =
∑

iAii is the trace operator, S ∈ {0, 1}Ntrd×Ntrd is a neighbourhood graph
formed from class labels, if two data-points share at least one class in common then Sij = 1,
otherwise Sij = 0 and D is the diagonal degree matrix Dii =

∑
j Sij . For computational

tractability Ntrd � N . Note the slight difference in the constraints between Equation 53
and the objective of SH (Equation 35). The diagonal degree matrix D makes an appearance
in the constraints of Equation 53, which gives a normalised cut of S rather than a ratio-cut
(Aggarwal & Reddy, 2014) when the graph Laplacian eigenvectors are binarised. Equation
53 is therefore equivalent to the Laplacian Eigenmap embedding (Belkin & Niyogi, 2003).
The solutions of Equation 53 are the eigenvectors corresponding to the lowest eigenvalues of
the generalised eigenvalue problem Lyk = λDyk. The eigenvalue problem can be solved in
O(MN2

trdK) operations using M iterations of the Lanczos algorithm (Golub & Van Loan,
1996), (Zhang et al., 2010). Note that, as for BRE (Section 6.4.2), it is also straightforward
to frame STH as an unsupervised hashing model by computing S using, for example, the
Euclidean distance between feature vectors in the input feature space. In the same way
to SH, solving Equation 53 approximately preserves properties E3 and E4 of an effective
hashcode (Section 6.1).

Equation 53 can be solved as a standard eigenvalue problem to extract the required K
graph Laplacian eigenvectors Y ∈ RNtrd×K . As we discussed in the context of AGH, the
spectral embedding matrix must be binarised to form the hashcodes, and only then provides
the encoding for the Ntrd data-points that formed the neighbourhood graph S. Rather than
appealing to the Nyström method (Bengio et al., 2004)(Williams & Seeger, 2001) as in AGH
(Section 6.3.4) or making a separable uniform distribution approximation as for SH (Sec-
tion 6.3.2), STH makes the novel contribution of learning a set of K binary support vector
machine (SVM) classifiers that predict the bits in the binarised spectral embedding matrix
with maximum margin. The learnt classifiers provide the required hyperplane normal vec-

61

Moran

tors
{
wk ∈ RD

}K
k=1

necessary for out-of-sample extension to unseen data-points. Training
K linear SVMs takes O(NtrdDK) time (Joachims, 2006) while out-of-sample extension (test
time) is O(DK) for a single test data-point.

6.4.5 Graph Regularised Hashing (GRH)

Graph Regularised Hashing (GRH) (Moran & Lavrenko, 2015a) is a simple and scalable
iterative hashing model that borrows inspiration from the core innovations of STH and
ITQ. At the beginning the hashcodes {b1. . .bNtrd} are initialised by running the points
{x1. . .xNtrd} through any existing unsupervised or supervised projection function, such as
LSH (Indyk & Motwani, 1998) or ITQ+CCA (Gong & Lazebnik, 2011). Having initialised
the hashcodes GRH iteratively performs the following three key steps to learn a set of
hashing hyperplanes:

1. Regularisation: GRH uses a graph-based approach to regularise the hashcodes. The
nodes of the graph correspond to the points {x1. . .xNtrd} and S plays the role of an
adjacency matrix: an undirected edge is inserted between nodes xi and xj if and only
if Sij = 1. Each node xi is annotated with K binary labels, corresponding to the
K bits of the hashcode bi. The aim is to increase the similarity of the label sets at
the opposite ends of each edge in the graph. This is achieved by averaging the label
set of each node with the label sets of its immediate neighbours, and in doing so the
Ntrd hashcodes {b1. . .bNtrd} are made more consistent with the adjacency matrix S ∈
RNtrd×Ntrd (Equation 54). This technique is similar to the score regularisation method
of Diaz (Diaz, 2007) and the label propagation algorithm of Zhu and Ghahramani (Zhu
& Ghahramani, 2002).

Bm ← sgn
(
α SD−1Bm−1 + (1−α)B0

)
(54)

Here m ∈ [1, . . . ,M], where M is the maximum number of iterations, S is the adja-
cency matrix and D is a diagonal matrix containing the degree of each node in the
graph27. B ∈ {−1,+1}Ntrd×K represents the labels assigned to every node at the pre-
vious step of the algorithm, B0 indicates the labels at iteration 0, namely as initialised
by LSH or ITQ+CCA, α ∈ [0, 1] is a scalar smoothing parameter and sgn represents
the sign function, modified so that sgn(0)=− 1. The hashcodes at the current itera-
tion Bm are set to be a convex combination of the hashcodes at the previous iteration
Bm−1 and the initialised hashcodes (B0).

2. Partitioning : at the end of the regularisation step, each point xi has K binary labels
{−1,+1}. These labels are used to learn a set of hypersurfaces {h1. . .hK}. Each
surface hk ∈ RD partitions the space RD into two disjoint regions: positive and
negative. The positive region of hk should envelop all points xi for which the k’th
label was +1; while the negative region should contain all the xi for which Bik = −1.
These hyperplanes are needed to efficiently compute the hashcodes for testing points
x ∈ RD, where we have no affinity information available (out-of-sample extension).
The partitioning of the feature space is achieved using using liblinear (Fan, Chang,
Hsieh, Wang, & Lin, 2008).

27. D−1 has the effect of L1-normalising the rows of S.

62

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

3. Prediction: the estimated hyperplane normal vectors {w1. . .wK} are used to re-label
the data-points:

Bik = sgn(wk
ᵀxi + tk) for i= {1. . .Ntrd} and k= {1. . .K} (55)

The effect of this step is that points which could not be classified correctly will now be
relabelled to make them consistent with all hyperplanes. After the last iteration, the
hyperplane normal vectors {w1. . .wK} are used to predict hashcodes for new instances
x: the k’th bit in the code is set to 1 if wᵀ

kx + tk > 0, otherwise it is zero.

The above three steps are repeated in a manner reminiscent of the EM algorithm (Demp-
ster, Laird, & Rubin, 1977): the regularised hashcodes from step 1 adjust the hyperplanes
in step 2, and these in turn generate new hashcodes in step 3 which are then passed into step
1. Figure 23 illustrates the operation of GRH on a toy example dataset. If we let Ntrd de-
note the number of training data-points then the graph regularisation step is of O(N2

trdK).
Training a linear SVM takes O(NtrdDK) time (Joachims, 2006) while prediction (test time)
is O(NtrdDK). Therefore linear GRH is O(MN2

trdK) for M iterations. Typically the ad-
jacency matrix S is sparse28, Ntrd � N and K is small (≤ 128 bits) thereby ensuring that
the linear variant of GRH is readily scalable to large datasets. GRH meets criteria E1 and
E2 of an effective hashcode, due to firstly, the effective use of supervision (GRH is shown
to be more effective than the other models discussed in this review on standard datasets
(Moran & Lavrenko, 2015a)(Moran, 2016) and secondly, the use of efficient dot products to
compute hashcodes, respectively.

6.4.6 Deep Neural Network-based Hashing

Given the recent revolution brought about by high capacity deep neural networks within
the field of computer vision, and in particular within object detection (Girshick, Donahue,
Darrell, & Malik, 2014) and image classification (Krizhevsky, Sutskever, & Hinton, 2012)
it would be amiss in this review not to touch upon the effect these models have had within
the learning-to-hash field. In contrast to the previously discussed shallow hashing models,
these deep models can be thought of as learning multiple projection matrices W instead
of just one. We describe a mix of older (Semantic Hashing) and more recent deep hashing
models in this last section.

Arguably the first instance of a neural network-based hashing model was the early work
of Salakhutdinov and Hinton (Salakhutdinov & Hinton, 2009) with a proposal for Semantic
Hashing. Their focus was on learning binary hashcodes for efficient search over textual
documents represented as word count vectors. The central idea behind this approach is to
represent a query document as an address in memory in a way that documents in nearby
memory addresses (obtained by bit flipping the hashcode for the query document) will be
semantically similar to the query document29. To tackle this problem, Salakhutdinov and
Hinton propose a deep generative hash function. Figure 24 shows the network architecture

28. For example, around 10% of the entries in S are non-zero for the CIFAR-10 dataset.
29. Contrast this with LSH and the other hashing models we have discussed that seek to map similar data-

points to the same hashtable buckets, avoiding the need for continguous memory or a Hamming ball
search strategy.

63

Moran

Figure 23: Synthetic toy example illustrating the Graph Regularised Hashing (GRH) model
(Moran & Lavrenko, 2015a). The toy dataset consists of 6,000 data-points clustered into
three distinct clusters. The data-points in each cluster are of the same class as each other
(out of three possible classes), and therefore each cluster should ideally end up in its own
bucket (region). The dashed lines indicate the two hyperplane normal vectors produced
by Locality Sensitive Hashing (LSH). In this case many data-points from different classes
(clusters) end up in the same bucket (mAP=0.6803). GRH refines the two LSH hyperplanes
to produce the hyperplane normal vectors shown with the solid lines. In this case, the data-
points from the three different classes are almost all in their own bucket (mAP=0.9931).

of the model alongside the two-step training strategy. For effective learning, the deep
generative model is trained in two distinct stages: firstly there is a pretraining stage in
which the network is greedily trained layer-by-layer as a stack of Restricted Boltzmann
Machines (RBMs). This has the effect of initialising the network to a good region in weight
space. To fully capitalise on the multiple layers, it is then necessary to fine tune the model
by unrolling the RBMs to form an undercomplete deep autoencoder30 in which the code
dimension is less than the input dimension (Figure 24). The deep autoencoder is trained
via backpropagation so that the discrete word counts can be optimally reconstructed from
the latent space representation at the code (middle) layer. This fine-tuning has the effect
of bringing the network to a local optimum in parameter space and is critical for good
retrieval performance. To prevent the logistic units from saturating in their middle range,

30. An autoencoder is a feedforward neural network in which the input and output are identical.

64

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

Figure 24: The Semantic Hashing model of Salakhutdinov and Hinton (Salakhutdinov &
Hinton, 2009) is formalised as a deep generative hashing model. In this example, it is
assumed a document is a 2000 dimensional bag of words. The neural network consists of
2000 units in the input layer, 500 units in the second and third layers, and 32 logistic units
in the output layer. The model is trained in two phases: firstly, a recursive pretraining
step in which the network is segemented into a stack of Restricted Boltzmann Machines
(RBMs). The feature activations of an RBM in an earlier layer is used as data for the RBM
in the adjacent layer. Secondly, there follows a fine-tuning stage in which the RBMs are
unrolled to form a deep autoencoder with logistic units at the bottleneck (code) layer. The
autoencoder is effectively fine-tuned to be good at re-constructing document word counts
from binary features. Gaussian noise is added to the bottleneck layer to encourage the
activations to be close to binary. A test time, to obtain the hashcode for a novel document
we perform a single forward pass through the deep generative model. This is a matrix
multiplication followed by a component-wise non-linearity for each hidden layer. Image
reproduced with permission of Salakhutdinov and Hinton (Salakhutdinov & Hinton, 2009).

Gaussian noise is added to the inputs of the code layer units during fine-tuning. The
Gaussian noise has the effect of encouraging the activities to be approximately bimodal
(i.e. close to 0 or 1). Semantic hashing has since been extended to images by Torralba
et al. (Torralba et al., 2008) who mapped from data-points to hashcodes using a stack
of RBMs trained to minimise a Neighbourhood Components Analysis (NCA) objective on
image labels (Goldberger, Roweis, Hinton, & Salakhutdinov, 2004). Petrović (Petrovic,
2012) notes two weaknesses with the original semantic hashing approach to learning highly
non-linear hash functions: firstly, the training of a deep generative model in this manner
is significantly slower than indexing the collection using LSH or a data dependent linear
hash function such as those described in Section 6.4. Secondly, Salakhutdinov and Hinton
(Salakhutdinov & Hinton, 2009) evaluate the retrieval effectiveness using cosine similarity

65

Moran

but perform the retrieval in Euclidean space with E2LSH31. This mismatch should perhaps
be kept in mind when interpreting the retrieval results. Indeed Kulis and Darrell (Kulis &
Darrell, 2009) found the unsupervised variant of the deep generative model of Salakhutdinov
and Hinton (Salakhutdinov & Hinton, 2009) to have a lower retrieval effectiveness than
unsupervised BRE (Section 6.4.2).

Since the advent of Semantic Hashing, and particularly after the 2012 revival of deep
neural networks for computer vision tasks (Krizhevsky et al., 2012), there has been an
upsurge in research activity on models for learning deep highly non-linear hash functions for
image retrieval applications. The commonality between most of these more recent models is
the clever integration of the four properties of effective hashcodes (Section 6.1) into the deep
neural network learning framework. Prime examples include the Deep Hashing (DH) and
Supervised Deep Hashing (SDH) models of Liong et al. (Liong, Lu, Wang, Moulin, & Zhou,
2015), the Convolutional Neural Network hashing (CNNH) model of Xia et al. (Xia, Pan,
Lai, Liu, & Yan, 2014), and the fully end-to-end Deep Neural Network Hashing (DNNH)
model of Lai et al. (Lai, Pan, Liu, & Yan, 2015). Liong et al. (Liong et al., 2015) propose
an unsupervised (DH) and a supervised deep neural network (SDH) model for learning
binary hashcodes. They formulate an objective function that aims to minimise the loss
between the binary hashcode of an image and its feature representation, while maintaining
the bit balance and independence properties of effective hashcodes. In the DH variant,
after initialising the first layer weights using PCA, the weights of all layers are refined
by optimising the objective function via stochastic gradient descent and backpropagation.
Binary hashcodes are obtained for an image by performing a forward pass and thresholding
the outputs of the last layer using the sign function. The supervised variant of their model is
formed by integrating pairwise must and cannot-link constraints into the objective function.
In a similar manner to Semantic Hashing, these models have been found to either equally
or less effective than much shallower learning schemes such as CCA+ITQ (Section 6.4.1)
and KSH (Section 6.4.3). Wang et al. (Wang et al., 2015a) suggest that this might in part
be due to the lack of a pre-training phase in the learning of DH and SDH.

All of the hash functions so far reviewed in this literature survey assume that a suitable
image feature extractor has been applied to the image to obtain hand-crafted image features
such as GIST or SIFT descriptors. These image features are then fed into the learning stage
to obtain the projection matrices necessary for generating the hashcodes for unseen data-
points. It would be particularly attractive if we could discard these hand-crafted image
features and perform the learning directly on the raw image pixels, letting the learning
procedure itself determine the most effective image representation for generating binary
hashcodes. This tight coupling of the feature representation learning and hash function
learning might be expected to yield superior retrieval effectiveness to models that treat
each as disjoint and separate. It is exactly this approach that is taken by the Convolutional
Neural Network hashing (CNNH) model of Xia et al. (Xia et al., 2014) and the Deep Neural
Network hashing model (DNNH) of Lai et al. (Lai et al., 2015). Xia et al. (Xia et al.,
2014) propose a two-step hashcode learning methodology for obtaining deep hash functions,
consisting of a hashcode learning stage and a hash function learning stage. This type of
two-step decomposition commonly avoids a complex and non-convex optimisation procedure

31. http://www.mit.edu/~andoni/LSH/

66

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

Figure 25: The Convolutional Neural Network hashing (CNNH) model of Xia et al. In the
first step the similarity matrix S is decomposed into the product of two matrices HHT ,
where H is the matrix of approximate target hashcodes for the data-points in the training
dataset (Xia et al., 2014). The convolutional neural netowrk is then trained to predict the
approximate target hashcodes using backpropagation. See text for a description. Image
courtesy of Xia et al. (Xia et al., 2014).

and has also been successfully applied in shallow models such as Self Taught Hashing (STH)
(Section 6.4.4) and Graph Regularised Hashing (Section 6.4.5). Their method is dubbed
Convolutional Neural Network hashing (CNNH). In the first step the similarity matrix S
that denotes the must and cannot-link constraints between training images is decomposed
using a coordinate descent procedure into the product of two matrices. These matrices
can be thought of as representing the approximate hashcodes of the training images. In
the second hash function learning stage a convolutional neural network is trained directly
on image pixels to predict the target hashcodes for each training image as obtained by
the decomposition procedure in the first step. The model is shown to outperform shallow
models such as KSH (Section 6.4.3) in the experimental evaluation.

