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Abstract

Automatic Image Tagging seeks to assign relevant words (e.g. “jungle”, “boat”, “trees”) to im-

ages that describe the actual content found in the images without intermediate manual labelling.

Current approaches are largely based on categorization, and treat the tags independently, so an

annotation (jungle,trees) is just as plausible as (jungle,snow). The goal of this dissertation was

to develop a probabilistic model (the Continuous Relevance Model) to take into account the

dependencies between keywords so as to provide more precise annotations. The main findings

suggest that, under certain conditions, taking into account keyword correlation, coupled with

an efficient method (beam search) to search over sets of tags is an effective method to increase

annotation accuracy.

i



Acknowledgements

Many thanks to my supervisor Victor Lavrenko for his direction and advice throughout the

dissertation. I also wish to express my gratitude to the School of Informatics for funding my

MSc degree through the Collaborative Training Account (CTA) Studentship.

ii



Declaration

I declare that this thesis was composed by myself, that the work contained herein is my own

except where explicitly stated otherwise in the text, and that this work has not been submitted

for any other degree or professional qualification except as specified.

(Sean Moran)

iii



Table of Contents

1 Introduction 1

1.1 Why Automatic Image Tagging? . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Limitations of Automatic Image Tagging . . . . . . . . . . . . . . . . . . . . . 5

1.3 Problem Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Summary of Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 11

2.1 Automatic Image Tagging Challenges . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Existing Image Tagging Models . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Capturing keyword correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 The Continuous Relevance Model (CRM) . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 Image representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.3 Annotation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.4 Image Annotation and Retrieval . . . . . . . . . . . . . . . . . . . . . 26

2.5 Evaluating Image Tagging Performance . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Annotation Performance . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.2 Retrieval Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Reducing computational complexity through Beam Search . . . . . . . . . . . 29

3 Methodology 33

3.1 Software & Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Image Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 COREL Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 PASCAL Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Feature Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 CRM Model Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

iv



3.4.1 Original CRM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.2 Annotating Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.3 Adding Keyword Correlation . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.4 The BS-CRM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Evaluation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.1 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.2 Integration with Trec Eval . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.3 Custom Evaluation Functions . . . . . . . . . . . . . . . . . . . . . . 56

4 Evaluation 57

4.1 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 COREL Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.2 PASCAL Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 COREL: N-CRM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Image Annotation Performance . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 Ranked Retrieval Performance . . . . . . . . . . . . . . . . . . . . . . 73

4.3 COREL: Dirichlet Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Image Annotation Performance . . . . . . . . . . . . . . . . . . . . . 75

4.4 COREL: Multinomial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.1 Image Annotation Performance . . . . . . . . . . . . . . . . . . . . . 79

4.5 COREL: Bernoulli Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.1 Image Annotation Performance . . . . . . . . . . . . . . . . . . . . . 82

4.6 PASCAL: N-CRM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6.1 Ranked Retrieval Performance . . . . . . . . . . . . . . . . . . . . . . 85

4.6.2 Image Annotation Performance . . . . . . . . . . . . . . . . . . . . . 95

5 Conclusions and Future Work 101

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Summary of dissertation achievements . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A 106

A.1 Example Source Code Listing . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.1.1 Image annotation algorithm . . . . . . . . . . . . . . . . . . . . . . . 106

A.1.2 Beam search algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.1.3 Non-parametric kernel density estimation . . . . . . . . . . . . . . . . 112

A.1.4 Image feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . 113

v



A.1.5 Cross validation framework . . . . . . . . . . . . . . . . . . . . . . . 115

Bibliography 119

vi



List of Figures

1.1 Growth in images stored online at Flickr.com . . . . . . . . . . . . . . . . . . 2

1.2 The Google image labelling website . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Query by Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Google image search vs. CBIR image search . . . . . . . . . . . . . . . . . . 6

2.1 Examples of pose variation and illumination changes . . . . . . . . . . . . . . 12

2.2 Illustration of the Semantic Gap . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Block based image annotation flowchart . . . . . . . . . . . . . . . . . . . . . 16

2.4 Feature extraction system flowchart . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Example of CRM annotations on the COREL image dataset. . . . . . . . . . . 18

