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In this paper we introduce the Beam Search CRM (BS-CRM) model.
This model implements two novel improvements to the basic CRM [2].
First, we argue that using a Minkowski kernel allows us to capture the
covariance of visual features more effectively than the standard Gaussian
kernel. Second, we advocate a procedure that selects the most informative
subset of tags as the image annotation. Our procedure captures the mutual
dependence within a set of tags, and naturally prevents noisy tags from
being assigned during the search procedure.

In automatic image annotation the basic objective is to find the set
of tags w = {w1 . . .wk} that serves as the best annotation for the test im-
age represented with a set of feature vectors f = {~f1. . .~fm}. The tradi-
tional approach used by [2] and many subsequent publications [3] [5] [4]
involves estimating the marginal probability distribution over individual
tags P(w|f) and annotating the image with top-ranked tags from that dis-
tribution. This approach however does not take into consideration any
correlation between the tags: the top-ranked tags could be incohesive and
contradictory, e.g. {tropical, blizzard, supernova}.

Beam Search: To address both of the above issues, we propose to
annotate images with the most informative subset of tags. We define the
amount of information I(w) present in a set of tags w as the expected
excess number of bits required to encode this set with the background
model: I(w) = P(w|f) · log P(w|f)

P0(w) .

Figure 1: Example search tree for the BS-CRM algorithm on the Corel
dataset. The first level of the tree corresponds to the annotation of the
basic CRM. The BS-CRM refines this set of annotation keywords by con-
sidering multiple hypotheses for the most informative set of tags at each
level of the tree. Only the most informative tags are added to the set of
B hypotheses at each iteration. Less promising nodes are pruned, thereby
constraining the search space.

Here P(w|f) is a model of dependence between tags and image fea-
tures and P0(w) is a background model that treats every tag as an iso-
lated event, independent of all other tags and image features: P0(w) =
pw1 × pw2 × . . .× pwk . I(w) can be interpreted as the contribution of tag-
set w to the Kullback-Leibler divergence between the relevance model P
and the background model P0. We propose to annotate the image f with a
set of tags w that has the largest information content I(w). Since this pro-
cedure involves optimisation over the universe of all possible tag-sets, we
resort to an efficient approximation procedure based on the beam search
algorithm as illustrated in Figure 1.

Minkowski Kernel: In addition to this we investigate replacing the
Gaussian kernel with a generalised exponential kernel based on the Minko-
wski p-norm. We will argue that the proposed kernel is more sensitive to
subtle changes in the visual appearance of an image region and better ca-
pable of modeling conjunctions of features than the standard Gaussian
kernel. We define a Minkowski kernel based density estimate as follows:

P(~fi|J) =
1
n

n

∑
j=1

cpexp

{
−|~fi−~f j|p

β

}
(1)

Here |~fi − ~f j|p = ∑
k
d=1 | fi,d − f j,d |p is a generalisation of the Eu-

clidean norm, and the summation goes over the dimensions d of the fea-
ture vectors. p is a positive free parameter that is optimized on a held-out
validation set. cp is a constant that ensures that the kernel integrates to
one.
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Figure 2: Left: density functions and equidistant contours for the Gaus-
sian kernel. Middle: the proposed Minkowski kernel. Right: the
Minkowski kernel is particularly sensitive when multiple feature values
change at the same time (point C), whereas the Gaussian is more sensitive
to large variations in any one feature (point D).

Figure 2 highlights the difference between the Gaussian kernel and
the proposed Minkowski kernel. The Gaussian density on the left is con-
vex around the mean, which makes it insensitive to small differences be-
tween the training and testing feature regions. The Minkowski kernel in
the middle is concave (for p<2), allowing it to sense subtle differences
in feature values in a way that mimics the operation of the human visual
system [1]. Perhaps more importantly, the two kernel functions greatly
differ in how they treat simultaneous deviation of multiple feature values
from the mean: the Gaussian kernel has a spherical contour profile, so a
large variation in the value of single feature 2 has a much greater effect
than simultaneous variation of feature 1 and feature 2. The Minkowski
kernel (for p<1) behaves very differently: a simultaneous small change
in several features is as important as large variations in a single feature.

Experiments: We present a comprehensive evaluation of the pro-
posed model in relation to the basic Gaussian kernel based CRM model [2]
and models recently proposed in the literature that specifically attempt to
capture keyword correlation. The experiments show that the beam-based
CRM model with a Minkowski kernel density significantly outperforms
the same model based on Gaussian kernels, producing a 42% increase
in recall, a 38% increase in precision on the standard Corel dataset. We
note that BS-CRM model on the Corel dataset fares well in comparison
with results published by Zhou et al. [5], Liu et al. [3] and Wang et al. [4]
showing improvements with respect to all accuracy measures. This allows
us to confidently conclude that the BS-CRM model exhibits superior per-
formance in the context of the relevance-modelling framework of [2].
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