Lai et al. (Lai et al., 2015) avoid the need for this two-step procedure in their Deep
Neural Network hashing model (DNNH), which is also shown in Figure 26. DNNH offers
several innovations to tightly couple representation and hash function learning. In contrast
to the usual pairwise constraints used all the models we have so far reviewed in this survey,
Lai et al. (Lai et al., 2015) leverage triplet-based supervision to train the network. A tripet
consists of three images I1, I2, I3, in which I1 is more similar to I2 than it is to I3. DNNH
employs a shared sub-network with stacked convolution layers that extracts intermediate
image representations for each image in the triplet. This sub-network follows the Network-
in-Network architecture of Lin et al. (Lin, Chen, & Yan, 2014). The intermediate image
features are subsequently fed into a divide-and-encode module that maps the features to
binary hashcodes. This mapping is performed by dividing the features into K slices of equal
length with each slice being mapped by a fully connected layer, a sigmoid activation function
and a piecewise thresholding function to obtain one binary haschode bit. The intuition
behind the divide-and-conquer layer is to reduce the possible redundancy in the bits that
might result from a more standard fully-connected layer. Given this network topology, a
triplet ranking loss is proposed to learn the parameters of the neural network using stochastic

67

Moran

Figure 26: The Deep Neural Network Hashing (DNNH) model learns binary hash functions
directly from raw image pixels in an end-to-end framework using a sub-network with stacked
convolution layers and a divide and conquer module all optimised with a triplet ranking
loss. See text for a description. Image courtesy of Lai et al (Lai et al., 2015).

gradient descent so that the relative similarities between images are preserved in the binary
hashcodes. Importantly, this end-to-end learning scheme is shown to yield superior retrieval
effectiveness to models that rely on hand-crafted image features and two-step hash function
learning procedures, an encouraging finding that bodes well for the future applicability of
these models in the field.

6.4.7 A Brief Summary

We have reviewed a sample of five models that inject a supervised signal into the learn-
ing of the hashing hyperplanes for unimodal ANN search. The methods reviewed included
ITQ+CCA (Section 6.4.1), Binary Reconstructive Embedding (BRE) (Section 6.4.2), Su-
pervised Hashing with Kernels (KSH) (Section 6.4.3), Self Taught Hashing (STH) (Section
6.4.4) and Graph Regularised Hashing (Section 6.4.5). The underlying principle behind
all of these methods is to learn a set of K hyperplanes that are informed by must-link or
cannot-link constraints on data-point pairs. The hyperplanes should not partition must-link
pairs, but should partition cannot-link pairs into distinct hashtable buckets. An example
must-link constraint would be for two images of a cat to be placed in the same bucket,
while a cannot-link constraint would demand that an image of a dog be placed in a separate
bucket. We saw how these methods differ at a high-level only in how the available labels
are compared to the projections/hashcodes so as to compute an error signal for further
adjustment of the hashing hyperplanes. KSH and BRE, for example, seek to minimise
the difference between the label and either the inner product of the projections of the two
data-points (KSH) or the Hamming distance between their binarised hashcodes (BRE). De-

68

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

spite the conceptual similarity between the objective functions, the optimisation algorithms
used in their solution were substantially different and formed perhaps the most interesting
point of departure between the different hashing models reviewed in this section. BRE for
example attempted to optimise the hashing hyperplanes by remaining within the discrete
hashcode space, thereby directly tackling an NP-hard optimisation problem. In contrast,
KSH relaxed the objective into a continuous domain and used a gradient descent procedure
to learn the hashing hyperplanes. We concluded the section by examining a selection of
recent deep learning-based hash functions (Section 6.4.6) that are beginning to gain traction
in the field. Despite initial concerns with early models, these highly non-linear models have
a promising future in the field for those willing to accept a much longer training time in
return for superior retrieval effectiveness.

6.5 Cross-Modality Projection Methods

Locality sensitive hashing (LSH) and its kernelised variant SKLSH which were both de-
scribed in Section 4 and Section 6.2.1 and the data-dependent hashing models presented in
Sections 6.3-6.4 are all confined to unimodal retrieval where the queries and the database
have identical feature representations. This means that the learnt hyperplanes only par-
tition (bucket) the data-space from that single feature representation. This is a rather
limiting restriction of many existing hashing models because much of the data found today,
particularly on the internet, is associated with multiple modalities32. For example, consider
an image from the popular photo sharing website Flickr33 which is not only described by the
raw pixel values themselves, but also with associated tags assigned by users and geolocation
information sourced from the GPS system on the camera. It would clearly be very useful if
we could pose a query in the form of an image and retrieve relevant tags (Figure 27), or give
the retrieval system geographical coordinates and receive images related to that locality.

The data-dependent hashing models we describe in this section are able to hash related
data-points existing across two modalities into the same hashtable buckets, thereby bring-
ing the computational advantages of approximate nearest neighbour search to multi-modal
retrieval. Denote as X ∈ RNtrd×Dx the feature descriptors in modality X and Z ∈ RNtrd×Dz
the feature descriptors in modality Z, where usually the dimensionalities are not equal
Dx 6= Dz. For simplicity of description we assume that both datasets have the same num-
ber of training data-points Ntrd, and we further denote as Nxz the number of paired data-
points across the modalities (Nxz ≤ Ntrd). The logical relationship between the data-points
is encoded in an adjacency matrix S ∈ {0, 1}Nxz×Nxz , where Sij = 1 indicates that pair
(xi, zj) are related, and 0 otherwise. At a high level all six of these models attempt to learn
two sets of K hyperplanes denoted as W ∈ RDx×K and U ∈ RDz×K , one set for feature
space X and another for feature space Z, such that similar data-points (Sij = 1) across the
two modalities receive similar hashcodes dhamm(gX (xi), gZ(zj)) ≈ 0, and vice-versa for dis-

similar data-points (Sij = 0). Here
{
gx : RD → {0, 1}K

}
is the binary embedding function

formed from the concatenation of K hash functions
{
hXk : RD → {0, 1}

}K
k=1

for modality X ,
and similar for modality Z. This is a logical extension of the unimodal case in which we not

32. We use the term ‘modality’ and ‘feature space’ interchangeably in this survey.
33. http://www.flickr.com

69

Moran

110101

010111

H

H

010101

111101

.....

Query

Database

Query

Nearest
Neighbours

Hashtable

Tiger

 Compute
 Similarity

Camera

Camera

Tiger

Tiger

Flowers

Flowers

Car

Car

Tiger

Figure 27: Cross-modal hashing-based ANN search. In the cross-modal variant of hashing-
based ANN search we wish to partition the input-space such that similar data-points across
modalities fall into the same hashtable buckets. In this diagram we show how cross-modal
hash functions can be used to retrieve similar images and documents to a query image in
constant time. The cross-modal hash functions H assign similar hashcodes to similar images
and documents thereby allowing similar data-points in different modalities to collide in the
same hashtable buckets.

only wish to make similar data-points within a modality fall into the same hashtable buckets
(e.g. two images of a cat), but also similar data-points across the two modalities (e.g. an
image of a cat and a text snippet describing a cat). In Section 4 and Sections 6.3-6.4, we
discussed how to learn K hyperplanes that assign similar data-points similar hashcodes in
the same modality. We saw how this is achieved by positioning the hashing hyperplanes in
the input space in a way that attempts to maximise the number of true nearest neighbours
within the same buckets. In this section we will see how this notion can be extended to
learning two sets of K hyperplanes that generate similar hashcodes for related data-points
in two different modalities. In practice this boils down to augmenting the objective function
with a consistency term that ensures the two sets of hyperplanes agree on their hashcode
output for similar cross-modal data-points. We provide an intuitive high-level overview
of this fundamental concept in Figure 28. The cross-modal hashing models analysed in
this review include Cross View Hashing (CVH) model of (Kumar & Udupa, 2011) (Section
6.5.1), Co-Regularised Hashing (CRH) (Zhen & Yeung, 2012) (Section 6.5.2), Predicable
Dual View Hashing (PDH) (Rastegari, Choi, Fakhraei, III, & Davis, 2013) (Section 6.5.4),

70

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

x2

w1

00

10 11

01

x1

Modality X

w2

(a) Modality X

z2

z1

10

00

11

01

Modality Z

u2

u1

(b) Modality Y

Figure 28: The essence of learning to hash across modalities. In Figure (a) we show the

first modality X (e.g. image descriptor space) with data-points
{
xi ∈ RDx

}N
i=1

and hyper-

plane normal vectors
{
wk ∈ RDx

}K
k=1

. In Figure (b) we show a different feature space Z
(e.g. textual annotations) with data-points

{
zi ∈ RDz

}N
i=1

and hyperplane normal vectors{
uk ∈ RDz

}K
k=1

. Similar data-points within and across modalities are indicated by the same
colour and shape. The goal of cross-modal hashing is to position the two sets of hyperplanes
in such a way that they assign the same hashcodes to the same data-points both within and
across the two modalities.

Regularised Cross-Modal Hashing (RCMH) (Section 6.5.5), Inter-Media Hashing (IMH)
(Song, Yang, Yang, Huang, & Shen, 2013) (Section 6.5.6), Regularised Cross Modal Hash-
ing (RCMH) (Moran & Lavrenko, 2015b) (Section 6.5.5) and Cross Modal Semi-Supervised
Hashing (CMSSH) (Bronstein, Bronstein, Michel, & Paragios, 2010) (Section 6.5.3).

6.5.1 Cross View Hashing (CVH)

Cross View Hashing (CVH)34 (Kumar & Udupa, 2011) is equivalent to ITQ+CCA (Section
6.4.1) in its use of Canonical Correlation Analysis (CCA) to find two sets of hyperplanes
that maximise the correlations of the projections from two different modalities. There
are two differences to ITQ + CCA: firstly, CVH retains both sets of hyperplane normals
W ∈ RDx×K and U ∈ RDz×K , rather than only using the set pertaining to the visual
modality; secondly, CVH does not involve a post-processing step that rotates the input
feature space to balance the variance captured across the hyperplanes. The hash function
for CVH is the standard linear hash function. Equation 56 presents the hash functions for
both modalities

34. As is standard in the literature we consider the special case of CVH where only cross-modality supervision
is available and each data-point is paired with only one other in the opposing modality (Section 3.2 in
(Kumar & Udupa, 2011)).

71

Moran

Co-Regularised
Hashing

Predictable
Dual-View

Hashing

Cross-View
Hashing

Cross-Modal
Similarity

Sensitive Hashing

Maximise correlation
between projections
of similar cross-modal
data-points

Maximise margin
of dissimilar
data-point
projections

Minimise squared Euclidean
distance between projections
of similar cross-modal
data-points

Inter-Media
Hashing

Regularised
Cross-Modal

Hashing

Figure 29: Relationship between the six cross-modal hashing models reviewed in this section.
We only consider the inter-modal consistency term when relating the models (ignoring intra-
modal and out-of-sample extension terms). The labels on the arcs denote the essential
transform required to convert one model into the model(s) pointed to by the arc.

hXk (xi) =
1

2
(1 + sgn(wᵀ

kxi))

hZk (zi) =
1

2
(1 + sgn(uᵀ

kzi))

(56)

Following the same argument as for ITQ+CCA, the asymptotic computational complexity of
CVH is O(NtrdD

2+D3) where D = max(Dx, Dz). CVH was one of the first proposed cross-
modal hashing models to be proposed in the literature and typically features in previous
research as the de-facto baseline for comparison. The cross-modal hashing models we will
review in Sections 6.5.2-6.5.6 introduce new schemes for learning both sets of hyperplane
that achieve a higher retrieval effectiveness than CVH on standard image-text datasets.

6.5.2 Co-Regularised Hashing (CRH)

Co-Regularised Hashing (CRH) learns 2K cross-modal hash functions by solving K indi-
vidual max-margin optimisation problems sequentially (Zhen & Yeung, 2012). Boosting
(Freund & Schapire, 1997) is used in each step to coordinate the learning of the hash func-
tions so that the pairwise constraints not met by hyperplanes constructed earlier in the
optimisation sequence have a gradually higher likelihood of being met by subsequent hy-
perplanes. This brings about a dependence between the bits, a trait we have seen before in
the context of the unimodal data-dependent hashing model KSH (Section 6.4.3). CRH uses
the standard linear hash function (Equation 56) as for CVH (Section 6.5.1). The objective
function for learning the two hyperplane normals wk ∈ RDx ,uk ∈ RDz pertaining to the

72

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

same bit in modalities X , Z is made up of three main terms: one to position the hyperplane
normal wk in modality X , another to position the hyperplane normal uk in modality Z and
a third consistency term that forces both hyperplanes to give similar projections for related
data-points. The CRH objective is presented in Equation 57

argminwk∈RDx ,uk∈RDz
1

Nx

Nx∑
i=1

[1− |wᵀ
kxi|]+ +

1

Nz

Nz∑
j=1

[1− |uᵀ
kzj |]+

γ

Nxz∑
i,j=1

αijSij(w
T
k xi − uᵀ

kzj)
2 +

λx
2
‖wk‖2 +

λz
2
‖uk‖2

(57)

where {αij ∈ R+}Ntrdi,j=1 are weights updated using Adaboost (Freund & Schapire, 1997),
λx ∈ R+, λz ∈ R+ are regularisation constants, [a]+ is equal to a if a ≥ 0, and 0 otherwise,
and γ ∈ R+ is an scalar governing the importance of the cross-modal term. The intra-
modality loss terms guide the projections to be away from zero by a margin so that the data-
points do not lie too close to the dividing hyperplanes, thereby encouraging generalisability
of the hash functions. The inter-modal loss term is intuitive in its attempt to minimise the
squared difference between the projections of similar data-points across modalities35.

Equation 57 is non-convex and so Zhen & Yeung (Zhen & Yeung, 2012) minimise it
in an alternate manner by solving two sub-problems: fixing wk ∈ RDx and optimising for
uk ∈ RDz and vice-versa. In practice this is achieved using the Concave-Convex Proce-
dure (CCVP) (Yuille & Rangarajan, 2003) by framing each sub-problem as a difference of
convex functions. Having learnt hyperplane normals wk, uk at the kth step, the weights
{αi ∈ R+}Ntrdi=1 for the point-pairs are updated using the standard Adaboost framework
(Freund & Schapire, 1997), in which the error term for Adaboost is based upon a count
of the number of times the outputs of the cross-modal hash functions disagree. This en-
tire procedure is then repeated with Equation 57 solved for hyperplanes wk+1, uk+1 using
the updated Adaboost weights. The computational time complexity of CRH is bounded
by O(KMND) where D = max(Dx, Dz) and M is the number of iterations required for
convergence of the Pegasos solver (Shalev-Shwartz, Singer, & Srebro, 2007). Properties E1,
E2 of an effective hashcode (Section 6.1) are preserved by CRH but not properties E3, E4.

6.5.3 Cross-Modal Similarity Sensitive Hashing (CMSSH)

Cross-Modal Similarity Sensitive Hashing (CMSSH) (Bronstein et al., 2010) presents a
considerably simpler optimisation framework compared to CRH (Section 6.5.2) focusing
entirely on ensuring the output of the cross-modal hash functions are consistent with each
other, but without any specific terms for optimising the intra-modal similarity. CMSSH
learns the 2K hash functions using a sequential procedure where, at the kth step, two
hyperplane normal vectors wk ∈ RDx ,uk ∈ RDz are computed with the weighted objective
function presented in Equation 58 that effectively coerces the kth pair of hash functions to
correct mistakes committed by the k-1 previous hash functions

35. In practice CRH also has an additional term that pushes dissimilar points further apart. We omit this
here for clarity and conciseness of explanation.