2.6 Benefits of capturing keyword correlation . . . . . . . . . . . . . . . . . . . . 19

2.7 Calculating Mean Average Precision (MAP) . . . . . . . . . . . . . . . . . . . 30

2.8 Illustration of the beam search algorithm . . . . . . . . . . . . . . . . . . . . . 32

3.1 The architecture of the BS-CRM Model . . . . . . . . . . . . . . . . . . . . . 34

3.2 Remarkable similarity of images in the COREL dataset . . . . . . . . . . . . . 37

3.3 Example images from the PASCAL VOC 2007 dataset . . . . . . . . . . . . . 38

3.4 SIFT detector and descriptors applied to an example PASCAL image . . . . . . 40

3.5 Illustration of the use of Gabor texture features on an example image. . . . . . 44

3.6 Contents of the main matrices used in the custom CRM model . . . . . . . . . 46

3.7 Amending the CRM model to capture keyword correlation in the manner sug-

gested by Wang et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 The proposed BS-CRM model using beam search to find a close to optimal set

of tags for an image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9 Illustration of the operation of the proposed BS-CRM model on a toy example. 53

3.10 The BS-CRM algorithm expressed in matrix terminology. . . . . . . . . . . . . 54

4.1 Optimization of annotation β and µ for No-Beam N-CRM Model, annotation

length=5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



4.2 Performance comparison of the BS-CRM model with annotation length 5 against

the literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Chart depicting the mean per word precision for 70 COREL words, N-CRM

model, Annotation Length=5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Chart depicting the mean per word recall for 70 COREL words, N-CRM model,

annotation length=5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Chart depicting the effect of beam width on F1 measure for the N-CRM model,

Annotation Length=4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Ranked retrieval optimization of annotation β and µ for no beam N-CRM Model 74

4.7 Optimization of annotation β and µ for no beam D-CRM Model, Annotation

Length=5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.8 Optimization of annotation β and λ for no beam M-CRM Model, Annotation

Length=5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.9 Optimization of annotation β and λ for no beam B-CRM Model, Annotation

Length=5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.10 Optimization of retrieval β and µ on the PASCAL dataset for the no beam N-

CRM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.11 Recall-precision charts for the aeroplane, bicycle, bird, boat and bottle classes

in the PASCAL dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.12 Recall-precision charts for the bus, car, cat, chair and cow classes in the PAS-

CAL dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.13 Recall-precision charts for the table, dog, horse, motorbike and person classes

in the PASCAL dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.14 Recall-precision charts for the plant, sheep, sofa, train and TV monitor classes

in the PASCAL dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.15 Ranked retrieval results of the N-CRM model on the PASCAL dataset (horse

class) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.16 Ranked retrieval results of the N-CRM model on the PASCAL dataset (person

class) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.17 Ranked retrieval results of the N-CRM model on the PASCAL dataset (tv-

monitor class) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.18 Optimization of annotation β and µ for No-Beam N-CRM Model, Annotation

Length=5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.19 Example annotations on the PASCAL dataset . . . . . . . . . . . . . . . . . . 98

4.20 Example annotations on the PASCAL dataset . . . . . . . . . . . . . . . . . . 99

4.21 Examples of pruning noisy keywords on the PASCAL dataset . . . . . . . . . . 100

viii



List of Tables

4.1 N-CRM model performance on the COREL testing dataset (Annotation Length=5)

for differing beam widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Table comparing the BS-CRM model developed in this dissertation against the

state-of-the-art results from the literature . . . . . . . . . . . . . . . . . . . . . 64

4.3 Table demonstrating the actual labels assigned by the BS-CRM model to some

of the COREL test set images . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 N-CRM model performance on the COREL testing dataset (Annotation Length=4)

for differing beam widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 N-CRM model performance on the COREL testing dataset (Annotation Length=3)

for differing beam widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Table demonstrating the image retrieval performance of the N-CRM model . . 75

4.7 D-CRM model performance on the COREL testing dataset (Annotation Length=5)

for differing beam widths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8 M-CRM model performance on the COREL testing dataset (Annotation Length=5)

for differing beam widths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.9 B-CRM model performance on the COREL testing dataset (Annotation Length=5)

for differing beam widths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.10 Table displaying the Average Precision results obtained by the N-CRM model

on the PASCAL dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.11 N-CRM model performance on the PASCAL testing dataset (Annotation Length=5)

for differing beam widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

ix



Chapter 1

Introduction

1.1 Why Automatic Image Tagging?

Over the past decade the number of images being captured and shared has grown enormously.

