
Graph Regularised Hashing

Sean Moran and Victor Lavrenko

School of Informatics, University of Edinburgh, UK
sean.moran@ed.ac.uk, vlavrenk@inf.ed.ac.uk

Abstract. Hashing has witnessed an increase in popularity over the
past few years due to the promise of compact encoding and fast query
time. In order to be effective hashing methods must maximally preserve
the similarity between the data points in the underlying binary repre-
sentation. The current best performing hashing techniques have utilised
supervision. In this paper we propose a two-step iterative scheme, Graph
Regularised Hashing (GRH), for incrementally adjusting the positioning
of the hashing hypersurfaces to better conform to the supervisory signal:
in the first step the binary bits are regularised using a data similar-
ity graph so that similar data points receive similar bits. In the second
step the regularised hashcodes form targets for a set of binary classifiers
which shift the position of each hypersurface so as to separate opposite
bits with maximum margin. GRH exhibits superior retrieval accuracy to
competing hashing methods.

1 Introduction

Nearest neighbour search (NNS) is the problem of retrieving the most similar
item(s) to a query point q in a database of N items X = {x1,x2 . . . ,xN}. NNS
is a fundamental operation in many applications - for example, the annotation of
images with semantically relevant keywords [12]. The näıve approach to solving
this problem would be to compare the query exhaustively to every single item
in our dataset yielding a linear scaling in the query time. Unfortunately this
brute-force approach is impractical for all but the smallest of datasets - in the
modern age of big data considerably more efficient methods for NNS are required.
Hashing-based approximate nearest neighbour (ANN) search is a proven and
effective approach for solving the NNS problem in a constant time per query.

Hashing-based ANN search has witnessed a sharp rise in popularity due to
explosion in the amount of multimedia data being produced, distributed and
stored worldwide. It has been estimated, for example, that Facebook has on the
order of 300 million images uploaded per day1 - clearly efficient search methods
are required to manage such vast collections of data. Hashing-based ANN search
meets this requirement by compressing our data points into similarity preserving
binary codes which can be used as the indices into the buckets of a hash table for
constant time search. Many hashing methods employ hypersurfaces to partition
the feature space into disjoint regions which constitute the buckets of a hash

1 Velocity 2012: Jay Parikh, “Building for a Billion Users”.

A. Hanbury et al. (Eds.): ECIR 2015, LNCS 9022, pp. 135–146, 2015.
c© Springer International Publishing Switzerland 2015

136 S. Moran and V. Lavrenko

table. The generation of similarity preserving binary codes can be viewed as
involving two distinct steps: projection and quantisation - both steps when taken
together effectively determine which sides of the hypersurfaces our query point
inhabits.

Typically the projection stage involves a dot product onto the normal vectors
of a set of hyperplanes (linear hypersurfaces) positioned either randomly or in
data-aware positions in the feature space. The hyperplanes tessellate the space
in a manner that gives a higher likelihood that similar data points will fall within
the same region, and therefore are assigned the same binary encoding. In the
second step the real-valued projections are quantised into binary by thresholding
the corresponding projected dimensions [13]. Most research into hashing-based
ANN involves maximising the neighbourhood preservation - that is the preser-
vation of the distances in the original feature space - of one or both of these
steps, as this directly translates into compact binary codes that are more similar
for similar data points. Ideally this criterion should be met with the shortest
possible length of hashcode.

Hashing-based ANN has shown great promise in terms of efficient query pro-
cessing and data storage reduction across a wide range of research domains
involving both textual and image-based data. For example, in [15], the au-
thors present an efficient method for event detection in Twitter that scales to
unbounded streams through a novel application of Locality Sensitive Hashing
(LSH), a seminal randomised approach for ANN search [8]. In the streaming
scenario the O(N) worst case complexity of inverted indexing is undesirable,
motivating the use of LSH to maintain a hard constant O(1) query time up-
per bound. Hashing-based ANN has also proved particularly useful for search
over dense and lower dimensional feature vectors, such as GIST [14], that are
commonly employed in the field Computer Vision. For example, hashcodes have
been successfully applied to image retrieval [17].