73

Moran

argmaxwk∈RDx ,uk∈RDz

Nxz∑
i,j=1

αijSijsgn(wᵀ
kxi)sgn(uᵀ

kzj) (58)

where {αij ∈ R+}Nxzi,j=1 are per data-point pair weights adjusted using Adaboost (Freund
& Schapire, 1997). CMSSH is similar to CVH in that the correlation of the projections
of related cross-modal data-points is maximised. As it stands Equation 58 is discontinu-
ous and therefore non-differentiable making it difficult to optimise with the sign function
intact. (Bronstein et al., 2010) therefore make the standard spectral relaxation which we
have previously seen in many other data-dependent hashing models such as KSH (Section
6.4.3) and SH (Section 6.3.2). This relaxation simply involves dropping the sign function
altogether giving Equation 59.

argmaxwk∈RDx ,uk∈RDz

Nxz∑
i,j=1

αijSij(w
ᵀ
kxi)(u

ᵀ
kzj)

= wᵀ
k

Nxz∑
ij=1

αijSijxiz
ᵀ
j

uk

= wᵀ
kCuk

(59)

Equation 59 can be solved in closed form by performing an SVD on the matrix C ∈ RDx×Dz
taking O(D2

xDz + DxD
2
z + D3

z) operations36. The per pair weights {αij ∈ R+}Nxzi,j=1 are
then updated using Adaboost to emphasise the misclassified data-point pairs and the step
repeated for the k+1 set of hyperplanes. The learnt hash functions are used in the standard
linear hash function (Equation 56) to generate binary hashcodes for multimodal data. In a
similar manner to CRH, CMSSH maintains properties E1, E2 of an effective hashcode, but
does not seek to conserve property E4 due to the sequential dependence of hashcode bits
induced through boosting.

6.5.4 Predictable Dual-View Hashing (PDH)

Predictable Dual-View Hashing (PDH) (Rastegari et al., 2013) is fully specified in Algorithm
5. Similar to CRH and CMSSH, PDH solves for the 2K hashing hyperplanes sequentially
by solving for a pair of hyperplane normal vectors wk ∈ RDx ,uk ∈ RDz at the kth step.
PDH solves for the hyperplanes using an SVM-based formulation in which the hyperplanes
are trained to partition data-points with opposing bits with maximum margin. Different to
these previously reviewed models, PDH does not induce a dependence between bits using
boosting but instead explicitly attempts to enforce property E4 of an effective hashcode,
namely that the bits should be pairwise independent. The PDH objective function is pre-
sented in Equation 60

36. As C ∈ RDx×Dz may be non-square the solution is obtained via an SVD rather than the standard
eigenvalue problem used for the unimodal data-dependent hashing models described in Section 6.3.

74

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

argminW∈RDx×K ,U∈RDz×K ‖BxBx − I‖22 + ‖BzBz − I‖22 +
K∑
k=1

‖wk‖2 +
K∑
k=1

‖uk‖2

+ Cx

Ntrd∑
i,k=1

ξxik + Cz

Ntrd∑
i,k=1

ξzik

subject to Bx = sgn(XW)

Bz = sgn(ZU)

bzik(w
ᵀ
kxi) ≥ 1− ξxik

bxik(u
ᵀ
kzi) ≥ 1− ξzik

(60)

where ξxik ∈ R, ξzik ∈ R are slack variables that allow some points xi, zi to fall on the wrong
side of hyperplanes with normal vectors wk,uk and Cx ∈ R+, Cz ∈ R+ are parameters that
permit a trade off between the size of the margins 1

||wk|| ,
1
||uk|| against the number of points

misclassified by wk,uk. The first two terms of the objective function enforce the constraint
that the bits should be pairwise independent (property E3). The last two constraints are
reminiscent of the standard SVM max-margin objective with the hashcode bits bxik, b

z
ik in

this case acting as the requisite target labels. Note the subtle but important feature of
these constraints where the hashcode bits (bxik, b

z
ik) for one feature space are used as the

targets for hyperplanes existing in the other feature space. This means that over multiple
iterations the hyperplanes in both feature spaces should become more consistent in their
projections for similar and dissimilar data-points.

Rastegari et al. (Rastegari et al., 2013) solve Equation 60 by dividing it into multiple
steps as highlighted in Algorithm 5. Firstly, using the bits of the hashcodes in Bx ∈
{−1, 1}Ntrd×K ,Bz ∈ {−1, 1}Ntrd×K are used as the labels to train 2K SVM classifiers (Lines
6, 10 in Algorithm 5). This step computes an initial estimate of hashing hyperplanes W ∈
RDx×K , U ∈ RDz×K . The bits in Bx,Bz are then re-labelled with the learnt SVMs (Lines
9, 13 in Algorithm 5), which flips the sign of those data-points that happened to fall on the
wrong side of the respective hyperplanes. The pairwise independence property between the
bits is approximately enforced by solving the familiar graph Laplacian eigenvalue problem
in Equation 61

argminY∈RNtrd×K tr(Yᵀ
l (Dl − Sl)Yl)

subject to Yl ∈ RNtrd×K

Yᵀ
l 1 = 0

Yᵀ
l Yl = NtrdI

K×K

(61)

where Yl ∈ RNtrd×K for l ∈ {x, z} are the real-valued (unbinarised) projections for modali-
ties X ,Z and Sl = Yᵀ

l Yl, with Dii =
∑

j Sij . As we saw in Section 6.3, the solution to this
problem is the top K eigenvectors with minimal eigenvalues (Line 15). These K eigenvec-
tors are subsequently binarised to form the updated hashcodes. Intuitively this eigenvalue
problem is attempting to lower the pairwise correlation between the data-point projection
vectors along the rows of Yl for l ∈ {x, z} while maintaining the relative distances between

75

Moran

Algorithm 5: Predictable Dual View Hashing (PDH) (Rastegari et al.,
2013)

Input: Data-points X ∈ RNtrd×Dx , Z ∈ RNtrd×Dz , Iterations M
Output: Hyperplanes W ∈ RDx×K , U ∈ RDz×K

1 Initialise W, U via CCA from X, Z
2 for m← 1 to M do
3 for k ← 1 to K do
4 bxk = Bx

•k
5 bzk = Bz

•k
6 Train SVMx

k with bzk as labels, training dataset X
7 Obtain hyperplane hxk
8 W•k = wk

9 Bx
•k = sgn(Xwk)

10 Train SVMz
k with bxk as labels, training dataset Z

11 Obtain hyperplane hzk
12 U•k = uk
13 Bz

•k = sgn(Zuk)

14 end
15 Update Bx, Bz by solving eigenvalue problem in Equation 61.

16 end
17 return W,U

the projection vectors as defined by the inner product similarity. These steps are repeated
M times until the algorithm has reached a suitable convergence point, at which point the
learnt hyperplanes can be used in the standard linear hash function (Equation 56) to hash
novel cross-modal data-points into hashtable buckets. The training time complexity is dom-
inated by the O(MN2

trdK) operations to solve the eigenvalue problems across M iterations
using the Lanczos algorithm (Golub & Van Loan, 1996).

6.5.5 Regularised Cross-Modal Hashing (RCMH)

Regularised cross-modal hashing (RCMH) proposed by Moran et al. (Moran & Lavrenko,
2015b) is a cross-modal extension of the unimodal graph regularised hashing (GRH) model
(Moran & Lavrenko, 2015a). The hash functions hXk , h

Z
k are based on K hyperplanes each:

{w1. . .wK} for the space of words and {u1. . .uK} for the space of visual features. The
hyperplane wj is used to assign the j’th bit in the annotation hashcode, while uj determines
the j’th bit in the visual hashcode. Moran et al. (Moran & Lavrenko, 2015b) initialise all
hyperplanes randomly using unimodal LSH, and iteratively perform the following three
steps summarised in Algorithm 6:

1. Regularisation, where the hashcodes {b1. . .bN} are made more consistent with the
affinity matrix S. This step is illustrated in Figure 30. Shown are five images a. . .e
with their initial hashcodes (K=2 bits for this example). The lines between images
reflect the neighbourhood structure encoded in the affinity matrix S. Image d has a

76

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

Algorithm 6: Regularised Cross Modal Hashing (RCMH)(Moran &
Lavrenko, 2015b)

Input: Annotation descriptors Xtrd ∈ RNtrd×Dx , Visual descriptors Ztrd ∈ RNtrd×Dz ,
adjacency matrix S ∈ {0, 1}, degree matrix D ∈ Z+, interpolation parameter
α ∈ [0, 1], number of iterations M ∈ Z+

Output: Hyperplanes {w1. . .wK}, {u1. . .uK}, biases {t1. . .tK}, {o1. . .oK}
1 Initialise B0 ∈ {0, 1}Ntrd×K via LSH or ITQ+CCA from X
2 B0 = sgn(B0 − 1

2)
3 B = B0

4 for m← 1 to M do
5 B = sgn

(
αSD−1B + (1− α)B0

)
6 for k ← 1 to K do
7 bk = B(:, k)
8 Train SVMx

k with bk as labels, training dataset Xtrd ∈ RNtrd×Dx
9 Train SVMz

k with bk as labels, training dataset Ztrd ∈ RNtrd×Dz
10 Obtain hyperplanes wk,uk and biases tk, ok
11 end
12 Bik = sgn(wᵀ

kxi + tk) for i= {1. . .Ntrd} and k= {1. . .K}
13 end

14 return {wk}Kk=1 , {uk}
K
k=1, {tk}Kk=1, {ok}Kk=1

hashcode (−11), but its neighbours b, c, e have hashcodes (-1-1), (11) and (1-1) respec-
tively. The arrow beside the initial hashcode (-11) of image d shows the update of its
hashcode: its hashcode changes to (1-1), which is more consistent with neighbouring
hashcodes (on average).

2. Partitioning, where the hyperplanes wj ,uj are adjusted to be consistent with the j’th
bit of the hashcodes from step (2). Adjusting the visual hyperplanes based on the
annotation bits is how the necessary cross-modal bridge is formed. The approach is
illustrated in Figure 31. Five images a. . .e are shown in two sets of coordinates: the
word space on the top and the visual feature-space on the bottom. Each image is
associated with a 2-bit hashcode, and each bit is used to learn a maximum-margin
hyperplane that bisects the corresponding space. For example, the first bit has value
−1 for images a, b and value 1 for images c, d, e, giving rise to hyperplanes w1 and
u1, shown as dark lines on the top and the bottom parts of Figure 31. Note that
w1 and u1 look very different, because they are defined over two completely different
modalities: words on the top and visual features on the bottom. Similarly, the second
bit results in the hyperplanes w2 and u2.

3. Prediction, the hyperplanes {w1. . .wK} are then used to assign hashcodes {b1. . .bN}
to the training images which are then fed back into step 1 ready for the next iteration.
Pseudocode describing the salient parts of the model is provided in Algorithm 6.
The key difference between GRH (Section 6.4.5) is shown on Lines 8-9, where the

77

Moran

a

d

-1 -1

 -1 1

c e

b

1 -11 1

1 -1

CarCar

Car

Tiger
Car

Tiger
Car

Tiger
Car

 -1 1

Figure 30: Regularisation step: the hashcode for annotation node d is updated to be more
similar with its neighbours (c,b,e).

annotation space bits are used to learn hyperplanes in the annotation and visual
feature spaces.

The model bears similarities with the Predictable Dual-View Hashing (PDH) hash func-
tion of (Rastegari et al., 2013) which we reviewed in Section 6.5.4. PDH employs an
Expectation-Maximisation (EM)-like iterative learning scheme with a max-margin formu-
lation to refine the positioning of the hashing hyperplanes within both feature spaces. In
contrast to RCMH, PDH integrates supervision into the hyperplane learning by solely rely-
ing on initialising the hashcodes with Canonical Correlation Analysis (CCA). We previously
described CCA in detail as part of the review of the ITQ+CCA model in Section 6.4.1. CCA
finds two sets of K hyperplanes, one set of K hyperplanes for each feature space, that result
in projections that are maximally correlated for related data-points across the two modal-
ities. PDH also explicitly seeks to induce a pairwise independence between the hashcode
bits through the solution of a graph Laplacian eigenvalue problem after each iteration. In a
different manner to PDH, RCMH does not seek to enforce bit independence and also does
not rely on an initial CCA initialisation to integrate the supervisory signal into learning
algorithm. Instead RCMH eliminates the need to solve either eigenvalue system, relying on
graph regularisation to enforce the data-point must-link and cannot-link constraints. The
training time of RCMH can be characterised by O(MNtrdDxK+MNtrdDzK+MSK) with
the testing (prediction) time given by O(NteqDK). RCMH achieves properties E1 and E2

of an effective hashcode given that it generates effective cross-modal hashcodes (Moran &
Lavrenko, 2015b) and is efficient as prediction time by using dot products to compute the
hashcode bits.

78

6.5 Cross-Modality Projection Methods 79

Word Space

a

c

w1

 -1 1

-1 -1

b

e

d

w2

a2

a1

1 1

1 -1

 1 -1

Car

Car

Tiger
Car

Tiger
Car

Tiger
Car

u1

a

c

e

d

1 1

1 -1

b

u2

Visual Space

v1

v2

-1 -1

 -1 1
 1 -1

Figure 31: Partitioning step: hyperplanes are learnt in the annotation (top) and visual
(bottom) space using annotation bits as labels. Hyperplanes in both feature spaces are
positioned in such a way that nodes with the same letter are assigned the same bits in both
feature spaces.

Moran

6.5.6 Inter-Media Hashing (IMH)

Inter-Media Hashing (IMH) (Song et al., 2013) can be thought of as a semi-supervised cross-
modal hashing model which not only utilises the pairwise supervisory information in the
adjacency matrix Sxz ∈ {0, 1}Nxz×Nxz , but also from unsupervised information originating
from all Ntrd data-points within each modality, that is, including those data-points that do
not feature in Sxz. The relationship between these data-points is computed through con-
struction of a Euclidean k-NN graph within each modality. Denote as Sx ∈ {0, 1}Ntrd×Ntrd
the k-NN graph between data-points in modality X , and similarly for modality Z where
Sz ∈ {0, 1}Ntrd×Ntrd . Using modality X as an example, the k-NN graph is constructed as
in Equation 62

Sxij =

{
1 if xi ∈ NNk(xj) or xj ∈ NNk(xi)

0 otherwise
(62)

where NNk(xi) is a function that returns the set of k-nearest neighbours for data-point xi
as measured under, for example the Euclidean distance metric. The IMH semi-supervised
approach is to be contrasted with CVH, CMSSH and PDH which learn entirely from the
supervisory information in the adjacency matrix S that pairs related data-points across the
two modalities. In this sense IMH, in its full form, bears most resemblance to CRH (Section
6.5.2) which also proposes unsupervised terms in the objective function that act as a form
of regularisation during the training procedure. When the learning is entirely confined to
the labelled data-points in Sxz and further Sxz = INxy×Nxy , (Song et al., 2013) show that
IMH is in fact equivalent to the CCA-based CVH model (Section 6.5.1). The IMH objective
function is presented in Equation 63

argminW,U,Yx,Yz λ

Ntrd∑
i,j=1

Sxij‖yxi − yxj ‖22 + λ

Ntrd∑
i,j=1

Szij‖yzi − yzj‖22 +

Nxz∑
i,j=1

Sxzij ‖yxi − yzj‖22

+

Ntrd∑
i=1

‖Wᵀxi − yxi ‖22 + β‖W‖2F +

Ntrd∑
j=1

‖Uᵀzj − yzj‖22 + β‖U‖2F

subject to (Yx)ᵀYx = IDx×Dx

(Yx)ᵀ1 = 0
(63)

where Sxz = INxz×Nxz and β ∈ R, λ ∈ R are user-specified scalar parameters affecting the
importance of the different terms in the objective function.