There are several factors behind this remarkable trend. In the modern age it is now common-

place for private individuals to own at least one digital camera, either attached to a mobile

phone, or as a separate device in its own right1. The ease with which digital cameras allow

people to capture, edit, store and share high quality images in comparison to the old film cam-

eras. This factor, coupled with the low cost of memory and hard disk drives, has undoubtedly

been a key driver behind the growth of personal image archives. Furthermore, the popularity of

social networking websites such as Facebook and Myspace, alongside image sharing websites

such as Flickr (see Figure 1.1) has given users an extra incentive to capture images to share and

distribute amongst friends all over the world2.

Substantial still image archives are also being amassed in the commercial domain. Forsyth,

in Computer Vision: A Modern Approach [15], cites some examples of commercial organi-

zations that have substantial still image archives. One particular example includes dedicated

Stock Photo archives, such as Getty and Rex Features which have many thousands if not mil-

lions of still images stored within their computer networks. Another example are Newspapers;

Markkula and Sormunen [39] studied the image archive of a Finnish Newspaper, and described

how archivists annotated pictures with keywords, with Journalists searching the image collec-

tion based on those keywords. These companies take the tagging of images very seriously

indeed, employing teams of people to manually view each image in turn and assign relevant

keywords to describe the contents of the images [46] [39]. Even the search behemoth, Google,

1The 2008 IDC whitepaper on the scale of the “Digital Universe” put the number of Digital Cameras and Camera

Phones in use at over 1 Billion worldwide in 2006 [17]
2To give an idea of the current scale of online image libraries, studies in 2007 suggested that the Internet photo

sharing website, Flickr.com, has 40 million monthly visitors a month and hosts two billion photos, with millions

of new photos being added on a daily basis. Towards the end of 2008 Facebook was reported to have amassed 10

billion photos.

1
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Figure 1.1: Chart depicting the growth in the number of images being stored online on

Flickr.com between July 2004 and May 2008. Chart derived from published image count

results by Flickr.com and courtesy of: http://www.flickr.com/photos/rexguo/

2467112209/

has attempted to recruit its own users to tag random images from its index (see Figure 1.2),

by re-framing the process as a collaboration between users with those tags matching between

users selected as the labels for the images3.

For commercial organisations, correct keywording of images has a direct effect on their

revenues and efficiency in satisfying the needs of consumers; an incorrectly or insufficiently

labelled image is unlikely to be found, particularly within the stringent deadlines commonly

experienced within the commercial world, thereby leading to a loss in operational efficiency.

The social study conducted by Ames et al. [1] provided some insights into the motivations that

drive private individuals to annotate their images. This study revealed a changing opinion of the

usefulness of tagging, from it being nearly completely avoided for personal offline collections

through to it being heartily embraced for online collections such as those on Flickr.com. The

authors revealed a taxonomy of reasons behind this increase in motivation, with one of the most

interesting being the social incentives brought about by online libraries, where for example,

3http://images.google.com/imagelabeler/
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Figure 1.2: This image depicts the Google Image Labelling website where users compete

against each other to assign the most relevant labels to randomly selected images from Google’s

index. Given that the Search Giant is using this manual means of image tagging demonstrates

the difficulty inherent in the automated image tagging process particularly with regard to scaling

those models suggested in the literature to multi-million scale image libraries. A great deal of

work needs to be completed before the models of the research literature can be migrated as

robust and scalable technologies to the commercial world.

a photographer may obtain the “satisfaction” of having made available a highly popular (or

most viewed) photograph on the website. These social factors have the potential to drive the

popularity of automatic image tagging4 tools amongst the general public in the future.

Nevertheless, the explosion in the amount of images being captured and stored has meant

that the vast majority of images, particularly those residing online on the Internet, have no

associated keywords to describe their content. Manual labelling clearly suffers from the disad-

vantages of not only being slow, expensive and highly subjective, but just as importantly given

the current explosion in the number of images being captured and stored, this method is clearly

not scalable to multi-million image libraries.