We propose a novel supervised hashing model, dubbed Graph Regularised
Hashing (GRH), that achieves state-of-the-art performance with a straightfor-
ward optimisation framework. Our model employs graph regularisation [5], re-
lated to the Cluster Hypothesis of Information Retrieval (IR) which states that
“closely associated documents tend to be relevant to the same requests” [18].
In our work graph regularisation smooths the distribution of binary bits so that
neighbouring points are more likely to be assigned identical bits. The regularised
bits are then used as targets for a set of binary classifiers that separate opposing
bits with maximum margin. Iterating these two steps permits the hashing hy-
persurfaces to evolve into positions that better separate opposing bits, leading
to superior retrieval accuracy over state-of-the-art hashing schemes.

2 Related Work

The field of hashing-based ANN search can be usefully divided into
data-independent and data-dependent hashing models. Both fields are united
in their use of hypersurfaces to partition the data-space into disjoint regions

Graph Regularised Hashing 137

(or buckets). Data-independent hashing techniques position the hashing hyper-
surfaces randomly in the data space, making no assumptions on the data dis-
tribution. They also typically come with an asymptotic guarantee that as the
number of hypersurfaces increase the distance in the Hamming space will con-
verge to some specific measure of distance in the original data-space (e.g. Eu-
clidean distance). Locality Sensitive Hashing (LSH) represents the seminal work
in the data-independent hashing field [8] employing random projections for hash
function generation. LSH has since been extended to kernel similarity [16].

Data-independent hashing methods such as LSH have the advantage that the
hash function training stage is fast, effectively negligible - random hypersur-
face generation is a computationally inexpensive operation. This has made LSH,
for example, the method of choice for real-time streaming-based applications
where there is a strict bound on the indexing time [15]. On the downside, data-
independent schemes usually require long hashcodes for precision and many hash
tables in order to attain an acceptable level of recall. Random hypersurfaces can
erroneously partition dense areas of the data space which may separate many
true NNs and lead to lower retrieval accuracy.

Recently researchers have developed methods that introduce a degree of data
dependency into the hypersurface generation, for example by using machine
learning methods [19,20,7,10,9,21]. These models attempt to avoid placing hy-
persurfaces that partition related data points. Data-dependent hashing models
can usefully be categorised into supervised or unsupervised methods. The unsu-
pervised techniques commonly employ a dimensionality reduction step prior to
quantisation: for example, principal component analysis (PCA) has been used
extensively in seminal work including PCA hashing (PCAH) [19], Spectral Hash-
ing (SH) [20] and Iterative Quantisation (ITQ) [7]. These techniques preserve
the distances in the original feature space through an eigenvector formulation,
effectively using the principal directions of the data as the hashing hypersurfaces.

The unsupervised data-dependent hashing models may generate hypersur-
faces that do not respect the semantic similarity of the data-points. Supervised
data-dependent hashing methods exhibit the highest retrieval accuracy by ex-
ploiting a supervisory signal, either in the form of a pairwise affinity matrix
derived from metric nearest neighbours or through class labels. Representative
approaches in this field include Supervised Hashing with Kernels (KSH) [10],
Binary Reconstructive Embedding (BRE) [9] and Self-Taught Hashing (STH)
[21]. Most of the supervised hashing models frame the generation of hashcodes
as an optimisation problem where a set of hypersurfaces form the adjustable
model parameters. The optimisation adjusts the hypersurfaces so that the re-
sulting smoothed approximation to the Hamming distances are close to metric
distances or class-based supervision.