The IMH objective function is quite intuitive and builds extensively on previous research
(Weiss et al., 2008; Kumar & Udupa, 2011; Zhen & Yeung, 2012). The first two terms
encourage similar data-points within both modalities to have similar projected values and
therefore similar hashcodes upon binarisation. It is exactly the graph Laplacian eigenvalue
problem (Equation 35) we first saw in the context of Spectral Hashing (SH) in Section
6.3.2 and extended first to the dual-modality case by CVH (Section 6.5.1). The third term
encourages the projections of similar data-points across modalities to be the same, which is
akin to the inter-modal consistency term used in the CRH model (Section 6.5.2) without the

80

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

Adaboost per-pair weights. The last two terms are out-of-sample extension terms yielding
the desired hashing hyperplanes W ∈ RDx×K ,U ∈ RDz×K using the standard L2 regularised
linear regression formulation with the learnt projections for the Ntrd training data-points
as the regression targets. Song et al., 2013 minimise Equation 63 by transforming the
objective into a trace minimisation problem involving the modality X projections Yx. As
is customary in the learning to hash literature (Section 6.3), the trace minimisation is solved
as an eigenvalue problem taking the K eigenvectors with the smallest eigenvalues as the
columns of Yx. Note that solving this eigenvalue problem will achieve the orthogonality
constraint in the objective function. Given the solution for the projections in modality X ,
(Song et al., 2013) show that the optimal Yz and W, U can be obtained using closed form
formulae based upon the learnt Yx.

As for all hashing models relying on a matrix factorisation, solving the eigenvalue prob-
lem dominates the computational time complexity of IMH requiring O(N3

trd) operations37.
IMH maintains properties E1, E2 of an effective hashcode in both modalities X , Y, while
only maintaining properties E3, E4 in modality X as a result of solving the eigenvalue
problem.

6.5.7 A Brief Summary

In this section we described six prominent hashing algorithms that are capable of index-
ing similar data-points that exist in two incommensurable feature spaces into the same
hashtable buckets. Specifically, we reviewed Cross-View Hashing (CVH) (Section 6.5.1),
Co-Regularised Hashing (Section 6.5.2), Cross-Modal Semi-Supervised Hashing (Section
6.5.3), Predictable Dual-View Hashing (Section 6.5.4), Regularised Cross-Modal Hashing
(Section 6.5.5) and Inter-Media Hashing (Section 6.5.6). The essential link between all of
these algorithms was the learning of two sets of K hyperplanes, one set of K hyperplanes for
each feature space, in a way that encourages the hyperplanes in both spaces to assign similar
projected values to similar cross-modal data-points. In all cases this is achieved by framing
an optimising an objective function with a cross-modal consistency term that penalises a
mismatch between the projected values of similar cross-modal data-points. Some of the
more recently proposed cross-modal hashing algorithms (CRH, IMH, PDH) augmented this
inter-modal consistency term with additional intra-modal terms that regularise the learn-
ing of the hyperplanes by, for example, ensuring that similar within-modality data-points
receive similar projected values. The disadvantage of most of these algorithms are their
general reliance on either an expensive matrix factorisation or non-convex optimisation.

7. Evaluation Paradigms, Datasets and Performance Metrics

In this section we describe the common experimental methodology adopted throughout
the learning-to-hash literature. This includes the datasets selected as the testbed for the
retrieval experiments (Section 7.1), the definition of groundtruth for evaluation (Section
7.3) and the metrics adopted to ascertain retrieval effectiveness (Section 7.6).

37. For the datasets we consider in this survey, Ntrd = 2, 000-10, 000 to constrain computation time. In a
real-world application Ntrd be significantly higher.

81

Moran

7.1 Datasets

The focus of this review has been learning hash functions for the task of large-scale image
retrieval. This task can be split into three sub-tasks: 1) an image is used to retrieve
related images from a still image archive, 2) a text query is used to retrieve related images,
3) an image query is used to retrieve relevant annotations for that image. We therefore
describe the experimental setup for unimodal and cross-modal retrieval experiments which
will cover a wide range of important use-cases in image retrieval from query-by-example
search to image annotation. Unimodal datasets are those where the query and the database
are in the same visual modality such as bag-of-visual-word feature descriptors. Cross-modal
datasets permit retrieval experiments that straddle two different modalities such as a textual
query executed against an image database. The latter task mimics the familiar image search
scenario offered by many modern web search engines. To align the evaluation closely with
the learning to hash literature we select a subset of the most popular datasets from both
categories (Sections 7.1.1-7.2). The desiderata for dataset selection is two-fold: firstly, the
datasets must be publicly available to enable replication of experimental results by a third
party; and secondly the datasets must be standard in the sense that they have been widely
used in related publications. This ensures that the experimental results published in this
literature are reproducible and directly comparable to previously published research.

7.1.1 Unimodal Retrieval Experiments

For the unimodal experiments, there are six popular and freely available image datasets:
LabelMe, CIFAR-10, NUS-WIDE, MNIST, SIFT1M and ImageNet. The datasets are of
widely varying size (22,019-1.3 million images), are represented by an array of different
feature descriptors (from GIST, SIFT, raw pixels to bag of visual words) and cover a diverse
range of different image topics from natural scenes to personal photos, logos and drawings.
These properties ensure that the datasets provide a challenging test suite for evaluation.
All datasets are identical to those used in recent publications (Kong & Li, 2012a), (Shen
et al., 2015), (Liu et al., 2012) and are available online to the research community.

• LABELME: 22,019 images represented as 512 dimensional GIST descriptors (Tor-
ralba et al., 2008)(Russell, Torralba, Murphy, & Freeman, 2008)38 The dataset is
mean centred.

• CIFAR-10: 60,000 32× 32 colour images sampled from the 80 million Tiny Images
dataset (Krizhevsky & Hinton, 2009). Each image is encoded with a 512 dimensional
GIST descriptor (Oliva & Torralba, 2001) and is manually assigned a label from a
selection of 10 classes39. Each class has 6,000 associated images. The visual feature
descriptors are mean centered.

• NUS-WIDE: 269,648 images downloaded from Flickr each annotated with multi-
ple ground truth concept tags (e.g. nature, dog, animal, swimming, car) from an
81 concept vocabulary40 (Chua, Tang, Hong, Li, Luo, & Zheng, 2009). The images

38. http://www.cs.toronto.edu/~norouzi/research/mlh/

39. http://www.cs.toronto.edu/~kriz/cifar.html

40. http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

82

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

Figure 32: The NUS-WIDE dataset consists of around 270,000 images randomly sampled
from Flickr. Given the diversity of images (from people, animals, landscapes to buildings
and drawings) and widely varying resolution the dataset provides a challenging testbed for
image retrieval.

are represented by a 500 dimensional bag-of-visual-words (BoW) feature descriptor
formed by vector quantising SIFT descriptors via k-means clustering. The visual fea-
ture descriptors are L2-normalised to unit length and mean centered. For illustrative
purposes I show a random sampling of images from the NUS-WIDE dataset in Figure
32.

• SIFT1M: 1,000,000 images from Flickr encoded with 128-dimensional SIFT descrip-
tors41. This dataset was first introduced by Jegou et al. (Jegou et al., 2011) and
has since became a standard image collection for evaluating nearest neighbour search
methods (Kong & Li, 2012a), (He et al., 2013), (Wang et al., 2010b). The dataset is
mean centred.

• MNIST: 70,000 images of handwritten grayscale digits represented as 784 dimen-
sional raw pixel values (Lecun, Bottou, Bengio, & Haffner, 1998).

• ImageNet: 1,331,167 images from the ILSVRC2012 challenge. These images are
a sub-sample from the larger ImageNet dataset42. ImageNet is a large-scale image

41. http://lear.inrialpes.fr/~jegou/data.php

42. http://www.image-net.org/

83

Moran

Dataset # images # labels Labels/image Images/label Descriptor

LABELME 22,019 – – – 512-D Gist
CIFAR-10 60,000 10 1 6,000 512-D Gist
NUS-WIDE 269,648 81 1.87 6,220 500-D BoW
SIFT1M 1,000,000 – – – 128-D SIFT
MNIST 70,000 – – – 784-D raw pixels
ImageNet 1,331,167 1,000 1 1,331 4096-D CNN

Table 4: Salient statistics of the six datasets commonly used in unimodal hashing exper-
iments. The Labels/image and Images/label are the mean values computed on the entire
dataset.

collection consisting of 10 million images organised hierarchically according to over
10,000 nouns in WordNet (Deng, Dong, Socher, Li, Li, & Li, 2009). The images
in the 1.3 million image subsample are annotated with labels from a 1,000 label
vocabulary and are represented by a 4096-dimensional feature descriptor extracted
from the penultimate layer of a deep convolutional neural network (CNN) (Krizhevsky
et al., 2012). These CNN image feature descriptors are known to produce state-of-
the-art performance in many prime Computer Vision tasks including image retrieval
(Razavian, Azizpour, Sullivan, & Carlsson, 2014). The visual feature descriptors are
L2-normalised to unit length and mean centered. To the best of our knowledge this
is one of the largest labelled image datasets available.

7.2 Cross-Modal Retrieval Experiments

Cross-modal retrieval experiments are typically conducted on the ‘Wiki’ dataset and NUS-
WIDE (Kumar & Udupa, 2011) (Zhen & Yeung, 2012) (Song et al., 2013) (Rastegari et al.,
2013) (Bronstein et al., 2010) datasets. Both datasets come with images and associated
paired textual descriptors, a key requirement for training and evaluating a cross-modal
retrieval model. As for the unimodal retrieval datasets described in Section 7.1.1 these two
cross-modal datasets are also freely available to the research community.

• Wiki: is generated from 2,866 Wikipedia articles43 derived from Wikipedia’s “feature
articles” (Rasiwasia, Costa Pereira, Coviello, Doyle, Lanckriet, Levy, & Vasconcelos,
2010). The featured articles segment of Wikipedia hosts the highest quality articles on
the site as judged by a panel of independent Wikipedia editors. Each feature article
is a document consisting of multiple sections and annotated with at least one relevant
image from the Wikimedia commons. Each article is designated with a manually
labelled category out of 29 possibilities. Rasiwasia et al. (Rasiwasia et al., 2010) only
keep the articles pertaining to the 10 most populated categories. Each article is further
split by section and the image manually placed in that section by the author(s) is used
as the corresponding visual description of the text in that section. Any section that
ends up without an associated image is discarded. This leaves 2,866 short and focused

43. http://www.svcl.ucsd.edu/projects/crossmodal/

84

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

Figure 33: Three example Wikipedia article sections (Offa King of Mercia (https://en.
wikipedia.org/wiki/Offa_of_Mercia), the Tasmanian devil (https://en.wikipedia.
org/wiki/Tasmanian_devil) and a description from the life of Nigerian novelist Chinua
Achebe (https://en.wikipedia.org/wiki/Chinua_Achebe) and their aligned images
taken from the cross-modal Wiki dataset.

“articles” of a median length of 200 words, with each article having at least 70 words.
We use the image and text feature set provided by Rasiwasia et al. (Rasiwasia et al.,
2010) which is used in most related cross-modal hashing research (Zhen & Yeung,
2012). The visual modality is represented as a 128-dimensional SIFT (Lowe, 2004)
bag-of-words histogram, while the textual modality is represented as 10-dimensional
probability distribution over Latent Dirichlet Allocation (LDA) topics (Blei, Ng, &
Jordan, 2003). Three example Wikipedia article sections and their associated images
are shown in Figure 33.

• NUS-WIDE: is identical to the unprocessed NUS-WIDE dataset described in Section
7.1.1 (Chua et al., 2009). For cross-modal experiments this dataset is pre-processed
in a different manner to the strategy described in Section 7.1.1 (Zhen & Yeung, 2012).
More specifically, for cross-modal retrieval the multiple image tags associated with an

85

Moran

image are used to define the textual modality. The image-text pairs associated with
the most frequent 10 classes are retained. Each image is associated with a subset
of 5,018 tags manually assigned by Flickr users. A PCA dimensionality reduction is
performed on the 269,648×5018 dimensional tag co-occurrence matrix to form a 1,000-
dimensional tag feature set. This projected tag feature set is then mean-centered and
used as a representation of the textual modality. This is a standard pre-processing
step in the literature (Zhen & Yeung, 2012). The visual modality is represented by
the same 500 dimensional bag-of-words (BoW) feature descriptors described in the
context of NUS-WIDE in Section 7.1.1. The visual descriptors are L2-normalised to
unit length and mean centered.

7.3 Nearest Neighbour Groundtruth Definition

In order to evaluate the retrieval effectiveness of a hashing model we need to define which
data-points in the database are considered to be nearest neighbours of the query data-
points. We refer to these data-points as the true nearest neighbours of a query. Typically
the system is penalised depending on the degree to which it fails to return the true nearest
neighbours for a query. The definition of the groundtruth nearest neighbours varies widely
between publications. In this review we consider two of the strategies commonly used to
define groundtruth which involves either constructing an ε-ball around the query data-
point (Section 7.3.1) or using human assigned class-labels (Section 7.3.2). To the best of
our knowledge, there has been no work to verify whether or not the ε-ball groundtruth
definition correlates with user search satisfaction. We discuss this point further in Section
8 as part of possible future work.

7.3.1 ε-Ball Nearest Neighbours

The ε-nearest neighbour (ε-NN) groundtruth definition is a popular way to evaluate hashing
models (Figure 34a)44. In this paradigm a ball of radius ε is defined around a query
data-point in the input feature space and the true nearest neighbours are defined as those
data-points enclosed within the ball. To compute the ε-NN groundtruth, previous related
work (Kong et al., 2012)(Kong & Li, 2012a)(Kulis & Darrell, 2009)(Gong & Lazebnik,
2011) randomly sample 100 data-points from the training dataset to compute the Euclidean
distance at which each data-point has R nearest neighbours on average. The ε-ball radius is
then set to equal this average distance. The parameter R is set to 50 nearest neighbours in
the literature (Kong et al., 2012) (Kong & Li, 2012a) (Kong & Li, 2012b) (Kulis & Darrell,
2009) (Raginsky & Lazebnik, 2009) (Gong & Lazebnik, 2011). The groundtruth matrix
S ∈ {0, 1}Ntrd×Ntrd is then derived by computing the Euclidean distance D ∈ RNtrd×Ntrd
between a small subset of the data-points (Ntrd � N) and thresholding the distances by ε.
This method of groundtruth generation is presented in Equation 64 and Figure 34a.

S =

{
Sij = 1, if Dij ≤ ε
Sij = 0, if Dij > ε

(64)

44. Defining ground-truth nearest neighbours can also be achieved by computing a k-NN graph. In this case
related data-points to a query are those that have the k smallest distances to the query.

86

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

y

x

ϵ

(a) ε-nearest neighbour ground truth

y

x

Class 1

Class 1

Class 2

Class 2Class 3

Class 3

Class 4

Class 4

(b) Class based groundtruth

Figure 34: Two definitions of groundtruth nearest neighbours (NN). In Figure (a) we show
how to define nearest neighbours of a data-point using an ε-ball. All data-points enclosed
by the ball are nearest neighbours of the data-point at the center. In Figure (b) we show
a class-based definition of nearest neighbours. Nearest neighbours are defined as those
data-points sharing at least one class label in common.

7.3.2 Class-Based Nearest Neighbours

Class label-based groundtruth is often used in the literature (Figure 34b) as an alternative
or a complementary groundtruth to the ε-NN evaluation paradigm. Class labels are also
crucial for cross-modal retrieval experiments where it is not possible to directly compute
the Euclidean distance between two feature vectors of a different type. In this scenario
Sij = 1 for an element of the groundtruth matrix S if the corresponding pair of data-points
xi,xj share at least one class label or annotation in common, and Sij = 0 otherwise (Gong
& Lazebnik, 2011; Liu et al., 2012).

