GRAPH REGULARISED HASHING nformatics SEAN MORAN[†], VICTOR LAVRENKO † SEAN.MORAN@ED.AC.UK

RESEARCH QUESTION

- Locality sensitive hashing (LSH) [1] fractures the input feature space space with randomly placed hyperplanes.
- Can we do better by using supervision to adjust the hyperplanes?

NTRODUCTION

- **Problem:** Constant time nearest-neighbour search in large datasets.
- Hashing-based approximate nearest neighbour (NN) search:
- Index image/documents into the buckets of hashtable(s) Encourage collisions between similar images/documents

STEP A: GRAPH REGULARISATION

• Toy example: nodes are images with 3-bit LSH encoding. Arcs indicate nearest neighbour relationships. We show two images (c,e) having their hashcodes updated in Step A:

-1 -1 1 -1 g 1 1 -1 -1 -1

STEP B: DATA-SPACE PARTITIONING

• Here we show a hyperplane being learnt using the first bit as (highlighted with bold box) as label. One hyperplane is learnt per bit.

• Advantages:

- O(1) lookup per query rather than O(N) (brute-force)
- Memory/storage saving due to compact binary codes

GRAPH REGULARISED HASHING (GRH)

- We propose a two step *iterative* hashing model, Graph Regularised Hashing (GRH) [5]. GRH uses supervision in the form of an adjacency matrix that specifies whether or not data-points are related.
 - Step A: Graph Regularisation: the K-bit hashcode of a datapoint is set to the average of the data-points of its nearest neighbours as specified by the adjacency graph:

$\mathbf{L}_m \leftarrow \operatorname{sgn}\left(\alpha \ \mathbf{SD}^{-1}\mathbf{L}_{m-1} + (1-\alpha)\mathbf{L}_0\right)$

- * **S**: Affinity (adjacency) matrix
- * **D**: Diagonal degree matrix
- * L: Binary bits at iteration m
- * $\alpha \in \{0, 1\}$: Linear interpolation parameter
- Step A is a simple sparse-sparse matrix multiplication, and can be implemented very efficiently. Any existing hash function e.g. LSH [1] can be used to initialise the bits in L₀
- Step B: Data-Space Partitioning: the hashcodes produced in Step A are used as the *labels* to learn *K* binary classifiers. This is the out-of-sample extension step, allowing the encoding of data-points not seen before:

QUANTITATIVE RESULTS (CIFAR-10) (MORE DATASETS IN PAPER)

• Mean average precision (mAP) image retrieval results using GIST features on CIFAR-10 (\blacktriangle : is significant at p < 0.01):

CIFAR-10					
	16 bits	32 bits	48 bits	64 bits	
ITQ+CCA [2]	0.2015	0.2130	0.2208	0.2237	
STH [3]	0.2352	0.2072	0.2118	0.2000	
KSH [4]	0.2496	0.2785	0.2849	0.2905	
GRH [5]	0.2991	0.3122	0.3252	0.3350	

• Timings (seconds) averaged over 10 runs. GRH is 1) faster to train and 2) is faster to encode unseen data-points:

Training Testing Total

- for k = 1...K: min $||\mathbf{w}_k||^2 + C \sum_{i=1}^{N_{trd}} \xi_{ik}$ s.t. $L_{ik}(\mathbf{w}_k^{\mathsf{T}}\mathbf{x}_i + t_k) \ge 1 - \xi_{ik}$ for $i = 1...N_{trd}$
 - * \mathbf{w}_k : Hyperplane $k = t_k$: bias k* \mathbf{x}_i : data-point i L_{ik} : bit k of data-point i* ξ_{ik} : slack variable K: # bits N_{trd} : # data-points
- Steps A-B are repeated for a set number of iterations (M) (e.g. < 10). The learnt hyperplanes w_k can then be used to encode unseen datapoints (via a simple dot-product).

	Iraining	resting	Iotai
GRH [5]	8.01	0.03	8.04
KSH [4]	74.02	0.10	74.12
BRE [6]	227.84	0.37	228.21

SUMMARY OF KEY FINDINGS

• First both accurate and scalable supervised hashing model • Future work will extend GRH to streaming data sources • Code online: https://github.com/sjmoran/grh References:

[1] P. Indyk, R. Motwani: Approximate nearest neighbors: Towards removing the curse of dimensionality. In: STOC (1998).

[2] Y. Gong, S. Lazebnik: Iterative Quantisation. In: CVPR (2011). , [3] D. Zhang et al. Self-Taught Hashing. In: SIGIR (2010)., [4] W. Liu et

al. Supervised Hashing with Kernels. In: CVPR (2012)., [5] S. Moran, V. Lavrenko. Graph Regularised Hashing. In: ECIR (2015).,

[6] B. Kulis, T. Darrell et al. Binary Reconstructive Embedding. In: NIPS (2009).