To the best of our knowledge, the closest supervised method to our approach
is the STH model of [21]. In STH, the authors also employ a two-step approach
to generating binary codes: in the first step they construct a supervised low-
dimensional embedding through the Laplacian Eigenmap [1], which is then fol-
lowed by a step that learns a set of SVM classifiers using the resulting binarised

138 S. Moran and V. Lavrenko

dimensions as labels. Our method, GRH, is distinct from STH and previous
work: firstly we are the first to integrate and explore graph regularisation in a
hashing method. Secondly, in contrast to STH, GRH is iterative in nature in-
crementally evolving the positioning of the hypersurfaces as the distribution of
hashcode bits are gradually smoothed over multiple iterations. By comparing
directly to STH we show that our formulation of graph regularisation is critical
for the superior retrieval accuracy of GRH.

3 Graph Regularised Hashing (GRH)

3.1 Problem Definition

We are given a dataset of N points X = {x1. . .xN}, where each point xi is a
D-dimensional vector of real-valued features. Our goal is to represent each item
with a binary hashcode bi consisting of K bits. The aim is to select the bits in
such a way that neighbouring points xi,xj will have similar hashcodes bi,bj , as
measured by the Hamming distance. The neighbourhood structure is encoded
in a pairwise affinity matrix S, where Sij = 1 if points xi and xj are considered
neighbours, and Sij = 0 otherwise.

3.2 Overview of the Approach

Our approach is based on iteratively performing two steps: (A) regularisation,
where we make the hashcodes b1. . .bN more consistent with the affinity matrix
S; and (B) partitioning, where we learn a set of hypersurfaces h1. . .hK that
subdivide the space R

D into regions that are consistent with the hashcodes.
These hypersurfaces are needed to efficiently compute the hashcodes for testing
points x, where we have no affinity information.

We initialise the hashcodes b1. . .bN by running our points x1. . .xN through
any existing fingerprinting algorithm, such as LSH [8] or ITQ+CCA [7]. We then
iterate the regularisation and partitioning steps in a way reminiscent of the EM
algorithm [4]: the regularised hashcodes from step A adjust the hypersurfaces in
step B, and these surfaces in turn generate new hashcodes for step A. We run
the algorithm for a fixed number of iterations (M), and leave the analysis of
convergence to future work. We now provide the details of steps A and B.

3.3 Step A: Regularisation

We take a graph-based approach to regularising the hashcodes. The nodes of the
graph correspond to the points x1. . .xN . The affinity matrix S plays the role of
an adjacency matrix: we insert an undirected edge between nodes i and j if and
only if Sij = 1. Each node i is annotated with K binary labels, corresponding to
the K bits of the hashcode bi. Our aim is to increase the similarity of the label
sets at the opposite ends of each edge in the graph. We achieve this by averaging
the label set of each node with the label sets of its immediate neighbours. This is

Graph Regularised Hashing 139

similar to the score regularisation method of [5], although our update equation
is slightly different.

Figure 1 illustrates our approach. In the left side, we show a graph with 8
nodes a. . .h and edges showing the nearest-neighbour constraints. Each node
is annotated with 3 labels which reflect the initial hashcode of the node (zero
bits are converted to labels of −1). On the right side of Figure 1 we show the
effect of label propagation for nodes c and e (which are immediate neighbours).
Node e has initial labels [+1,−1,−1] and 3 neighbours with the following label
sets: c:[+1,+1,+1], f :[+1,+1,+1] and g:[+1,+1,−1]. We aggregate these four
sets and look at the sign of the result to obtain a new set of labels for node e:
sgn[+1+1+1+1

4 , −1+1+1+1
4 , −1+1+1−1

4] = [+1,+1,−1]. Note that the second label
of e has become more similar to the labels of its immediate neighbours.

Formally, we regularise the labels via the following equation:

L ← sgn
(
α SD−1L+ (1−α)L

)
(1)

Here S is the adjacency matrix and D is a diagonal matrix containing the degree
of each node in the graph. L ∈ {−1,+1}N×K represents the labels assigned to
every node at the previous step of the algorithm, and α is a scalar smoothing
parameter. sgn represents the sign function, modified so that sgn(0)=− 1.