7.4 Evaluation Paradigms

There are two main paradigms for evaluating hashing models: the Hamming ranking evalua-
tion paradigm (Section 7.4.1) and the hashtable bucket evaluation paradigm (Section 7.4.2).
Both paradigms are illustrated in Figure 35. The Hamming ranking paradigm is stan-
dard within the learning to hash research literature while the hashtable bucket evaluation
paradigm is frequently used in practical hashing applications in which a fast query-time is
of prime importance. We introduce both paradigms in Sections 7.4.1-7.4.2 before explaining
why the Hamming ranking evaluation paradigm is typically employed throughout most of
the learning-to-hash literature (Section 7.4.3).

7.4.1 Hamming Ranking Evaluation

Most existing research (Kong et al., 2012) (Kong & Li, 2012a) (Kong & Li, 2012b) (Liu et al.,
2012) (Liu et al., 2011) (Gong & Lazebnik, 2011) (Zhang et al., 2010) (Kulis & Grauman,
2009) evaluate retrieval effectiveness using the widely accepted Hamming ranking evaluation

87

Moran

0

1

3

3

4

5

5

 01011

01011

01010

11000

11000

11100

10100

10100

 Images ranked by
Hamming distance

Hashcode Hamming
 distance

Query

+

+

-

-

+

-

-

(a) Hamming ranking evaluation

Hash Function Hash Table Buckets

+ + +

- -

-

-

(b) Hashtable bucket evaluation

Figure 35: Two evaluation paradigms for hashing. In both cases relevant images are those
depicting similar objects. In Figure (a) the Hamming distance between the query hashcode
and the database images is computed. The images are ranked and the resulting ranked list
used to compute a retrieval metric such as average precision (AP). In this case we find an
AP = 0.87. The average precision scores are aggregated across queries by computing the
mean average precision (mAP). In Figure (b) we show the hashtable evaluation strategy.
Each image is hashed to a bucket. A count is then made of the number of true positives
(TPs), false positives (FPs) and false negatives (FNs) colliding in the same buckets. In
this toy example, TP = 3, FP = 1, FN = 2 which equates to a micro-average F1-
measure of 0.78. On both diagrams + indicates a true positive while a − indicates a
false positive/negative.

paradigm. In this evaluation paradigm, binary hashcodes are generated for both the query
and the database images. The Hamming distance is then computed from the query images to
all of the database images, with the database dataset images ranked in ascending order of the
Hamming distance. The resulting ranked lists are then used to compute retrieval evaluation
metrics such as area under the precision recall curve (AUPRC) (Section 7.6.3) and mean
average precision (mAP) (Section 7.6.4). The Hamming ranking evaluation paradigm is a
proxy for evaluating hashing accuracy over the range of user preferences (precision/recall)
and without having to specify the parameters (K,L) of a specific hashtable implementation.
We discuss this latter point further in Section 7.4.3.

7.4.2 Hashtable Bucket-Based Evaluation

The Hamming ranking evaluation paradigm is by definition of O(N) time complexity for
a single query data-point. The hash bucket-based evaluation has a constant O(1) search
time independent of the dataset size. A hashtable lookup evaluation is much closer to how
the hashing models would be used in a real-world application where a fast query time is a
necessity. Despite this fact a hashtable evaluation is rarely reported in the learning to hash
literature with the Hamming ranking paradigm being the preferred evaluation methodology.
We previously described the application of hashtables in the context of Locality Sensitive

88

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

Hashing (LSH) (Section 4). In this evaluation paradigm the hashcodes are generated for
the query and database points which are then used as the indices into the buckets of L
hashtables. The union is then taken over all the data-points that collide in the same buckets
as the query across the L hashtables. The set of data-points thus formed can then be used
to compute the effectiveness metrics of precision, recall and Fβ-measure. We describe these
metrics in more detail in Section 7.6, but the intuition is that we want to reward the
algorithm if it returns many true nearest neighbours to the query in the retrieved set while
penalising it for returning unrelated data-points. As we examine all colliding data-points
for a query we are therefore using the second hashtable query strategy which was discussed
in the description of LSH in Section 4.

7.4.3 Hamming Ranking versus Hashtable Bucket Evaluation

The hashtable bucket evaluation paradigm is heavily dependent on both the particular
hashtable implementation (i.e. values of K, L, whether or not chaining is used, etc) and on
the end application itself, for example is the hashtable on a drone and therefore do we have
limited available main memory? If we opt for a hashtable evaluation paradigm we either
need to pick a default setting of K and L and tie our evaluation to this specific hashtable
implementation, or alternatively we can measure the hashing model performance over many
different values of the hashtable parameters leading to an explosion in the number of results
to be reported. To abstract away from the specifics of a particular hashtable implementation
and to obtain a single number summarising the quality of the hashcodes, researchers in the
Computer Vision literature prefer to evaluate their hashing models by Hamming ranking
which involves computing the Hamming distance between the hashcodes, rather than using
a hashtable-based setup (Gong & Lazebnik, 2011) (Liu et al., 2011). The Hamming distance
given in Equation 4 (Section 3) measures the number of bits that are different between two
hashcodes and is therefore likely to be a good indicator of the quality of a hashtable lookup
using those hashcodes. The more bits in common the greater the likelihood of a collision
between the corresponding data-points.

There is an interesting, but not immediately obvious link between the Hamming ranking
evaluation paradigm and the hashtable evaluation paradigm45. Measuring the quality of
a set of ranked lists using mAP and AUPRC is effectively acting as a proxy for many
different settings of K and L in a corresponding hashtable evaluation. To confirm this
fact, we make reference to Figure 36 in which we show five hashcodes ranked in ascending
order of Hamming distance from the query (marked in the diagram in bold font). Observe
that each threshold effectively defines a set of “colliding” data-points, that is those above
the threshold with the lowest Hamming distance to the query. The thresholded ranked list
therefore corresponds to settings of K and L that ensure the data-points above the threshold
will collide in at least one hypothetical hashtable. The L hashtables in Figure 36 are formed
by splitting the hashcodes into L K-bit segments, with each K-bit segment indexing into
a specific bucket of one of the L hashtables. Just as choosing a particular setting of K
and L is application specific so is choosing a particular threshold in the Hamming ranking
evaluation paradigm. Usefully the mAP and AUPRC provide a single number measure
of ranking quality that is computed by aggregating across many different settings of the

45. This observation arose from a discussion with Victor Lavrenko.

89

Moran

110111
110111

110011

100011
010011

011000

K=3, L=2
K=2,L=3

K=3, L=2
K=2,L=3

K=6, L=1

K=2, L=3
K=1, L=6

K=1, L=6

K=1, L=6

K=1, L=60

1

2

5

Hamming
 Distance

Ranked
 List

Hash Table Configurations

Query

t1

t2

t3

Figure 36: An analogy between the Hamming ranking evaluation paradigm and the
hashtable bucket evaluation paradigm. We rank five hashcodes in ascending order by Ham-
ming distance from the query hashcode (shown here in bold). The ranked list is thresholded
at three different points (t1, t2, t3), with the thresholds indicated by the dashed horizontal
lines. The hashcodes above the threshold can be considered to be “colliding” with the query
hashcode. The settings of K and L that would cause the collision are shown for the four
different Hamming distances. For example, for the bottom most thresholding splitting the
hashcodes into L = 6 segments of K = 1 bits will cause the hashcode at Hamming distance
5 to collide in the same bucket as the hashcodes at Hamming distance 2, 1 and 0. In this
way we see that a particular thresholding of a ranked list of hashcodes is equivalent to many
different settings of K and L in a hashtable evaluation.

ranked list threshold, and consequently many different values of K and L. The Hamming
ranking evaluation paradigm is therefore a more general evaluation strategy for hashing
that is able to measure the overall quality of hashcodes without being tied to a particular
end-application. In effect it indicates how good the hashing-based ANN search would be if
we found the best setting of K and L in a hashtable bucket evaluation.

7.5 Constructing Random Dataset Splits

In this section we describe how the datasets introduced in Section 7.1 are partitioned to form
testing and validation queries and training and database splits for the purposes of learning
and evaluating the hash functions. Two strategies for forming splits will be described:
in Section 7.5.1 we describe the literature standard strategy that is widely used by the
research community, while in Section 7.5.2 we describe the proposed splitting methodology
that seeks to remedy concerns with the accepted evaluation strategy. In both cases, when
class-based ground-truth is used, it is common to sample the splits so as to obtain a balanced
distribution of classes within each partition.

7.5.1 Literature Standard Splits

In previous work repeated random subsampling cross-validation over ten independent runs is
used to evaluate the quality of the learnt hash functions (Liu et al., 2012) (Kong et al., 2012)
(Kong & Li, 2012a) (Liu et al., 2014) (Wang et al., 2012). Figure 37 shows an example of a

90

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

Validation
Queries

Training
Database

Test
Queries

Database

Validation
Database

X teq X vaq X trd

X db

X vad

XDataset

Figure 37: The literature standard dataset splitting procedure. The standard procedure
used in the literature for splitting a dataset into testing and training partitions. The entire
dataset X ∈ RN×D is represented as the concatenation of the individual rectangles, each
of which highlights a particular partition. The rectangle in grey represents the split of the
dataset that is held-out and only used once for computing the final measure of retrieval
effectiveness.

random dataset split for one run. The entire dataset is denoted as X ∈ RN×D. This dataset
is divided into a held-out set of test queries Xteq ∈ RNteq×D and a database split Xdb ∈
RNdb×D. The test queries are used once when we come to compute the evaluation metric by
ranking the database split (Section 7.4.1). The database split also doubles as the training
dataset for learning the hash functions. The best setting of model hyperparameters46 is
found by grid search on the validation split of the dataset. In practice this grid search
is conducted by running a set of validation queries Xvaq ∈ RNvaq×D against a validation
database Xvad ∈ RNvad×D, both of which are sampled from the database Xdb.This can
be considered as a form of nested cross-validation in which the optimal hyperparameters
are determined for each run. The training database Xtrd ∈ RNtrd×D is used to learn the
parameters (hyperplanes, quantisation thresholds) of the hash functions and is itself a subset
of Xdb. In the remainder of this review we refer to this splitting strategy as the literature
standard splitting strategy. We illustrate this method of forming dataset splits in Figure 37.

7.5.2 Improved Splitting Strategy

Unfortunately, there is a potential overfitting concern with the standard dataset splitting
strategy described in Section 7.5.1 given that the database points which are ranked or
indexed with respect to the test queries are also used as the training dataset for learning
the hash functions themselves. Ideally there should be a clean separation between the split
of the dataset that is used to learn the hash functions and the split of the dataset that is
ranked/indexed in order to compute the final measure of retrieval effectiveness. This ensures
that we can evaluate the true generalisation performance of the hash functions when there
is not only unseen queries but also an unseen database that is to be ranked/indexed with

46. Hyperparameters are parameters other than the hashing hyperplanes or quantisation thresholds. Exam-
ple of hyperparameters are the flexibility of margin C for the SVM and the kernel bandwidth parameter
γ for the RBF kernel.

91

Moran

Validation
Queries

Training
Database

Test
Queries

X teq X vaq X tst _ db

Validation
Database

X vad

Test
Database

X trd X ted

XDataset

Database X db

Figure 38: My improved dataset splitting procedure. My proposed splitting strategy for
overcoming the overfitting concern with the literature standard strategy. In addition to
the test queries we also advocate holding out a split of the dataset to act as the testing
database. The held-out splits of the dataset are shown in grey. At test time the testing
queries are used to retrieve related items from the testing database. This retrieval run is
used to compute the final measure of effectiveness for determining the quality of the hash
functions.

respect to those queries. Currently the literature is only concerned with the generalisation
performance with respect to unseen query data-points and where the database is known a-
priori and can be used for hash function learning. To the best of our knowledge this review
is the first in the literature to note this technical flaw in the standard method for forming
dataset splits. To mitigate this overfitting concern we propose a new method for generating
splits of the dataset. In this new strategy we again perform repeated random subsampling
cross-validation over ten runs. However, the makeup of a random split for a run now differs
from the literature standard splitting strategy. In our suggested dataset splitting strategy
we divide the dataset into five splits as shown in Figure 38. We have a set of held-out test
queries Xteq ∈ RNteq×D and also a held-out test database Xted ∈ RNted×D against which
those test queries are run. Both of the test queries and test database are only used once
when we come to compute the final retrieval effectiveness metric for that particular run.
The remainder of the dataset forms the database split Xdb ∈ RNdb×D which is used for
setting the parameters and hyperparameters of the hashing models. The database split is
further divided into a set of validation queries Xvaq ∈ RNvaq×D, a validation database split
Xvad ∈ RNvad×D which is ranked/indexed against the validation queries and a training split
that is used to learn the hash functions Xtrd ∈ RNtrd×D. We refer to this splitting strategy
as the improved splitting strategy.

7.6 Evaluation Metrics

We follow previous research in the learning to hash literature and judge the retrieval effec-
tiveness by the standard Information Retrieval (IR) metrics of precision, recall, Fβ-measure
(Section 7.6.1), area under the precision recall curve (AUPRC) (Section 7.6.3) and mean
average precision (mAP) (Section 7.6.4).

92

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

7.6.1 Precision, Recall, Fβ-Measure

Precision, recall and their harmonic mean, the Fβ-measure, are set-based evaluation metrics
that can be used to ascertain the quality of an unranked collection of images. The retrieved
set can be determined by looking into the colliding hashtable buckets for the Hashtable
bucket evaluation or by defining a Hamming radius threshold for the Hamming ranking
evaluation. In terms of the Hamming ranking evaluation, precision and recall can be com-
puted by counting the number of true nearest neighbours that are within a fixed Hamming
radius (true positives, TPs), the number of non nearest neighbours that are within a fixed
Hamming radius (false positives, FPs) and the number of related data-points that are not
are within a fixed Hamming radius to the query (false negatives, FNs).

More formally, we denote the groundtruth matrix as S ∈ {0, 1}Ntrd×Ntrd (Sections 7.3.1-
7.3.2). The groundtruth adjacency matrix specifies which data-points are true nearest
neighbour pairs (Sij = 1) and which data-point pairs are unrelated (Sij = 0). As we
discussed in Section 7.3, in the context of hashing-based ANN search, a data-point xj is
denoted as a true nearest neighbour (Sij = 1) if it is within an ε-ball of the query data-
point qi or shares at least one class label in common with the query. Following a retrieval
run, the ranked data-points within a certain Hamming radius (D) of the query are those
data-points considered to be related to the query, while those data-points outside of the
Hamming radius D are considered to be unrelated47. The results of a ranked retrieval for a
certain Hamming distance threshold D are represented by the square matrix R ∈ {0, 1}N×N
given in Equation 65.

Rij =

{
1, if xj is within Hamming radius D to the query qi

0, otherwise.
(65)

Given the definitions of S and R, the number of true positives for a single query data-
point qi is defined in Equation 66

TP (qi) =
∑
j

Sij ·Rij (66)

A false negative (FN) is a true nearest neighbour (Sij = 1) that is outside of the Hamming
radius around the query qi ∈ RD. The total false negative count for the query is given in
Equation 67

FN(qi) =
∑
j

Sij − TP (qi) (67)

A false positive (FP) is a non-nearest neighbour (Sij = 0) that falls within the query
Hamming radius qi ∈ RD (Equation 68)

FP (qi) =
∑
j

(1− Sij) ·Rij (68)

47. This is the Hamming ranking evaluation paradigm discussed in Section 7.4.1.

93

Moran

Given Equations 66-68 the precision and recall metrics can then be defined as in Equations
69-70

P (qi) =
TP (qi)

TP (qi) + FP (qi)
(69)

Precision is therefore the fraction of true nearest neighbours that are within the fixed
Hamming radius out of all data-points that are within the fixed Hamming radius to the
query data-point

R(qi) =
TP (qi)

TP (qi) + FN(qi)
(70)

Recall is then the fraction of true nearest neighbours that are within the fixed Hamming
radius to the query out of all possible true nearest neighbours for that query, regardless
whether or not they are within the specified Hamming radius.