Given the immense practical applications of a means of automatic image tagging, along

with the deep academic challenges associated with recognising real world objects within im-

ages, it is not surprising to find that there has been great interest amongst the computer vision

and information retrieval community in the development of robust and efficient automatic im-

age tagging systems. The main purpose of tagging images in this manner is to allow for the

retrieval of images based on natural language keywords as opposed to alternative content based

image retrieval (CBIR) techniques such as query by sketch or query by example. Query by

4“Tagging” is used interchangeably with “annotation” throughout this dissertation.
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sketch (shown in Figure 1.3) and query by example have been largely dismissed as less flexible

and user friendly5 means of querying image libraries than the familiar query by text already

employed to search document collections, and as such there appears to be a shift of focus in

the community towards CBIR by textual query [42] [25] [14] [10] [13] [24] [5]. Automatic

image annotation technology will be at the forefront of this revolution in enabling users to use

familiar natural language search interfaces to retrieve images of relevance.

Figure 1.3: Query by Sketch. On the left: the user makes a rough sketch of the desired image

characteristics. On the right: the retrieved images that have a similarity to the sketch. This

technique for image retrieval is time consuming and makes it hard to represent abstractions and

invariants. Source: Imense Ltd.

At the present time companies such as Behold6 and Imense Ltd7 have already entered the

CBIR market with their own specialised CBIR Search Engines. Behold specialises in searching

just over 1 million high quality images from the Flickr.com website. In the case of the Imense

search service, a user can click on professional images and be brought straight to the copy-

right owner’s website, thereby providing the company with advertising revenue in the spirit of

Google’s business model. Imense Ltd’s key insight is to provide a means for users to search

large collections of images by means of a specially designed query language built around a

large ontology of visual content such as objects, scene features, and properties8. The company

also offers a standalone Image Auto Tagging tool to organisations to annotate their image li-

5Users are known to find it particularly difficult to represent their image needs via abstract image features [25]

[65]
6www.behold.cc
7www.imense.com
8For further information on the Imense technology please refer to the introductory presentation: http://www.

nesc.ac.uk/talks/ahm2008/1117.pdf.
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braries. Given the poor performance of the major search engines with regards to image search9

(Figure 1.4), it’s not difficult to imagine that further start up companies, and indeed the cur-

rent text based search incumbents, will likely enter this potentially lucrative market in the near

future with their own CBIR search services.

1.2 Limitations of Automatic Image Tagging

Having as so far advocated the use of automatic image annotation it is worth stepping back for

a moment and considering the other side of the technology and some of the inherent limitations

of the approach that are performed much better by manual means of annotation. Enser [11] cites

two main examples as to why manual annotation is superior to automated image annotation in

some cases.

Firstly, the so-called visibility limitation, attempts to describe how automated image tag-

ging algorithms typically depend on successfully linking visible image features to words. It

is very difficult for automated algorithms to capture content and contextual information from

images that do not have any associated image features. Enser provides the CBIR query, “find

a picture of the first public engagement of Prince Charles” as a prime example of content that

would be hard to automatically extract from images.

In addition, the author goes on to mention another significant limitation in the form of

generic object limitation, which questions the use of very generic tags for the images such as

“sun”, “grass” and “tiger”:

“...they have the common property of visual stimuli which require a minimally-

interpretive response from the viewer.” Enser et al. [11]

Enser cites numerous studies that demonstrate the fact that most users tend to issue queries

that refer to objects by proper name which usually have limited associated visual stimuli in im-

ages. Enser concludes his thesis by stating that any defining textual annotations will necessarily

always have to be manually assigned to images.

Despite the critique of Enser, many authors [62] still consider the search for robust and

accurate image tagging systems to be of paramount importance and benefit given, as has been

mentioned, the proliferation of untagged image libraries. It is widely regarded that “semantic

indexing” of such images using the current breed of automatic image tagging systems, whilst

not capturing the conceptual properties, is still infinitely better than having no associated key-

words at all.