3.4 Step B: Partitioning

At the end of step A, each point xi has K binary labels {−1,+1}. We will
use these labels to learn a set of hypersurfaces h1. . .hK . Each surface hk will
partition the space R

D into two disjoint regions: positive and negative. The
positive region of hk should envelop all points xi for which the k’th label was
+1; while the negative region should contain all the xi for which Lik = −1. For
simplicity, we restrict our discussion to linear hypersurfaces (hyperplanes), but
a non-linear generalisation is straightforward via the kernel trick. We compare
the performance of linear and non-linear boundaries in Section 4.

A hyperplane is defined by the normal vector hk ∈ R
D and a scalar bias bk. Its

positive region consists of all points x for which hk
ᵀx+bk > 0. We position each

hyperplane hk to maximise the margin, i.e. the separation between the points xi

that have Lik=−1 and those that have Lik=+1. We find the maximum-margin
hyperplanes by independently solving K constrained optimisation problems:

for k = 1. . .K : min ||hk||2 + C
∑N

i=1 ξik

s.t. Lik(hk
ᵀxi + bk) ≥ 1− ξik for i = 1. . .N (2)

Here ξik are slack variables that allow some points xi to fall on the wrong side
of the hyperplane hk; and C is a parameter that allows us to trade off the size
of the margin 1

||hk|| against the number of points misclassified by hk. We solve

the optimisation problem in equation (2) using liblinear [6] and libSVM [2] for
linear and non-linear hypersurfaces respectively.

Figure 2 illustrates step B for linear hypersurfaces. On the left side, we show
the hyperplane h1 that partitions the points a. . .h using their first label as the

140 S. Moran and V. Lavrenko

target. Nodes a, b, c, d have the first label set to −1, while e, f, g, h are labelled as
+1. The hyperplane h1 is a horizontal line, equidistant from points c and e: this
provides maximum possible separation between the positives and the negatives.
No points are misclassified, so all the slack variables ξi,1 are zero. The right side
of Figure 2 shows the maximum-margin hyperplane h2 that partitions the points
based on their second label. In this case, perfect separation is not possible, and
ξi,2 is non-zero (nodes g and d are on the wrong side of h2).

Algorithm 1. Graph Regularised Hashing (GRH)

1. Input: Training dataset X, training affinity matrix S, degree matrix D, interpo-
lation parameter α, number of iterations M

2. Output: Hyperplanes h1. . .hK , biases b1. . .bK
3. Initialise L ∈ {0, 1} via LSH/ITQ+CCA from X
4. L = sgn(L− 1

2
)

5. for m = 1 : M do
6. L = sgn

(
αSD−1L+ (1− α)L

)

7. for k = 1 : K do
8. lk = L(:, k)
9. Train SVMk with lk as labels, training dataset X
10. obtain hyperplane hk and bias bk
11. end for
12. Lik = sgn(hk

ᵀxi + bk) for i=1. . .N and k=1. . .K
13. end for

The estimated hyperplanes h1. . .hK are used to re-label the data-points:

Lik = sgn(hk
ᵀxi + bk) for i=1. . .N and k=1. . .K (3)

The effect of this step is that points which could not be classified correctly will
now be re-labelled to make them consistent with all hyperplanes. For example,
the second label of node g in Figure 2 will change from −1 to +1 to be consistent
with h2. These new labels are passed back into step A for the next iteration of
the algorithm. After the last iteration, we use the hyperplanes h1. . .hK to predict
hashcodes for new instances x: the k’th bit in the code is set to 1 if hk

ᵀx+bk > 0,
otherwise it is zero. Algorithm 1 presents the pseudo-code for our approach.