In a typical image retrieval experiment we have more than one query data-point. The
question arises as to how we aggregate the precision and recall scores for all Q queries.
There are effectively two ways which involve either taking a micro-average or a macro-
average. For example, the micro-average sums the TPs, FPs and FNs across all queries
before computing the total precision and recall (Equations 71-72).

Pmicro =

∑Q
i=1 TP (qi)∑Q

i=1 TP (qi) +
∑Q

i=1 FP (qi)
(71)

Rmicro =

∑Q
i=1 TP (qi)∑Q

i=1 TP (qi) +
∑Q

i=1 FN(qi)
(72)

The weighted harmonic mean of recall and precision is known as the Fβ-measure and is
presented in Equation 73 (Rijsbergen, 1979):

Fβ =
(1 + β2)PmicroRmicro
β2Pmicro +Rmicro

=
(1 + β2)TPmicro

(1 + β2)TPmicro + β2FNmicro + FPmicro

(73)

Fβ-measure can be used to combine precision and recall resulting from both a macro
or micro-average. The free parameter β ∈ R+ is used to adjust the contribution from the
precision and recall. Setting β < 1 in Equation 73 weights precision higher than recall, and
vice-versa for a setting of β > 1. In most applications β is set to 1.0 giving the commonly
used F1-measure that provides an equal balance between the contribution of precision and
recall to the final score. The greater the Fβ-measure the more effective are the hash functions
at returning true nearest neighbours in the same hashtable buckets.

94

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
re

ci
si

on

Recall

GRH-LIN-LSH-1000
SH

ITQ

Figure 39: Precision recall curves for the CIFAR-10 dataset for a hashcode length of 32
bits. The three hashing algorithms indicated on this graph are GRH (Section 6.4.5), SH
(Section 6.3.2) and ITQ (Section 6.3.3).

7.6.2 Precision Recall Curve (PR Curve)

The precision and recall set-based evaluation metrics discussed in Section 7.6.1 are com-
puted at a fixed operating point of the hashing algorithm. This operating point is usually
derived from a particular parameter setting that is itself driven by user or system con-
straints. For example, in the context of a hashtable bucket evaluation paradigm (Section
7.4.2) this threshold could be implicitly defined by varying the number of hashtables L and
the number of hashcode bits K. For the Hamming ranking evaluation paradigm (Section
7.4.1) the threshold is the radius of the Hamming ball around the queries. Database points
with a Hamming distance to the query that puts them outside of the radius are not con-
sidered part of the retrieved set and therefore do not contribute to the computation of the
precision and recall metrics. In contrast to the set-based evaluation metrics, the precision-
recall (PR) curve measures the effectiveness of a ranked list of items across a range of
different operating points. For the Hamming ranking evaluation paradigm, the PR curve is
constructed by finding all the data-points within a certain Hamming radius D of the query
set and computing the precision and recall over the corresponding retrieved set. By vary-
ing the Hamming radius from unity to the maximum Hamming radius Dmax exhibited by
database hashcodes we can trace out a PR curve using the resulting Dmax precision-recall
values. This curve depicts the trade-off between precision and recall as the Hamming radius
from the queries is gradually increased. We expect that as the Hamming radius is increased
the precision will drop (as more non-relevant data-points are encountered) while the recall
will increase (as more relevant data-points are retrieved). An example precision-recall curve
is presented in Figure 39.

95

Moran

7.6.3 Area Under the Precision Recall Curve

In many situations a single number summarising the ranking effectiveness captured by the
precision-recall curve is required. Given its wide application in previously related research
(Kong et al., 2012) (Kong & Li, 2012a) (Kong & Li, 2012b) (Moran et al., 2013a) (Moran
et al., 2013b) the area under the precision-recall curve (AUPRC) is one of the main single
number effectiveness metrics used consistently throughout the field. The AUPRC is a real-
valued number constrained to be within the limits of 0 and 1 and provides a summary of
the retrieval effectiveness across all levels of recall. The computation of AUPRC is defined
in Equation 74.

AUPRC =

∫ 1

0
P (R)dR

=

Dmax∑
d=1

P (d)δR(d)

(74)

where P (R) denotes the micro precision at micro recall R, P (d) is the precision at Hamming
radius d and δR(d) is the change in micro recall between Hamming radius d − 1 and d48.
The greater the area under the PR curve (AUPRC) the higher the retrieval effectiveness of
the associated hashing model. The ideal PR curve has a precision of 1.0 across all recall
levels leading to an AUPRC of 1.0.

7.6.4 Mean Average Precision (mAP)

Mean average precision (mAP) is also a commonly applied single-number evaluation metric
for summarising the effectiveness of a ranking. However, in contrast to AUPRC which is
directly computed from the precision-recall curve, mAP is calculated from the Q ranked
lists that are obtained by computing the Hamming distance from every query data-point{
qi ∈ RD

}Q
i=1

to all the database data-points
{
xj ∈ RD

}N
j=1

. Given a set of Q ranked

lists, mAP is defined as follows (Wu, Yang, Zheng, Wang, & Wang, 2015): denote as L the
number of true nearest neighbours for query q among the retrieved data-points, Pq(r) as
the precision for query data-point q when the top r data-points are returned, and δ(r) as an
indicator function which returns ‘1’ when the rth data-point is a true nearest neighbour of
the query and ‘0’ otherwise. The average precision (AP) for a single query q is then given
in Equation 75 while the average of this quantity across all Q queries, the mean average
precision or mAP, is defined in Equation 76.

AP (q) =
1

L

R∑
r=1

Pq(r)δ(r) (75)

mAP =
1

|Q|

Q∑
i=1

AP (qi) (76)

48. The finite sum representation for the AUPRC can be computed using the trapezoidal rule. This is
implemented as the trapz function in Matlab.

96

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

Equation 75 computes the precision at each point when a new relevant image is retrieved.
The average precision (AP) for a single query q is then the mean of these precision values.
The mAP is then computed by simply taking the mean of the average precisions across all
Q queries (Equation 76). mAP is a real-valued number between 0.0 and 1.0, with a higher
number indicating a more effective ranked retrieval and favours relevant images retrieved
at higher (better) ranks. mAP is frequently used as a single-number evaluation metric in
certain sub-fields of the learning to hash literature, particularly supervised and unsupervised
data-dependent projection (Liu et al., 2011) (Liu et al., 2012) (Gong & Lazebnik, 2011)
(Zhang et al., 2010).

7.6.5 Comparing and Contrasting AUPRC and mAP

The application of AUPRC and mAP as an evaluation metric is not consistent across the
learning to hash literature, with some sub-fields (particularly binary quantisation) favouring
AUPRC while others (such as data-dependent projection) appear to favour mAP. It is well-
known that mAP is approximately the average of the AUPRC for a set of queries (Turpin
& Scholer, 2006) so it is interesting to briefly consider here the retrieval scenarios where
both metrics are expected to be in agreement and when they are likely to differ.

AUPRC is a micro-average in which the individual true positives, false positives and false
negatives are aggregated across all Q queries for a specific threshold. The total aggregated
counts are then used to compute the precision and recall for each possible setting of the
threshold. The resulting precision and recall values can then be used to compute the
AUPRC as given by Equation 74. In contrast the mAP is a macro-average which is found by
computing the true positives, false positives and resulting precision per query, per relevant
document retrieved and then averaging those precision values across allQ queries (Equations
75-76).

In practice, differences between the mAP and AUPRC will only arise in retrieval ap-
plications in which the distribution of relevant documents across queries is skewed. In this
scenario the AUPRC will favour models that return more relevant documents from the
queries with a larger number of relevant documents to the detriment of those queries that
have a smaller number of relevant documents. In contrast the mAP will weight the contri-
bution of every query equally even if many documents are relevant to some queries and very
few to other queries. This equal weighting of queries ensures that mAP is insensitive to the
performance variation between those queries that have many relevant documents and other
queries that have very few relevant documents. To achieve a high mAP score the system
must aim to do well across all queries and not just those with many relevant documents.

In a practical scenario, where the distribution of relevant documents per query is highly
imbalanced, the choice of summarising the ranking effectiveness with either mAP or AUPRC
is application specific (Sebastiani, 2002). In some cases we may be primarily interested in
high effectiveness for the queries with a greater number of relevant documents (AUPRC).
This may be appropriate for evaluating system orientated tasks in which we wish to quantify
how well the system does as a whole in returning pairs of true nearest neighbours (e.g.
plagiarism detection). In other cases we may be equally interested in queries with a much
smaller number of true positives (mAP). The latter scenario may arise in a user evaluation

97

Moran

situation such as web search where the information retrieval system must not be seen to
prioritise retrieval effectiveness for one user over another.

7.7 Summary

In this section we introduced the evaluation methodology that is commonly employed in the
related research literature. We began in Section 7.1 by outlining a collection of image and
document datasets that are commonly used for nearest neighbour (NN) search experiments.
The datasets were divided into unimodal (image only) and cross-modal datasets (image-
document), and were shown to encompass a large variability in the feature descriptors used
to encode the images and documents, as well as the type of objects depicted in the images,
their resolution and the total number of images (from 22,019 up to 1.3 million images) per
dataset.

The definition of groundtruth is an important facet of any experimental methodology. In
Section 7.3, we introduced two main strategies for judging the quality of a nearest neighbour
search algorithm. The first strategy constructs a ball of radius ε around a query and any
data-points falling within that radius are deemed true nearest neighbours (Section 7.3.1).
The second strategy sets true nearest neighbours to be those data-points that share at least
one class label in common with the query (Section 7.3.2). The latter groundtruth definition
is required for cross-modal retrieval experiments in which the feature descriptors occupy
incommensurate feature spaces making an ε-NN evaluation impractical.

In Section 7.4, we then defined the nearest neighbour search strategy to be used in
evaluating the quality of the hashcodes. One natural option is to index the database and
query images into hashtable buckets and count the number of true nearest neighbours that
fall within the same buckets as the query (Section 7.4.2). Surprisingly we discussed how this
hashtable lookup evaluation strategy is not at all common in the learning to hash literature.
Instead most publications of note use what is termed the Hamming ranking evaluation
paradigm where the Hamming distance is exhaustively computed from the query to every
data-point in the dataset (Section 7.4.1). The data-points are then ranked in ascending
order of Hamming distance and the resulting ranked list is used to compute ranking-based
evaluation metrics.

The next point we addressed in Section 7.5 was how to split the datasets into random
partitions. In a retrieval setting we need a set of held-out test queries and a database over
which retrieval will be performed. The accepted methodology in the literature (the literature
standard splitting strategy) was to randomly select a set of held-out test queries and to use
the remaining data-points as the database to be ranked and as the training dataset for
learning the hash functions (Section 7.5.1). We identified a potential overfitting concern
with this strategy and advocated an approach (the improved splitting strategy) where a
certain split of the dataset forms a held-out database that cannot be used to learn the hash
functions at training time (Section 7.5.2).

Finally in Section 7.6 we introduced the evaluation metrics frequently used to quantify
the retrieval effectiveness of hashing models with respect to prior art. These include the
standard the application of the standard Information Retrieval (IR) metrics of area under
the precision recall curve (AUPRC) and mean average precision (mAP) to evaluate the
quality of the hashcodes (Sections 7.6.3-7.6.4).

98

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

8. Avenues for Future Research

We conclude this review with suggestions for fruitful avenues of future research. The models
presented in this review have but only scratched the surface of this important and flourishing
field of research and the potential scope for future research is both many and varied. We
will attempt to highlight several potential future directions of research that we consider
particularly promising in this last section.

8.1 Groundtruth and Evaluation Metric Correlation with Human Judgments

There has been little previous work that examines the extent to which the evaluation met-
rics and groundtruth used in the learning to hash field are sensible for learning hashcodes
that correlate well with user search satisfaction. For example, ideally it should be the case
that a significant increase in the area under the precision recall curve (AUPRC) should also
lead to a significant increase in user satisfaction with the retrieved images or documents.
Furthermore, in Section 7 we introduced the class-based and ε-NN based groundtruth defi-
nitions that are used to evaluate the models in the literature. Many datasets of interest do
not have manually assigned class labels, and so it would be useful to conduct a user-study as
to how metric definitions of nearest neighbour groundtruth, such as the ε-NN groundtruth
paradigm outlined in Section 7.3.1, align with human judgements of item-item similarity.
Ideally we would want many related data-points to a given query, as judged by a user, to be
contained within the same ε-ball. For the class-based groundtruth Section 7.3.2 this is less
of an issue because those labels have been specifically assigned to the images by humans.
The outcome of this user study would be expected to inform future developments in the
evaluation procedures for hashing-based ANN search algorithms, and would be a valuable
contribution to the community.

8.2 Online/Streaming Learning of the Hashing Hypersurfaces

A commonality between all of the reviewed models is the construction of the hashing hyper-
planes in a batch fashion. This assumed the entire training dataset would be immediately
available for learning, and ss soon as the hyperplanes were learnt they were never updated.
This batch learning assumption is flawed when we consider many modern data sources of
prime interest such as social media streams (e.g. Twitter). Twitter posts, for example,
can be modelled as a never-ending, effectively infinite stream of data that could never be
inspected in its entirety in a batch fashion (Petrović et al., 2010). Furthermore streaming
data sources are highly likely to exhibit a drift in the distribution of the data over time as,
for example, new topics are discussed and the vocabulary changes. Simply learning a set
of hyperplanes once with no possibility of further updates would be an entirely suboptimal
approach in this situation. It would be particularly interesting to adapt the bacth-based
hashing models to the streaming data scenario in which the hyperplanes are capable of being
updated in an online manner after each labelled pair of data-points are encountered in the
stream. For example, to achieve this goal one could potentially investigate the effectiveness
of using passive aggressive (PA) classifiers (Crammer, Dekel, Keshet, Shalev-Shwartz, &
Singer, 2006) in place of the support vector machines (SVMs) used in the Self Taught or
Graph Regularised Hashing models (Sections 6.4.4-6.4.5). The PA classifier is particularly

99

Moran

amenable to online learning and would make an ideal starting point for future research on
this topic. We believe such a model would have significant potential impact in the field. An
interesting challenge in this context would be how to efficiently update the hashcodes of ex-
isting data-points in the face of changing data. Furthermore, implementation of this model
would address a common criticism of this field, namely the application of the algorithms to
datasets of medium size (1 million data-points or less) and of relatively low dimensionality
(D ≤ 512).

8.3 Hashing Documents Written in Different Languages

The cross-modal hashing models extension are generally only tested on images and textual
data, both of which are typically represented as low dimensional feature vectors. A par-
ticularly interesting avenue for future work would involve exploring how the models could
be adapted to hash cross-lingual documents, for example English and Spanish Wikipedia
articles. In this task the goal would be to cluster related cross-lingual documents in the
same hashtable buckets, without using any form of machine translation. In contrast to
the image and text features used in the literature, multi-lingual document data sources are
likely to be very high dimensional when encoded as TF-IDF vectors. The large freely avail-
able parallel and comparable corpora49 consisting of similar documents written in different
languages would provide the needed pairwise supervision for learning the hashing hypersur-
faces, negating any tedious manual effort to obtain the required labels. The cross-lingual
projection function could be directly compared and evaluated against (Ture, Elsayed, & Lin,
2011), a solution based on machine translation and traditional unimodal Locality Sensitive
Hashing (LSH). Given the significant gains in retrieval effectiveness for the cross-modal
hashinbg models we have strong reason to suspect that cross-lingual hashing with a suit-
able adaptation of my graph regularised projection function would attract similar gains in
performance. Given that more and more data on the Web is written in different languages
we also foresee an online version of this cross-lingual hash function being particularly excit-
ing future work. For example, a fast steaming algorithm for clustering similar tweets written
in many different languages into the same hashtable buckets could prove useful to analysts
in the financial industry or to linguists interested in studying the linguistic properties of
Twitter and other related micro-blogs (Zanzotto, Pennacchiotti, & Tsioutsiouliklis, 2011).