9Most large search engines today such as Yahoo or Google use surrounding text, such as image filenames or

web page content, to index images on the web. Using this text as a cue for image content is not very effective as

can be witnessed by their poor performance.
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(a)

(b)

Figure 1.4: Typing “Purple Flowers with Green Leaves” into Google (Figure 1.4(a)) yields many

results which are completely irrelevant or are of poor quality. In contrast, the Imense CBIR

search engine (Figure 1.4(b)) takes into account the actual image content (utilising an auto-

annotation mechanism) thereby providing enhanced retrieval accuracy on the same search

query.
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1.3 Problem Identification

This dissertation is concerned with improving the accuracy of automatic image tagging10 . Im-

age tagging is the algorithmic process of assigning a set of keywords (or classes) to one or

more images. Each keyword describes a semantic entity (e.g. “trees”, “grass”) that might be

present in image archive to be labelled. An image annotation model is trained on a small set

of manually labelled images. To annotate a new image, the model compares the new image to

the training images and selects the keywords from visually similar training images to be the

annotation of the new image.

Many different models have been proposed in the literature to learn the dependencies be-

tween the visual content of an image dataset and the associated text captions and we will

undertake a detailed review of these approaches in Chapter 2. A commonality between most

approaches to automatic image tagging is that they tend to predict each candidate keyword for

an image independently of other keywords for that particular image. Any correlations that may

exist between keywords are generally not taken into account by the majority of models in the

literature.

This project will seek to measure the benefits of modifying one particular probabilistic

model of image annotation, the Continuous Relevance Model (CRM) of Lavrenko et al. [35]

to take account of the dependencies between annotation keywords. This extension has the

possibility of increasing annotation accuracy in the event where the extracted image features

are not of adequate quality to distinguish between annotation keywords with sufficiently high

probability. If we predict a set of keywords together, rather than each keyword independently

there is the possibility that some words in the set will boost the probability of correct, but

otherwise low probability keywords whilst suppressing the probability of irrelevant but higher

probability keywords. For example, consider the annotation keywords “sky” and “ocean”. As

both refer to concepts that are some shade of the colour blue, it is difficult to differentiate

between either based on extracted colour features. However, if we consider “airplane” and

“bird” as part of the annotation set then we can differentiate more easily between these two

concepts given that we expect “airplane” and “bird” to be associated more to “sky” than to

“ocean”.

The key issue in predicting sets of tags in this manner is the exponential complexity that

arises in finding the best (in terms of highest probability) set of keywords for an image. For

modest vocabulary sizes, a simple exhaustive search strategy over sets of tags is impossible. In

this dissertation we take the novel approach of using a customised beam search algorithm in

combination with the amended CRM model to efficiently search over sets of tags in a “greedy”

fashion, only adding those keywords that have the best chance of increasing the probability

10Also referred to as automatic image annotation or image semantic annotation in the literature.
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of the entire set of keywords11. This amendment has the effect of reducing the exponential

complexity to linear in the depth of the search tree, whilst finding a near-optimal set of key-

words. We refer to the novel beam search amalgamated algorithm as the “Beam-Search CRM”

or BS-CRM model.

1.4 Aims and Objectives

The overall goal of this dissertation is to investigate the extent to which predicting tags as sets

increases annotation accuracy over automatic tagging methods that treat the tags independently.

To maintain a modular structure in the implementation, this objective was refined down into

the following four sub-objectives:

1. Extract a discriminative set of image features from the COREL and PASCAL datasets.

2. Implement an efficient version of the original Continuous Relevance Model (CRM) im-

age tagging algorithm [35].

3. Extend the CRM to capture the correlations between keywords.

4. Design an efficient algorithm using Beam Search for searching over sets of tags.

5. Evaluate image tagging accuracy and image retrieval performance on the standard COREL

and PASCAL datasets.

1.5 Summary of Main Results

All original objectives of the dissertation were completed successfully. The key results are

summarised hereunder:

• Custom implemented CRM model performance closely matches that of the results of the

original CRM model published in the literature [35].

– For the COREL dataset:

∗ Normalised CRM Model: Mean per word recall of 0.184 and a mean per

word precision of 0.197 with 97 words with recall greater than zero. Ranked

retrieval performance over 1, 2, 3 and 4 word queries closely matches that of

the original CRM model.

– For the PASCAL dataset:

11Beam search has been applied with notable results to the decoding problem in the field of statistical machine

translation [56].
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∗ Ranked retrieval performance for each class closely matches that of the litera-

ture [60].

∗ Normalised CRM Model: Mean per word recall of 0.427 and a mean per

word precision of 0.197 with all 20 words having a recall greater than zero.