3.5 Algorithm Analysis

Let T denote the number of training data-points. Graph regularisation is of
O(T 2K). Training a linear SVM takesO(TDK) time while prediction (test time)
is O(TDK). Therefore linear GRH is O(MT 2K) for M iterations. Typically S
is sparse, T � N and K is small (≤ 64 bits) thereby ensuring GRH is scalable.

Graph Regularised Hashing 141

Fig. 1. The regularisation step. Nodes represent data-points and arcs represent neigh-
bour relationships. The 3-bit hashcode assigned to a given node is shown in the boxes.
We show the hashcode update for nodes c and e.

Fig. 2. The partitioning step. In this stage, the regularised hashcodes are used to
re-position the hashing hyperplanes. Left: First bit of hashcode. Right: Second bit.

142 S. Moran and V. Lavrenko

4 Experiments

4.1 Datasets

We evaluate on CIFAR-102, MNIST digits3 and NUS-WIDE4. The datasets have
been extensively used in related hashing research [10,11,9]. CIFAR-10 consists
of 60,000 images sourced from the 80 million Tiny Images dataset. The images
are encoded using 512-D GIST descriptors. The MNIST digits dataset contains
70,000, 28x28 greyscale images of written digits from ‘0’ to ‘9’. NUS-WIDE
consists of 269,658 Flickr images annotated with multiple classes from an 81
class vocabulary. We only use those images associated with the 21 most frequent
classes as per [11]. Each image is represented as a 500-D bag of words.

Following previous related work [10,7], we define ground truth nearest neigh-
bours based on the semantic labels supplied with the datasets - that is, if two im-
ages share a class in common they are regarded as true neighbours. We also follow
previous work in constructing our set of queries and training/database subsets.
We randomly sample 100 images (CIFAR/MNIST) or 500 images (NUSWIDE)
from each class to construct our test queries. The remaining images form the
database of images to be ranked. We randomly sample 100/200/500 images per
class from the database to form the training dataset (T). Our validation dataset
is created by sampling 100/500 images per class from the database.

4.2 Baselines

The supervised data-dependent methods we compare to are KSH [10], BRE [9],
STH [21] and ITQ with a supervised CCA embedding (ITQ+CCA)[7]. The unsu-
pervised data-dependent techniques include AGH [11], SH [20] and PCAH [19].
The data-independent method is LSH [8]. We use the source code and parameter
settings provided by the original authors. We tune the SVM parameters of STH
in the same way we tune GRH (Section 4.3).

4.3 Parameter Optimisation

The algorithm has four meta-parameters: the number of iterationsM , the amount
of regularisation α, the flexibility of margin C, and the surface curvature γ, which
arises for non-linear hypersurfaces based on radial-basis functions (RBFs). We
optimise all meta-parameters via grid search on the held-out validation dataset.

We tune GRH parameters using the following strategy: firstly holding the
SVM parameters constant at their default values (C = 1, γ = 1.0), we perform
a grid search over M ∈ {1 . . . 5} and α ∈ {0.1, . . . , 0.9, 1.0}, selecting the overall
configuration that leads to the highest validation dataset mAP. We then hold
M and α constant at their optimised values, and perform a coarse logarithmic
grid search over γ ∈ {0.001, 0.01, 0.1, 1.0, 10.0} and C ∈ {0.01, 0.1, 1.0, 10, 100}.
We equally weigh both classes (-1 and 1) in the SVM.

2 http://www.cs.toronto.edu/~kriz/cifar.html
3 http://yann.lecun.com/exdb/mnist/
4 http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

http://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

Graph Regularised Hashing 143

Table 1. Hamming ranking mAP on CIFAR-10. lin: linear kernel, rbf : RBF kernel,
lsh: LSH initialisation, cca: ITQ+CCA initialisation.