8.4 Learning Dependent Hyperplanes and Quantisation Thresholds

The multiple threshold quantisation models introduced in Section 5 positioned the quantisa-
tion thresholds independently across each projected dimension. In other words, the learning
of the quantisation thresholds for one projected dimension was independent of the learning
of the quantisation thresholds for another projected dimension. Inspired by the body of
research into multivariate discretisation (Bay, 2001) a potential future avenue of research
could examine the benefits of inducing a degree of dependence between the quantisation
thresholds across projected dimensions. A particularly simple, albeit contrived example
of a dataset that would not be quantised correctly by independently optimised thresholds
is the two dimensional XOR dataset (Bay, 2000). In this case the quantisation algorithm

49. http://www.statmt.org/europarl/

100

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

would need to account for the correlation between the different feature dimensions in order
to find the optimal positioning of the thresholds.

In a similar vein of research, many of the supervised hash functions introduced in Section
6.4 constructed each hyperplane independently in a simple sequential fashion. Inducing a
degree of dependence between the learning of the hyperplanes might contribute to a reduced
redundancy between bits while also permitting hyperplanes learnt later in the sequence to
focus on data-point pairs incorrectly classified by hyperplanes learnt earlier in the sequence.
A straightforward starting point would be to assign a weight to each pair in the adjacency
matrix in a similar manner to the Adaboost algorithm (Schapire & Freund, 2012). True
nearest neighbours assigned the same bits by earlier hypersurfaces could have their weight
decreased while non-nearest neighbours assigned the same bits could have their weights
increased. In this way the learning of the hashing hyperplanes could be gradually biased
to focus on data-points pairs that are more difficult to classify, potentially resulting in
enhanced retrieval effectiveness.

9. Conclusion

This review intoduced the field of learning-to-hash for approximte nearest neighbour search.
We began the review in Section 3 by motivating the need for more efficient algorithms
for nearest neighbour (NN) search that do not require an exhaustive brute-force scan of
the dataset. This led us to the field of approximate nearest neighbour search which we
argued is dominated by the seminal method of Locality Sensitive Hashing (LSH). We saw
in Section 4 how LSH is in fact a family of different algorithms for generating similarity
preserving hashcodes for a wide range of similarity functions of interest, from the inner
product similarity to the Euclidean distance. We discussed how the LSH hash function
family for the inner product similarity forms the focus of this review. In this case LSH
will generate hashcodes with a low Hamming distance to each other for those data-points
that are similar under the inner product similarity. This property enables the hashcodes
to be used as indices into the buckets of a set of hashtables to retrieve nearest neighbours
in a constant time per query, a much improved query-time versus a naive brute-force linear
scan.

In Sections 5-6, we then discussed how the contributions in the learning-to-hash field
address the effectiveness of two critical components of the LSH algorithm: projection (hy-
perplane) learning and binary quantisation. Retrieval effectiveness is highly dependent on
how well these two steps preserve the original neighbourhood structure between the data-
points in the hashcode Hamming space. Unfortunately, we saw how LSH generates its
hyperplanes and quantisation thresholds randomly in the input space relying on asymptotic
guarantees that as the number of hyperplanes increases, the desired similarity will be well
reflected by the Hamming distance between the binary hashcodes. A random partitioning
may lead to the separation of many related data-points into different hashtable buckets, con-
trary to the central premise of hashing-based ANN search. We described how relaxing this
data-independence assumption could mitigate this effect and potentially lead to improved
retrieval effectiveness while simultaneously generating more compact hashcodes compared
to LSH. In this survey our specific focus was on data-dependent hashing algorithms that
learn the hashing hyperplanes and quantisation thresholds in a way that is informed by the

101

Moran

distribution of the data, using either an unsupervised (Section 6.3) or supervised (Section
6.4) signal to avoid placing related unimodal (Sections 6.3-6.4) or cross-modal (Section 6.5)
data-points into different hashtable buckets.

Acknowledgments

The author would like to thank Victor Lavrenko, Robert Fisher, Iadh Ounis, Manfred Ulz
and Aidan Reid for their helpful feedback on this review. Victor Lavrenko in particular, was
instrumental in helping to crystallise and formalise the structure and layout of the review.

References

Aggarwal, C. C., & Reddy, C. K. (Eds.). (2014). Data Clustering: Algorithms and Applica-
tions. CRC Press.

Albakour, M.-D., Macdonald, C., & Ounis, I. (2015). Using sensor metadata streams to
identify topics of local events in the city. In Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’15,
pp. 711–714, New York, NY, USA. ACM.

Andoni, A., & Indyk, P. (2008). Near-optimal Hashing Algorithms for Approximate Nearest
Neighbor in High Dimensions. Commun. ACM, 51 (1), 117–122.

Arun, K. S., Huang, T. S., & Blostein, S. D. (1987). Least-Squares Fitting of Two 3-D
Point Sets. IEEE Trans. Pattern Anal. Mach. Intell., 9 (5), 698–700.

Baluja, S., & Covell, M. (2008). Learning to Hash: Forgiving Hash Functions and Applica-
tions. Data Min. Knowl. Discov., 17 (3), 402–430.

Bawa, M., Condie, T., & Ganesan, P. (2005). LSH Forest: Self-tuning Indexes for Similarity
Search. In Proceedings of the 14th International Conference on World Wide Web,
WWW ’05, pp. 651–660, New York, NY, USA. ACM.

Bay, S. D. (2000). Multivariate Discretization of Continuous Variables for Set Mining.
In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’00, pp. 315–319, New York, NY, USA. ACM.

Bay, S. D. (2001). Multivariate Discretization for Set Mining. Knowledge and Information
Systems, 3 (4), 491–512.

Belkin, M., & Niyogi, P. (2003). Laplacian Eigenmaps for Dimensionality Reduction and
Data Representation. Neural Comput., 15 (6), 1373–1396.

Bengio, Y., Paiement, J.-F., Vincent, P., Delalleau, O., Roux, N. L., & Ouimet, M. (2004).
Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Cluster-
ing. In Advances in Neural Information Processing Systems 16. MIT Press, Cam-
bridge, MA.

Bentley, J. L. (1975). Multidimensional Binary Search Trees Used for Associative Searching.
Commun. ACM, 18 (9), 509–517.

102

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

Berchtold, S., Böhm, C., Braunmüller, B., Keim, D. A., & Kriegel, H.-P. (1997). Fast
Parallel Similarity Search in Multimedia Databases. In Proceedings of the 1997 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’97, pp. 1–12,
New York, NY, USA. ACM.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. J. Mach. Learn.
Res., 3, 993–1022.

Broder, A. (1997). On the Resemblance and Containment of Documents. In Proceedings
of the Compression and Complexity of Sequences 1997, SEQUENCES ’97, pp. 21–,
Washington, DC, USA. IEEE Computer Society.

Bronstein, M. M., Bronstein, A. M., Michel, F., & Paragios, N. (2010). Data fusion through
cross-modality metric learning using similarity-sensitive hashing. 2014 IEEE Confer-
ence on Computer Vision and Pattern Recognition, 0, 3594–3601.

Charikar, M. S. (2002). Similarity Estimation Techniques from Rounding Algorithms. In
Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing,
STOC ’02, pp. 380–388, New York, NY, USA. ACM.

Chawla, N. V. (2005). Data mining for imbalanced datasets: An overview. In Data mining
and knowledge discovery handbook, pp. 853–867. Springer US.

Chua, T.-S., Tang, J., Hong, R., Li, H., Luo, Z., & Zheng, Y.-T. (2009). NUS-WIDE: A
Real-World Web Image Database from National University of Singapore. In Proc. of
ACM Conf. on Image and Video Retrieval (CIVR’09), Santorini, Greece.

Chum, O., Philbin, J., & Zisserman, A. (2008). Near Duplicate Image Detection: min-Hash
and tf-idf Weighting. In Proceedings of the British Machine Vision Conference 2008,
Leeds, September 2008, pp. 1–10.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., & Singer, Y. (2006). Online Passive-
Aggressive Algorithms. J. Mach. Learn. Res., 7, 551–585.

Datar, M., Immorlica, N., Indyk, P., & Mirrokni, V. S. (2004). Locality-sensitive Hashing
Scheme Based on P-stable Distributions. In Proceedings of the Twentieth Annual
Symposium on Computational Geometry, SCG ’04, pp. 253–262, New York, NY, USA.
ACM.

Dean, T., Ruzon, M., Segal, M., Shlens, J., Vijayanarasimhan, S., & Yagnik, J. (2013). Fast,
Accurate Detection of 100,000 Object Classes on a Single Machine. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC,
USA.

Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data
via the EM algorithm.. J. Royal Statistical Society, Series B, 39 (1), 1–38.

Deng, J., Dong, W., Socher, R., Li, L., Li, K., & Li, F. (2009). ImageNet: A large-scale hi-
erarchical image database. In 2009 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida,
USA, pp. 248–255.

103

Moran

Diaz, F. (2007). Regularizing Query-based Retrieval Scores. Inf. Retr., 10 (6), 531–562.

Doersch, C., Singh, S., Gupta, A., Sivic, J., & Efros, A. A. (2012). What Makes Paris Look
Like Paris?. ACM Trans. Graph., 31 (4), 101:1–101:9.

Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and Unsupervised Discretiza-
tion of Continuous Features. In Machine Learning, Proceedings of the Twelfth Inter-
national Conference on Machine Learning, Tahoe City, California, USA, July 9-12,
1995, pp. 194–202.

Fan, R., Chang, K., Hsieh, C., Wang, X., & Lin, C. (2008). LIBLINEAR: A Library for
Large Linear Classification. Journal of Machine Learning Research, 9, 1871–1874.

Fayyad, U. M., & Irani, K. B. (1993). Multi-Interval Discretization of Continuous-Valued
Attributes for Classification Learning. In Proceedings of the 13th International Joint
Conference on Artificial Intelligence. Chambéry, France, August 28 - September 3,
1993, pp. 1022–1029.

Feng, J. (2012). Mobile Product Search with Bag of Hash Bits and Boundary Reranking.
In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), CVPR ’12, pp. 3005–3012, Washington, DC, USA. IEEE Computer
Society.

Finkel, R. A., & Bentley, J. L. (1974). Quad Trees: A Data Structure for Retrieval on
Composite Keys.. Acta Inf., 4, 1–9.

Freund, Y., & Schapire, R. E. (1997). A Decision-theoretic Generalization of On-line Learn-
ing and an Application to Boosting. J. Comput. Syst. Sci., 55 (1), 119–139.

Garcia, S., Luengo, J., Saez, J. A., Lopez, V., & Herrera, F. (2013). A Survey of Discretiza-
tion Techniques: Taxonomy and Empirical Analysis in Supervised Learning. IEEE
Trans. on Knowl. and Data Eng., 25 (4), 734–750.

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proceedings of the 2014
IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’14, pp. 580–
587, Washington, DC, USA. IEEE Computer Society.

Goemans, M. X., & Williamson, D. P. (1995). Improved Approximation Algorithms for
Maximum Cut and Satisfiability Problems Using Semidefinite Programming. J. ACM,
42 (6), 1115–1145.

Goldberger, J., Roweis, S., Hinton, G., & Salakhutdinov, R. (2004). Neighbourhood com-
ponents analysis. In Advances in Neural Information Processing Systems 17, pp.
513–520. MIT Press.

Golub, G. H., & Van Loan, C. F. (1996). Matrix Computations (3rd Ed.). Johns Hopkins
University Press, Baltimore, MD, USA.

Gong, Y., & Lazebnik, S. (2011). Iterative Quantization: A Procrustean Approach to Learn-
ing Binary Codes. In Proceedings of the 2011 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR ’11, pp. 817–824, Washington, DC, USA. IEEE Com-
puter Society.

104

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

Grauman, K., & Darrell, T. (2004). Fast Contour Matching Using Approximate Earth
Mover’s Distance.. In CVPR (1), pp. 220–227.

Grauman, K., & Darrell, T. (2007). Pyramid Match Hashing: Sub-Linear Time Indexing
Over Partial Correspondences. In 2007 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR 2007), 18-23 June 2007, Minneapolis,
Minnesota, USA.

Grauman, K., & Fergus, R. (2013). Learning Binary Hash Codes for Large-Scale Image
Search. In Cipolla, R., Battiato, S., & Farinella, G. M. (Eds.), Machine Learning
for Computer Vision, Vol. 411 of Studies in Computational Intelligence, pp. 49–87.
Springer Berlin Heidelberg.

Gray, F. (1953). Pulse code communication.. US Patent 2,632,058.

Gray, R. M., & Neuhoff, D. L. (2006). Quantization. IEEE Trans. Inf. Theor., 44 (6),
2325–2383.

Hanson, R. J., & Norris, M. J. (1981). Analysis of Measurements Based on the Singular
Value Decomposition. SIAM Journal on Scientific and Statistical Computing, 2 (3),
363–373.

Hardoon, D. R., Szedmak, S., & Shawe-Taylor, J. (2003). Canonical correlation analysis;
An overview with application to learning methods. Technical report, Royal Holloway,
University of London.

He, K., Wen, F., & Sun, J. (2013). K-Means Hashing: An Affinity-Preserving Quantiza-
tion Method for Learning Binary Compact Codes. In Proceedings of the 2013 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR ’13, pp. 2938–2945,
Washington, DC, USA. IEEE Computer Society.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components.
J. Educ. Psych., 24.

Indyk, P., & Motwani, R. (1998). Approximate Nearest Neighbors: Towards Removing the
Curse of Dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, STOC ’98, pp. 604–613, New York, NY, USA. ACM.

Jegou, H., Douze, M., & Schmid, C. (2011). Product Quantization for Nearest Neighbor
Search. IEEE Trans. Pattern Anal. Mach. Intell., 33 (1), 117–128.

Joachims, T. (2006). Training Linear SVMs in Linear Time. In Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’06, pp. 217–226, New York, NY, USA. ACM.

Johnson, W., & Lindenstrauss, J. (1984). Extensions of Lipschitz mappings into a Hilbert
space. In Contemp Math 26.

Katayama, N., & Satoh, S. (1997). The SR-tree: An Index Structure for High-dimensional
Nearest Neighbor Queries. In Proceedings of the 1997 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’97, pp. 369–380, New York, NY, USA.
ACM.

105

Moran

Kerber, R. (1992). ChiMerge: Discretization of Numeric Attributes. In Proceedings of the
Tenth National Conference on Artificial Intelligence, AAAI’92, pp. 123–128. AAAI
Press.

Kokiopoulou, E., Chen, J., & Saad, Y. (2011). Trace optimization and eigenproblems in
dimension reduction methods. Numerical Lin. Alg. with Applic., 18 (3), 565–602.

Kong, W., & Li, W. (2012a). Double-Bit Quantization for Hashing. In Proceedings of the
Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012, Toronto,
Ontario, Canada.

Kong, W., & Li, W. (2012b). Isotropic Hashing. In Advances in Neural Information Process-
ing Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United
States., pp. 1655–1663.

Kong, W., Li, W.-J., & Guo, M. (2012). Manhattan Hashing for Large-scale Image Retrieval.
In Proceedings of the 35th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’12, pp. 45–54, New York, NY, USA.
ACM.

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images.
Master’s thesis, Department of Computer Science, University of Toronto.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep
Convolutional Neural Networks. In Advances in Neural Information Processing Sys-
tems 25: 26th Annual Conference on Neural Information Processing Systems 2012.
Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States.,
pp. 1106–1114.

Kulis, B. (2013). Metric Learning: A Survey. Foundations and Trends in Machine Learning,
5 (4), 287–364.

Kulis, B., & Darrell, T. (2009). Learning to Hash with Binary Reconstructive Embeddings.
In Advances in Neural Information Processing Systems 22: 23rd Annual Conference
on Neural Information Processing Systems 2009. Proceedings of a meeting held 7-10
December 2009, Vancouver, British Columbia, Canada., pp. 1042–1050.