• Custom implemented CRM model annotates an entire set of 500 images in 0.45 seconds

compared to 660 seconds cited by the authors of the original model [12].

• Successful integration of an efficient beam search algorithm (BS-CRM) to search over

sets of tags for those maximizing a keyword correlation objective function:

– For the COREL dataset:

∗ Over the original CRM model as published by Lavrenko et al. [35] the BS-

CRM model achieves a 6.8% increase in mean per word recall and a 31.0% in

increase in mean per word precision with an increase of 6.5% in the number

of words with recall greater than zero.

∗ Compared to the keyword correlation model of Zhou et al. [65] the BS-CRM

model achieves a 9.1% increase in mean per word recall and an increase of

6.3% increase in mean per word precision.

∗ Performance gain is consistent over annotation lengths of 3, 4 and 5 keywords.

∗ Performance greatly depends on the beam width selected, with widths between

5-15 performing the best on the COREL dataset, with performance declining

for wider beam widths. This suggests there is no advantage in expending ad-

ditional computation effort search over wider beams than around 15.

∗ Performance is also highly dependent on the word smoothing function that is

chosen with the most significant gains being realised for the N-CRM model,

lower gains with the Multinomial and Dirichlet models and no significant gains

with the Bernoulli word smoothing model.

– For the PASCAL dataset:

∗ BS-CRM model achieves a modest 2.4% increase in F1 measure over the CRM

model.

1.6 Dissertation Structure

This dissertation provides an overview of the work that has been accomplished with respect to

the objectives outlined in Section 1.4. The following itemised list provides a chapter by chapter

overview of the content and structure of this dissertation:
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• Chapter 2 - Background: Before undertaking an analysis of the results, we will pro-

vide an overview of the previous work in the automated image tagging literature, cov-

ering both the main classes of models that attempt to tag images without taking into

consideration keyword correlation along with the recent work that has been carried out

in augmenting the models to capture the correlation between keywords. We will also

examine the theoretical structure of the Continuous Relevance Model and the concept of

Beam Search in detail, given that both algorithms underpin the bulk of the work in this

dissertation.

• Chapter 3 - Methodology: Having provided a suitable background to the field, this

Chapter will provide a detailed description of the methodology adopted in developing

and adapting the CRM model to capture keyword correlation, including the conceptual

design work and the actual implementation of the BS-CRM automatic tagging system.

• Chapter 4 - Evaluation: This Chapter will present the results of the BS-CRM system

that has been developed as part of this dissertation. To fully grasp the advantages of

the BS-CRM model, a thorough analysis of the original CRM performance on the PAS-

CAL and COREL datasets is firstly provided and subsequently used as a benchmark for

comparison. Having done this, the BS-CRM is then evaluated using identical evaluation

metrics as per the CRM evaluation.

• Chapter 5 - Conclusions and Future Work: We conclude by presenting a summary

of the main findings and contributions of the work presented in previous Chapters. The

Chapter will also include several pointers to possible future work in this particular re-

search area alongside the author’s own personal opinion as to the major challenges that

still need to be overcome before a fully robust and scalable automatic image annotation

system can become a reality.
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Background

This Chapter provides an overview of related work in the field of automated image tagging both

with regards to those models that do and do not seek to capture correlations amongst image

keywords. A particularly detailed examination is given into the properties of the Continuous

Relevance model (CRM) in preparation for the discussion of the implementation details of this

model and its augmentation with Beam Search to form the BS-CRM model in Chapter 3.

2.1 Automatic Image Tagging Challenges

Despite the popularity of automatic image tagging as a research topic and the compelling com-

mercial opportunities for a robust automatic image annotation technology, the field is still very

much an open research problem, mainly due to the fact that the analysis and understanding of

images in unrestricted domains is an extremely challenging, if not the most difficult problem

in the modern field of Computer Vision [54]. The reason as to why this field is particularly

challenging is the balance that has to be maintained by any algorithm between two conflicting

goals: firstly the image representation chosen has to be very specific so as to be able to cor-

rectly differentiate between difficult objects, such as a tiger and a cat. On the other hand, any

representation must be invariant to various confounding factors present in images such as oc-

clusions, deformation, scale, background clutter, illumination and view point variations. These

latter factors can make the same object look very different between images (see Figure 2.1).