CIFAR-10 (60K)

Method T = 1, 000 T = 2, 000

16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

LSH 0.1290 0.1394 0.1463 0.1525 – – – –

PCAH 0.1322 0.1291 0.1256 0.1234 – – – –

SH 0.1306 0.1296 0.1346 0.1314 – – – –

AGH 0.1616 0.1577 0.1599 0.1588 – – – –

ITQ+CCA 0.2015 0.2130 0.2208 0.2237 0.2469 0.2610 0.2672 0.2664

STHlin 0.1843 0.1872 0.1889 0.1835 0.1933 0.2041 0.2006 0.2144

STHrbf 0.2352 0.2072 0.2118 0.2000 0.2468 0.2468 0.2481 0.2438

BRE 0.1659 0.1784 0.1904 0.1923 0.1668 0.1873 0.1941 0.2018

KSH 0.2440 0.2730 0.2827 0.2905 0.2721 0.3006 0.3119 0.3236

GRHlin,lsh 0.2195 0.2264 0.2475 0.2490 0.2342 0.2569 0.2554 0.2639

GRHrbf,lsh 0.2848 0.3013 0.3129 0.3015 0.3191 0.3475 0.3542 0.3646

GRHlin,cca 0.2292 0.2563 0.2566 0.2593 0.2646 0.2772 0.2861 0.2900

GRHrbf,cca 0.2976 0.3161 0.3171 0.3209 0.3435 0.3675 0.3722 0.3688

4.4 Evaluation Protocol

Following previous work [10,11,7,21,9], we evaluate the performance of our model
using the widely accepted Hamming ranking evaluation paradigm. In this sce-
nario, binary codes are generated for both the query and the database images.
The Hamming distance is then computed from the query images to all of the
database images, with the database dataset images ranked in ascending order of
the Hamming distance. We evaluate the accuracy of retrieval using mean aver-
age precision (mAP) and the precision within Hamming radius 2. Our reported
figures are the average over five random query/database partitions.

4.5 Discussion

In this paper we examine a single hypothesis that targets the core novelty of our
work: namely, graph regularisation embedded in our iterative two-step algorithm
is crucial for achieving high retrieval accuracy with hashcodes. Our results are
presented in Tables 1-3 and Figures 3-4.

We explore four variants of our GRH model - GRHlin,lsh, GRHlin,cca which
construct linear hypersurfaces hk and initialise the bits from either LSH or su-
pervised initialisation with ITQ+CCA; and GRHrbf,lsh, GRHrbf,cca which use
non-linear hypersurfaces based on the RBF kernel. If we compare GRH directly
to STH across both datasets we observe that GRH substantially outperforms
STH with a linear SVM kernel (STHlin) and an RBF kernel (STHrbf). As STH
also uses SVMs trained with hashcodes as targets, this result suggests that the
gain realised by GRH must be due to our two-step iterative algorithm involving
graph regularisation and not simply due to the use of SVMs.

144 S. Moran and V. Lavrenko

Table 2. Hamming ranking mAP. Left: MNIST. Right: NUS-WIDE.

MNIST (70K) NUS-WIDE (270K)

