Topical Automatic Repository Tagging using Attention on Hybrid Code Embeddings

- Agathe Lherondelle, Varun Babbar, Yash Satsangi, Fran Silavong, Shalteil Eloul, Sean Moran

Machine Learning on Source Code

• Github has ~200 million repositories

- There is a need to search for and categorize repositories in an automated manner.
 - Track popular topics in a large set of repositories
 - Cluster repositories by topics
 - Compute similarities between repositories?
 - Track evolution of a single project

Can we generate repository embeddings for downstream tasks?

• Repo2Vec (Rokon et al. 2021):

- Smaller training dataset used
- Binary Classification task: Malware vs Non-Malware

• Import2Vec (Theeten, Vandeputte, and Van Cutsem. 2019):

- Only represents dependencies within script
- Binary Classification task: Malware vs Non-Malware

• GraphCodeBERT (Guo et al. 2021):

- State of the art code representation

Previous Approaches

What about other code components?

But repositories are more than just code!

Topical: Phase 1

For script 1:*N* in repository

Step 1: Generate embeddings for code

Step 2: Generate embeddings for metadata

- Method name
- Script name
- Comments
- Docstrings

Step 3: Generate embeddings for dependency graph

Step 4: Aggregate them!


```
return True
```

```
"test_pycg": [],
"test_pycg.all_unique": [
    "collections.Counter",
    "<builtin>.dict",
    "time.time",
    "logging.info"
    」,
"time.time": [],
"collections.Counter": [],
"<builtin>.dict": [],
"logging.info": []
```

Dependency Graph Embedding

- All functions called within the script
 - Built-in functions
 - Functions called in other scripts

Let's zoom into step 4

How do we aggregate embeddings?

Concatenate N embeddings of each type

Perform dimensionality reduction for each type

Concatenate the 3 types of embeddings

Apply attention mechanism to encoder output

Encode + Attention

Can use sequential encoders (GRU / LSTM) if scripts have special ordering

- ____init___.py goes first
- main.py last

Alternatively, use MLP-based encoder We found sequential encoders do better

How do we generate embeddings?

Step 1: Generate embeddings for code

Step 2: Generate embeddings for metadata

- Method name
- Script name
- Comments
- Docstrings

Step 3: Generate embeddings for dependency graph

GraphCodeBERT

DistilBERT

Convert the graph into a list of edges - Each edge links a script method to its set of dependencies

*but we can use any kind of embedding in the Topical framework (e.g. LLM based embeddings)

How does Topical compare to baselines?

Task: Determine the set of topics associated with a repository

Model	Precision	Recall
Topical	$\textbf{0.485} \pm \textbf{0.017}$	0.630 ± 0.032
GraphCodeBERT	0.410 ± 0.031	$\textbf{0.670} \pm \textbf{0.010}$
Import2Vec+Attn	0.350 ± 0.034	0.632 ± 0.034

We beat several competitive methods

multi-label classification given a list of 20 topics

How does Topical compare to baselines?

How does Topical compare to baselines?

Are Topical embeddings coherent? Yes!

deep learning machine learning reinforcement learning django databases

Without attention - doesn't make sense

With attention - coherent clusters seen

Future work

• Tracking the evolution of a project from start to finish

• IR - nearest neighbor search for relevant repositories

• Extend Topical for other programming languages

• Benchmark IR and topic classification performance with LLM based embeddings

we only used Python

Thank you!