In addition, researchers in the Computer Vision field have also to contend with problems

arising from the well known “semantic gap”. According to Smeulders [53] the semantic gap

is:

“...the lack of coincidence between the information that one can extract from the

visual data and the interpretation that the same data have for a user in a given

situation.” Smeulders [53]

The semantic gap highlights the wide difference between human interpretation of scene

11
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Figure 2.1: These images illustrate some of the difficulties that are commonly encountered by

any algorithm that attempts to understand the content of images. On the left we can see the

same statue but at different angles. How is it possible to make an algorithm robust to such

wide variations in object appearance? Furthermore, on the right we see an image of the same

person but under varying illumination conditions. The person’s appearance varies dramatically

depending on the lighting conditions. These factors, and many others besides, ensure that

image tagging is a non-trivial problem.

contents and those that are possible through a machine (see Figure 2.2). The raw data obtain-

able from an image (e.g. pixels, colour histogram) is inherently ambiguous and semantically

impoverished. The authors conclude their article by stating:

“A critical point in the advancement of content-based retrieval is the semantic gap,

where the meaning of an image is rarely self-evident. The aim of content-based

retrieval systems must be to provide maximum support in bridging the semantic

gap between the simplicity of available visual features and the richness of the user

semantics.”

Clearly advancement in the robustness and accuracy of automatic image tagging algorithms

has the potential to bridge the semantic gap and therefore improve the performance of content
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based image retrieval systems [19]. However, it is worth keeping in mind that the process

of moving from this low-level representation to an accurate understanding of the high level

concepts present in a scene is at the heart of object recognition in computer vision. Despite

nearly five decades of intense research, object recognition is by no means a solved issue and

therefore both the variability of object appearance in images and the problem brought about by

the semantic gap will continue to ensure that the development of robust and accurate automatic

image tagging techniques continue to pose a significant challenge to the research community

for the foreseeable future.

Figure 2.2: An illustration of the semantic gap problem. Here we have an image of a tiger at

rest. The concepts likely to be noticed by a human looking at the image are shown in the box at

the top right. On the bottom right we have the feature vector representation of the same image,

detailing properties such as position, colour, shape and so forth. How does one effectively map

this extremely impoverished low level data representation of the image to the high level concepts

so easily understood by human beings? This is the crux of the semantic gap issue in Computer

Vision.

2.2 Existing Image Tagging Models

Nevertheless, despite the difficulties inherent in the understanding of image content, substan-

tial progress has still been realised in the area of automated image tagging over the past few

years. Researchers have simplified the problem somewhat by assuming that users can toler-
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ate imperfect retrieval results and that there is a much greater leeway for erroneous inferences

in automatic image annotation compared to the field of pure object recognition for individual

images [18]. It is also not necessary to detect the exact location of concepts of interest in the

image, rather computing a likelihood of the presence or not of the concept is usually sufficient

for the purposes of tagging.

Given these assumptions, most if not all of the techniques suggested in the research liter-

ature tackle the issue by computing low-level image feature distributions for each concept of

interest. This essentially boils down to the derivation of a probability table which links anno-

tation keywords to image features. This probability table of associations between features and

words can then be used to retrieve high probability keywords for a new feature set derived from

an unknown image. Recent results have shown that this approach is indeed viable in improving

retrieval results for a number of real-world image retrieval systems [34] [22].

Despite still being in its relative infancy, the automatic image tagging field is extremely

large and there exist many different techniques in the literature designed to tackle the problem.

Qi et al. [49] and Yavlinksy et al. [63] suggest a useful split of the field according to the feature

representation chosen. The authors cite the following two broad categories, dependent on the

scale of image analysis:

• Global Feature Based Image Tagging (also known as the Scene-based approach)

• Block/region-based Image Tagging

Global Feature Based Image Annotation, utilizes the properties of global image features

such as global colour and texture distributions. There are many examples of this approach in

the literature. For example, Yavlinksy et al. [63] prepare a vector of real valued image features

and a signature of image features to represent each candidate image. A nonparametric density

estimator is then employed to differentiate between the annotation classes by exploiting the

irregularity inherent in the distributions of image features. Chapelle et al. [9] utilize SVM’s

on global HSV colour histograms derived from the images of interest, whilst Huang et al. [21]

employ a classification tree to model the spatial correlation of colours in the images.