Method T = 1, 000 T = 10, 500

16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

LSH 0.2151 0.2704 0.3003 0.3147 0.3784 0.3860 0.3863 0.3879

PCAH 0.2683 0.2459 0.2257 0.2128 0.3890 0.3863 0.3829 0.3804

SH 0.2709 0.2626 0.2468 0.2510 0.3734 0.3751 0.3760 0.3751

AGH 0.5254 0.5583 0.5415 0.5310 0.3820 0.3809 0.3782 0.3767

ITQ+CCA 0.4532 0.4894 0.5325 0.5091 0.4268 0.4186 0.4161 0.4101

STHlin 0.5051 0.5017 0.4938 0.4840 0.4458 0.4602 0.4626 0.4629

STHrbf 0.5405 0.5400 0.5273 0.5224 0.4320 0.4499 0.4322 0.4305

BRE 0.4808 0.5442 0.5744 0.5904 0.4476 0.4650 0.4736 0.4776

KSH 0.7577 0.8011 0.8202 0.8268 0.4981 0.5107 0.5189 0.5144

GRHlin,lsh 0.6473 0.7019 0.7187 0.7203 0.4799 0.4880 0.4937 0.5018

GRHrbf,lsh 0.8386 0.8664 0.8756 0.8804 0.4974 0.4969 0.5090 0.5096

GRHlin,cca 0.6705 0.7144 0.7290 0.7309 0.4886 0.4916 0.4999 0.4935

GRHrbf,cca 0.8632 0.8893 0.9066 0.9000 0.4996 0.5144 0.5217 0.5269

On all datasets we find that the GRH model with a supervised embedding and
non-linear hypersurfaces (GRHrbf,cca) outperforms all baseline hashing methods.
For example, GRHrbf,cca at 32 bits on CIFAR-10 achieves a relative gain in mAP
of 16% versus KSH. GRH dominates the baselines when examining the precision-
recall and precision at Hamming distance 2 curves (Figures 3-4).

We note the higher performance possible through running GRH on top of a
supervised embedding (GRHlin,cca, GRHrbf,cca) versus a random initialisation
(GRHlin,lsh, GRHrbf,lsh). This is particularly noticeable when more supervision
is used (T = 2000) in Table 1. Here, for example, the mAP of linear GRH is
increased by 8-13% when comparing GRHlin,lsh to GRHlin,cca from 16-64 bits.

Table 3. Timings and validation mAP vs. Iterations (CIFAR-10 @ 32 bits, GRHlin,lsh)

Timings (s)

Method Train Test Total

GRHlin,lsh 42.68 0.613 43.29

KSH 81.17 0.103 82.27

BRE 231.1 0.370 231.4

α Iteration (M)

0 1 2 3 4 5

0.8 0.1394 0.1978 0.2051 0.2080 0.2089 0.2096

0.9 0.1394 0.2215 0.2319 0.2343 0.2353 0.2353

1.0 0.1394 0.2323 0.2318 0.2318 0.2318 0.2318

The linear variant of GRH is competitive in training and test time to the base-
line hashing schemes (Table 3). For example on CIFAR-10 at 32 bits, GRHlin,lsh

with M = 4 requires only 50% of the training time of KSH and only 20% of BRE
while having a similar sub-second prediction (test) time to both baselines5.

Table 3 details the behaviour of GRHlin,lsh on CIFAR-10 at 32 bits versus
M and α. The mAP depends heavily on the value of α, and less so on M . The
optimal M depends on the manner of initialisation - with random hyperplanes

5 Benchmark system: Matlab 16Gb, single core CPU (Intel 2.7GHz).

Graph Regularised Hashing 145

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

GRH-RBF-CCA-1000
BRE
KSH
LSH

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

GRH-RBF-CCA-1000
BRE
KSH
LSH

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

GRH-RBF-CCA-10500
BRE
KSH
LSH

Fig. 3. PR curve @ 32 bits. Left: CIFAR. Middle: MNIST. Right: NUS-WIDE.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

 16 24 32 40 48 56 64

P
re

ci
si

o
n

Number of bits

GRH-RBF-CCA-1000
BRE
KSH
LSH

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

 16 24 32 40 48 56 64

P
re

ci
si

o
n

Number of bits

GRH-RBF-CCA-1000
BRE
KSH
LSH

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

 16 24 32 40 48 56 64
P

re
ci

si
o

n
Number of bits

GRH-RBF-CCA-10500
BRE
KSH
LSH

Fig. 4. Precision @ Radius 2. Left: CIFAR. Middle: MNIST. Right: NUS-WIDE.

(LSH), we find our method reaches the highest validation dataset retrieval ac-
curacy within 3-4 iterations. With a supervised embedding (ITQ+CCA) only 1
iteration is typically needed due to the better initialisation of the hypersurfaces.

