
GRAPH REGULARISED HASHING
SEAN MORAN†, VICTOR LAVRENKO
† SEAN.MORAN@ED.AC.UK

RESEARCH QUESTION

• Locality sensitive hashing (LSH) [1] fractures the input feature
space space with randomly placed hyperplanes.

• Can we do better by using supervision to adjust the hyperplanes?

INTRODUCTION

• Problem: Constant time nearest-neighbour search in large datasets.
• Hashing-based approximate nearest neighbour (NN) search:

– Index image/documents into the buckets of hashtable(s)
– Encourage collisions between similar images/documents

110101

010111

111101

H

H

 Content Based IR

 Image: Imense Ltd

 Image: Doersch et al.

 Image: Xu et al.

Location Recognition

Near duplicate detection

010101

111101

.....

H

QUERY

DATABASE

QUERY

NEAREST
NEIGHBOURS

HASH TABLE

COMPUTE
SIMILARITY

• Advantages:
– O(1) lookup per query rather than O(N) (brute-force)
– Memory/storage saving due to compact binary codes

GRAPH REGULARISED HASHING (GRH)
• We propose a two step iterative hashing model, Graph Regularised

Hashing (GRH) [5]. GRH uses supervision in the form of an adja-
cency matrix that specifies whether or not data-points are related.

– Step A: Graph Regularisation: the K-bit hashcode of a data-
point is set to the average of the data-points of its nearest
neighbours as specified by the adjacency graph:

Lm ← sgn
(
α SD−1Lm−1 + (1−α)L0

)
∗ S: Affinity (adjacency) matrix
∗ D: Diagonal degree matrix
∗ L: Binary bits at iteration m
∗ α ∈ {0, 1}: Linear interpolation parameter

– Step A is a simple sparse-sparse matrix multiplication, and can
be implemented very efficiently. Any existing hash function
e.g. LSH [1] can be used to initialise the bits in L0

– Step B: Data-Space Partitioning: the hashcodes produced in
Step A are used as the labels to learn K binary classifiers. This
is the out-of-sample extension step, allowing the encoding of
data-points not seen before:

for k = 1. . .K : min ||wk||2 + C
∑Ntrd

i=1 ξik

s.t. Lik(wk
ᵀxi + tk) ≥ 1− ξik for i = 1. . .Ntrd

∗ wk: Hyperplane k tk: bias k
∗ xi: data-point i Lik: bit k of data-point i
∗ ξik: slack variable K: # bits Ntrd: # data-points

• Steps A-B are repeated for a set number of iterations (M) (e.g. < 10).
The learnt hyperplanes wk can then be used to encode unseen data-
points (via a simple dot-product).

STEP A: GRAPH REGULARISATION

• Toy example: nodes are images with 3-bit LSH encoding. Arcs
indicate nearest neighbour relationships. We show two images
(c,e) having their hashcodes updated in Step A:

-1 1 1

1 1 1

-1 -1 -1

1 1 -1

ba

c

e

f

g

h

d

-1 1 1

 1 -1 -1

1 -1 -1

1 1 1 -1 1 1

 1 1 -1

STEP B: DATA-SPACE PARTITIONING

• Here we show a hyperplane being learnt using the first bit as
(highlighted with bold box) as label. One hyperplane is learnt
per bit.

-1 1 1

1 1 1

-1 -1 -1

1 1 -1

ba

c

e

f

g

h

d

-1 1 1
w1. x−t 1=0

w1

Negative
(-1)
half space

Positive
(+1)
half space

 1 1 -1

1 -1 -1

-1 1 1

QUANTITATIVE RESULTS (CIFAR-10) (MORE DATASETS IN PAPER)

• Mean average precision (mAP) image retrieval results using
GIST features on CIFAR-10 (NN: is significant at p < 0.01):

CIFAR-10
16 bits 32 bits 48 bits 64 bits

ITQ+CCA [2] 0.2015 0.2130 0.2208 0.2237
STH [3] 0.2352 0.2072 0.2118 0.2000
KSH [4] 0.2496 0.2785 0.2849 0.2905
GRH [5] 0.2991NN 0.3122NN 0.3252NN 0.3350NN

• Timings (seconds) averaged over 10 runs. GRH is 1) faster to
train and 2) is faster to encode unseen data-points:

Training Testing Total
GRH [5] 8.01 0.03 8.04
KSH [4] 74.02 0.10 74.12
BRE [6] 227.84 0.37 228.21

SUMMARY OF KEY FINDINGS

• First both accurate and scalable supervised hashing model
• Future work will extend GRH to streaming data sources
• Code online: https://github.com/sjmoran/grh
References:

[1] P. Indyk, R. Motwani: Approximate nearest neighbors: Towards removing the curse of dimensionality. In: STOC (1998).

[2] Y. Gong, S. Lazebnik: Iterative Quantisation. In: CVPR (2011). , [3] D. Zhang et al. Self-Taught Hashing. In: SIGIR (2010)., [4] W. Liu et

al. Supervised Hashing with Kernels. In: CVPR (2012)., [5] S. Moran, V. Lavrenko. Graph Regularised Hashing. In: ECIR (2015).,

[6] B. Kulis, T. Darrell et al. Binary Reconstructive Embedding. In: NIPS (2009).