Kulis, B., & Grauman, K. (2009). Kernelized locality-sensitive hashing for scalable image
search. In IEEE 12th International Conference on Computer Vision, ICCV 2009,
Kyoto, Japan, September 27 - October 4, 2009, pp. 2130–2137.

Kumar, S., & Udupa, R. (2011). Learning Hash Functions for Cross-view Similarity Search.
In Proceedings of the Twenty-Second International Joint Conference on Artificial In-
telligence - Volume Volume Two, IJCAI ’11, pp. 1360–1365. AAAI Press.

Lai, H., Pan, Y., Liu, Y., & Yan, S. (2015). Simultaneous feature learning and hash coding
with deep neural networks. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pp. 3270–3278.

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied
to document recognition. In Proceedings of the IEEE, pp. 2278–2324.

Lin, M., Chen, Q., & Yan, S. (2014). Network in network..

106

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

Liong, V. E., Lu, J., Wang, G., Moulin, P., & Zhou, J. (2015). Deep hashing for compact
binary codes learning.. In CVPR, pp. 2475–2483. IEEE Computer Society.

Liu, W., Mu, C., Kumar, S., & Chang, S. (2014). Discrete Graph Hashing. In Advances in
Neural Information Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pp. 3419–
3427.

Liu, W., Wang, J., Ji, R., Jiang, Y., & Chang, S. (2012). Supervised hashing with kernels.
In 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence,
RI, USA, June 16-21, 2012, pp. 2074–2081.

Liu, W., Wang, J., Kumar, S., & Chang, S. (2011). Hashing with Graphs. In Proceedings
of the 28th International Conference on Machine Learning, ICML 2011, Bellevue,
Washington, USA, June 28 - July 2, 2011, pp. 1–8.

Liu, X., He, J., & Lang, B. (2013). Reciprocal Hash Tables for Nearest Neighbor Search. In
Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, July
14-18, 2013, Bellevue, Washington, USA.

Lloyd, S. (1982). Least Square Quantization in PCM. IEEE Trans. Inform. Theory, 28,
129–137.

Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. Int. J.
Comput. Vision, 60 (2), 91–110.

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval.
Cambridge University Press, New York, NY, USA.

Matei, B., Shan, Y., Sawhney, H. S., Tan, Y., Kumar, R., Huber, D., & Hebert, M. (2006).
Rapid Object Indexing Using Locality Sensitive Hashing and Joint 3D-Signature Space
Estimation. IEEE Trans. Pattern Anal. Mach. Intell., 28 (7), 1111–1126.

Mehta, S., Parthasarathy, S., & Yang, H. (2005). Toward Unsupervised Correlation Preserv-
ing Discretization.. Vol. 17, pp. 1174–1185, Piscataway, NJ, USA. IEEE Educational
Activities Department.

Minsky, M., & Papert, S. (1969). Perceptrons. MIT Press, Cambridge, MA.

Moran, S. (2016). Learning to Project and Binarise for Hashing-Based Approximate Nearest
Neighbour Search. In Proceedings of the 39th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’16.

Moran, S., & Lavrenko, V. (2014). Sparse Kernel Learning for Image Annotation. In Pro-
ceedings of International Conference on Multimedia Retrieval, ICMR ’14, pp. 113:113–
113:120, New York, NY, USA. ACM.

Moran, S., & Lavrenko, V. (2015a). Graph Regularised Hashing. In Advances in Information
Retrieval - 37th European Conference on IR Research, ECIR 2015, Vienna, Austria,
March 29 - April 2, 2015. Proceedings, pp. 135–146.

Moran, S., & Lavrenko, V. (2015b). Regularised Cross-Modal Hashing. In Proceedings
of the 38th International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’15, pp. 907–910. ACM.

107

Moran

Moran, S., Lavrenko, V., & Osborne, M. (2013a). Neighbourhood Preserving Quantisation
for LSH. In Proceedings of the 36th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’13, pp. 1009–1012, New York, NY,
USA. ACM.

Moran, S., Lavrenko, V., & Osborne, M. (2013b). Variable Bit Quantisation for LSH. In
Proceedings of the 51st Annual Meeting of the Association for Computational Lin-
guistics, ACL 2013, 4-9 August 2013, Sofia, Bulgaria, Volume 2: Short Papers, pp.
753–758.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.

Oliva, A., & Torralba, A. (2001). Modeling the Shape of the Scene: A Holistic Representation
of the Spatial Envelope. Int. J. Comput. Vision, 42 (3), 145–175.

Osborne, M., Moran, S., McCreadie, R., von Lünen, A., Sykora, M. D., Cano, A. E., Ire-
son, N., Macdonald, C., Ounis, I., He, Y., Jackson, T., Ciravegna, F., & O’Brien, A.
(2014). Real-Time Detection, Tracking, and Monitoring of Automatically Discovered
Events in Social Media. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics, ACL 2014, June 22-27, 2014, Baltimore, MD, USA,
System Demonstrations, pp. 37–42.

Petrovic, S. (2012). Real-Time Event Detection in Massive Streams. Ph.D. thesis, University
of Edinburgh.

Petrović, S., Osborne, M., & Lavrenko, V. (2010). Streaming First Story Detection with Ap-
plication to Twitter. In Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for Computational Linguistics, HLT
’10, pp. 181–189, Stroudsburg, PA, USA. Association for Computational Linguistics.

Raginsky, M., & Lazebnik, S. (2009). Locality-sensitive binary codes from shift-invariant
kernels. In Advances in Neural Information Processing Systems 22: 23rd Annual
Conference on Neural Information Processing Systems 2009. Proceedings of a meeting
held 7-10 December 2009, Vancouver, British Columbia, Canada., pp. 1509–1517.

Rahimi, A., & Recht, B. (2007). Random features for large-scale kernel machines. In Ad-
vances in Neural Information Processing Systems 20, Proceedings of the Twenty-First
Annual Conference on Neural Information Processing Systems, Vancouver, British
Columbia, Canada, December 3-6, 2007, pp. 1177–1184.

Rajaraman, A., & Ullman, J. D. (2011). Mining of Massive Datasets. Cambridge University
Press, New York, NY, USA.

Rasiwasia, N., Costa Pereira, J., Coviello, E., Doyle, G., Lanckriet, G., Levy, R., & Vascon-
celos, N. (2010). A New Approach to Cross-Modal Multimedia Retrieval. In ACM
International Conference on Multimedia, pp. 251–260.

Rasiwasia, N., Mahajan, D., Mahadevan, V., & Aggarwal, G. (2014). Cluster Canonical
Correlation Analysis. In Proceedings of International Conference on Artificial Intelli-
gence and Statistics.

Rastegari, M., Choi, J., Fakhraei, S., III, H. D., & Davis, L. S. (2013). Predictable dual-view
hashing. In Proceedings of the 30th International Conference on Machine Learning,
ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pp. 1328–1336.

108

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

Ravichandran, D., Pantel, P., & Hovy, E. (2005). Randomized Algorithms and NLP: Using
Locality Sensitive Hash Function for High Speed Noun Clustering. In Proceedings of
the 43rd Annual Meeting on Association for Computational Linguistics, ACL ’05, pp.
622–629, Stroudsburg, PA, USA. Association for Computational Linguistics.

Razavian, A. S., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN features off-the-shelf:
an astounding baseline for recognition. CoRR, abs/1403.6382.

Rijsbergen, C. J. V. (1979). Information Retrieval (2nd edition). Butterworth-Heinemann,
Newton, MA, USA.

Russell, B. C., Torralba, A., Murphy, K. P., & Freeman, W. T. (2008). LabelMe: A Database
and Web-Based Tool for Image Annotation. Int. J. Comput. Vision, 77 (1-3), 157–173.

Saad, Y. (Ed.). (2011). Numerical Methods for Large Eigenvalue Problems, 2nd revised
edition. SIAM.

Salakhutdinov, R., & Hinton, G. (2009). Semantic Hashing. Int. J. Approx. Reasoning,
50 (7), 969–978.

Schapire, R. E., & Freund, Y. (2012). Boosting: Foundations and Algorithms. The MIT
Press.

Schönemann, P. (1966). A generalized solution of the orthogonal procrustes problem. Psy-
chometrika, 31 (1), 1–10.

Sebastiani, F. (2002). Machine Learning in Automated Text Categorization. ACM Comput.
Surv., 34 (1), 1–47.

Shakhnarovich, G., Darrell, T., & Indyk, P. (2006). Nearest-Neighbor Methods in Learning
and Vision: Theory and Practice (Neural Information Processing). The MIT Press.

Shakhnarovich, G., Viola, P., & Darrell, T. (2003). Fast Pose Estimation with Parameter-
Sensitive Hashing. In Proceedings of the Ninth IEEE International Conference on
Computer Vision - Volume 2, ICCV ’03, pp. 750–, Washington, DC, USA. IEEE
Computer Society.

Shalev-Shwartz, S., Singer, Y., & Srebro, N. (2007). Pegasos: Primal Estimated sub-
GrAdient SOlver for SVM. In Proceedings of the 24th International Conference on
Machine Learning, ICML ’07, pp. 807–814, New York, NY, USA. ACM.

Shen, F., Shen, C., Liu, W., & Tao Shen, H. (2015). Supervised Discrete Hashing. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 37–45.

Shi, J., & Malik, J. (2000). Normalized Cuts and Image Segmentation. IEEE Trans. Pattern
Anal. Mach. Intell., 22 (8), 888–905.

Smeulders, A. W. M., Worring, M., Santini, S., Gupta, A., & Jain, R. (2000). Content-
Based Image Retrieval at the End of the Early Years. IEEE Trans. Pattern Anal.
Mach. Intell., 22 (12), 1349–1380.

Song, J., Yang, Y., Yang, Y., Huang, Z., & Shen, H. T. (2013). Inter-media Hashing for
Large-scale Retrieval from Heterogeneous Data Sources. In Proceedings of the 2013
ACM SIGMOD International Conference on Management of Data, SIGMOD ’13, pp.
785–796, New York, NY, USA. ACM.

109

Moran

Terasawa, K., & Tanaka, Y. (2007). Spherical LSH for Approximate Nearest Neighbor
Search on Unit Hypersphere. In Dehne, F., Sack, J.-R., & Zeh, N. (Eds.), Algorithms
and Data Structures, Vol. 4619 of Lecture Notes in Computer Science, pp. 27–38.
Springer Berlin Heidelberg.

Torralba, A., Fergus, R., & Weiss, Y. (2008). Small codes and large image databases for
recognition. In 2008 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR 2008), 24-26 June 2008, Anchorage, Alaska, USA.

Ture, F., Elsayed, T., & Lin, J. (2011). No Free Lunch: Brute Force vs. Locality-sensitive
Hashing for Cross-lingual Pairwise Similarity. In Proceedings of the 34th International
ACM SIGIR Conference on Research and Development in Information Retrieval, SI-
GIR ’11, pp. 943–952, New York, NY, USA. ACM.

Turpin, A., & Scholer, F. (2006). User Performance Versus Precision Measures for Simple
Search Tasks. In Proceedings of the 29th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’06, pp. 11–18, New
York, NY, USA. ACM.

Ulz, M. H., & Moran, S. J. (2013). Optimal kernel shape and bandwidth for atomistic
support of continuum stress. Modelling and Simulation in Materials Science and
Engineering, 21 (8), 085017.

Wang, J., Shen, H. T., Song, J., & Ji, J. (2014). Hashing for Similarity Search: A Survey.
CoRR, abs/1408.2927.

Wang, J., Kumar, O., & Chang, S. (2010a). Semi-supervised hashing for scalable image
retrieval. In The Twenty-Third IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2010, San Francisco, CA, USA, 13-18 June 2010, pp. 3424–3431.

Wang, J., Kumar, S., & Chang, S. (2010b). Sequential Projection Learning for Hashing
with Compact Codes. In Proceedings of the 27th International Conference on Machine
Learning (ICML-10), June 21-24, 2010, Haifa, Israel, pp. 1127–1134.

Wang, J., Kumar, S., & Chang, S.-F. (2012). Semi-Supervised Hashing for Large-Scale
Search. IEEE Trans. Pattern Anal. Mach. Intell., 34 (12), 2393–2406.

Wang, J., Liu, W., Kumar, S., & Chang, S.-F. (2015a). Learning to hash for indexing big
data - a survey.. CoRR, abs/1509.05472.

Wang, Z., Duan, L.-Y., Lin, J., Wang, X., Huang, T., & Gao, W. (2015b). Hamming Com-
patible Quantization for Hashing. In Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI ’15.

Weber, R., Schek, H.-J., & Blott, S. (1998). A Quantitative Analysis and Performance
Study for Similarity-Search Methods in High-Dimensional Spaces. In Proceedings of
the 24rd International Conference on Very Large Data Bases, VLDB ’98, pp. 194–205,
San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Weiss, Y., Torralba, A., & Fergus, R. (2008). Spectral Hashing. In Advances in Neural Infor-
mation Processing Systems 21, Proceedings of the Twenty-Second Annual Conference
on Neural Information Processing Systems, Vancouver, British Columbia, Canada,
December 8-11, 2008, pp. 1753–1760.

110

A Primer on Machine Learning Models for Hashing-Based Approximate Nearest Neighbour Search

Williams, C. K. I., & Seeger, M. (2001). Using the Nyström Method to Speed Up Ker-
nel Machines. In Leen, T., Dietterich, T., & Tresp, V. (Eds.), Advances in Neural
Information Processing Systems 13, pp. 682–688. MIT Press.

Wu, B., Yang, Q., Zheng, W.-S., Wang, Y., & Wang, J. (2015). Quantized Correlation Hash-
ing for Fast Cross-modal Search. In Proceedings of the 24th International Conference
on Artificial Intelligence, IJCAI ’15, pp. 3946–3952. AAAI Press.

Xia, R., Pan, Y., Lai, H., Liu, C., & Yan, S. (2014). Supervised hashing for image retrieval via
image representation learning. In Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, AAAI’14, pp. 2156–2162. AAAI Press.

Xu, D., Cham, T. J., Yan, S., Duan, L., & Chang, S.-F. (2010). Near Duplicate Identifica-
tion With Spatially Aligned Pyramid Matching. IEEE Transactions on Circuits and
Systems for Video Technology, 20, 1068–1079.

Xu, H., Wang, J., Li, Z., Zeng, G., Li, S., & Yu, N. (2011). Complementary Hashing
for Approximate Nearest Neighbor Search. In Proceedings of the 2011 International
Conference on Computer Vision, ICCV ’11, pp. 1631–1638, Washington, DC, USA.
IEEE Computer Society.

Yang, Y., & Webb, G. I. (2009). Discretization for naive-Bayes Learning: Managing Dis-
cretization Bias and Variance. Mach. Learn., 74 (1), 39–74.

Yuille, A. L., & Rangarajan, A. (2003). The Concave-convex Procedure. Neural Comput.,
15 (4), 915–936.

Zanzotto, F. M., Pennacchiotti, M., & Tsioutsiouliklis, K. (2011). Linguistic Redundancy
in Twitter. In Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP ’11, pp. 659–669, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Zhang, D., Wang, J., Cai, D., & Lu, J. (2010). Self-taught Hashing for Fast Similarity
Search. In Proceedings of the 33rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’10, pp. 18–25, New York, NY,
USA. ACM.

Zhen, Y., & Yeung, D. (2012). Co-Regularized Hashing for Multimodal Data. In Advances
in Neural Information Processing Systems 25: 26th Annual Conference on Neural
Information Processing Systems 2012. Proceedings of a meeting held December 3-6,
2012, Lake Tahoe, Nevada, United States., pp. 1385–1393.

Zhu, X., & Ghahramani, Z. (2002). Learning from Labeled and Unlabeled Data with La-
bel Propagation. Tech. rep., Technical Report CMU-CALD-02-107, Carnegie Mellon
University.

111