5 Conclusions and Future Work

In this paper we have introduced a novel two-step iterative hashing method,
Graph Regularised Hashing (GRH) - in the first step we apply graph regularisa-
tion to enforce the constraint that similar data points have similar hashcodes.
In the second step the regularised hashcodes form the labels for a set of binary
classifiers, which has the effect of evolving the positioning of the hypersurfaces
so as to separate opposing bits with maximum margin. GRH combines simplic-
ity of implementation, competitive training time and state-of-the-art retrieval
accuracy. These factors make GRH an ideal candidate for big data applications.

In our experimental validation we found GRH with linear hypersurfaces out-
performed a broad selection of existing supervised hashing methods, and ap-
proaches closely the performance of the state-of-the-art non-linear Supervised
Hashing with Kernels (KSH) method. This is encouraging as it means we can
benefit from the lower computational cost of linear kernel learning, while sac-
rificing a modicum of retrieval accuracy. If spare CPU cycles are available and
the highest retrieval accuracy is important, GRH can be used with non-linear
hypersurfaces - this configuration outperformed all baseline hashing methods.

146 S. Moran and V. Lavrenko

GRH is agnostic to the type of classifier used to learn the hypersurfaces. In
the future we would be interested in porting GRH to a large-scale streaming
data scenario - in this case a passive aggressive classifier [3] would be capable of
incrementally updating the hypersurfaces in a computationally scalable fashion.

References

1. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data
representation. In: NC (2003)

2. Chang, C.-C., Lin, C.-J.: Libsvm: A library for support vector machines. In: TIST
(2011)

3. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-
aggressive algorithms. In: JMLR (2006)

4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. In: JRSS, Series B (1977)

5. Diaz, F.: Regularizing query-based retrieval scores. In: IR (2007)
6. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: Liblinear: A library

for large linear classification. In: JLMR (2008)
7. Gong, Y., Lazebnik, S.: Iterative quantization: A Procrustean approach to learning

binary codes. In: CVPR (2011)
8. Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards removing the

curse of dimensionality. In: STOC (1998)
9. Kulis, B., Darrell, T.: Learning to hash with binary reconstructive embeddings. In:

NIPS (2009)
10. Liu, W., Wang, J., Ji, R., Jiang, Y., Chang, S.: Supervised hashing with kernels.

In: CVPR (2012)
11. Liu, W., Wang, J., Kumar, S., Chang, S.: Hashing with graphs. In: ICML (2011)
12. Moran, S., Lavrenko, V.: Sparse kernel learning for image annotation. In: ICMR

(2014)
13. Moran, S., Lavrenko, V., Osborne, M.: Neighbourhood preserving quantisation for

LSH. In: SIGIR (2013)
14. Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation

of the spatial envelope. In: IJCV (2001)
15. Petrović, S., Osborne, M., Lavrenko, V.: Streaming first story detection with ap-

plication to twitter. In: HLT (2010)
16. Raginsky, M., Lazebnik, S.: Locality-sensitive binary codes from shift-invariant

kernels. In: NIPS (2009)
17. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: A large data set

for nonparametric object and scene recognition. In: PAMI (2008)
18. van Rijsbergen, C.J.: Information Retrieval. Butterworth (1979)
19. Wang, J., Kumar, S., Chang, S.: Semi-supervised hashing for large-scale search.

In: PAMI (2012)
20. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NIPS (2008)
21. Zhang, D., Wang, J., Cai, D., Lu, J.: Self-taught hashing for fast similarity search.

In: SIGIR (2010)

	Graph Regularised Hashing
	1
Introduction
	2
Related Work
	3
Graph Regularised Hashing (GRH)
	3.1
Problem Definition
	3.2
Overview of the Approach
	3.3
Step A: Regularisation
	3.4
Step B: Partitioning
	3.5
Algorithm Analysis

	4
Experiments
	4.1
Datasets
	4.2
Baselines
	4.3
Parameter Optimisation
	4.4
Evaluation Protocol
	4.5
Discussion

	5
Conclusions and Future Work
	References