The principle behind this approach is to somehow engineer a global feature representation

that is sufficiently discriminative to cleanly separate the keyword classes while also permitting

a useful annotation model to be learned from a small set of training images per class. It has

been argued by previous authors, for example Hentschel et al. [20], that the global feature based

approach provides acceptable performance when the key discriminative visual characteristics

of a keyword class are distributed over the entire image. The example is given in [20] of a

city scene where the characteristic vertical and horizontal edges are distributed throughout the

image.
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The global feature based approach has been criticised for not sufficiently representing the

salient objects within the image. This fact has ignited interest in the Block Based Image Anno-

tation branch of the field were an automatic image segmentation step (for example, using the

Normalised Cuts algorithm) is typically applied before the learning stage to isolate real-world

objects. Despite the fact that image segmentation itself is a difficult and unsolved problem in

Computer Vision, the hope here is that the features derived from the segmented regions will

provide a better description of the visual objects in the image as compared to global image

features.

Figure 2.3 depicts the end to end flow from training to annotation for a block based annota-

tion algorithm whilst Figure 2.4 demonstrates the processing pipeline of a block-based feature

extraction engine. This methodology depends highly on the performance of the selected seg-

mentation algorithm to extract a good selection of coherent objects. At the present time no

general and robust automatic segmentation algorithm has been presented, thereby limiting the

accuracy of block based algorithms.

As for the global feature branch, the literature is also replete with examples of this particular

approach to image annotation. The pioneering paper by Mori et al. described how candidate

images were divided into a regular grid and a co-occurrence model applied to represent the co-

occurrence of words with the image regions [42]. In contrast Duygula et. al. [10], utilize the

statistical machine translation model of Brown et al. [6] and apply the EM algorithm to learn a

maximum likelihood association of words to image regions using a bi-lingual corpus. A notable

feature of this approach is the association of words to actual image regions, in comparison to

many other approaches which do not tell us which image structure gave rise to which word.

The pre-processed COREL data-set made available by Duygula et al. has become a widely

used and popular benchmark of annotation systems in the literature.

The most pertinent block-based image tagging model for this dissertation is the Continuous

Relevance Model (CRM) of Lavrenko et al. [35]. The CRM has been a highly influential

and often cited automatic tagging model in the literature, mainly due to the excellent results

produced by the algorithm on the standard COREL dataset. The model superseded the existing

annotation models in the literature by an impressive margin in terms of annotation accuracy.

The key feature of this model is that it works with continuous image features directly using

non-parametric kernel density estimators therefore avoiding the error prone k-means vector

quantization step commonly associated with many of the other block-based algorithms in the

literature (see Figure 2.5).

As indicated in [35] and in [33], annotation quality is very sensitive to clustering errors and

depends on being able to a-priori select the right cluster granularity. Selecting too many clusters

results in extreme sparseness of the space, while too few will lead us to confuse different objects
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Figure 2.3: A flowchart depicting the stages of model training and image annotation for the

block based image annotation approach. The key difference between this approach and the

global scene based approach is the segmentation step which divides the images into coherent

sub-regions over which feature vectors are computed. Adapted from a similar diagram in the

presentation by Lei Wang, Latifur Khan, Bhavani Thuraisingham at the University of Texas at

Dallas: www.utdallas.edu/˜yohan/openCVIntro.ppt

in the images1. This feature combined with a Dirichlet word smoothing mechanism were the

key contributions of this model to the automatic image tagging field. The significant downside

of the model however is the inefficiency and high computational load required to calculate the

relevant probabilities. We will provide a thorough description of the CRM model in Section

2.4.

Historically the CRM has been the evolution of the earlier image tagging model, the Cross

1On this latter point of too few clusters, Lavrenko in his recent book, “A generative theory of relevance” [33],

cites the example of finding images in a database consisting of a few technical diagram images and many animal

images. The technical diagram images are likely to be collapsed into the closest animal cluster, completely wiping

out the chance of the user finding these rare technical images in the collection.
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Figure 2.4: Flow chart depicting the major modules and outputs of a typical block based feature

extraction pre-processing system. The model extracts features (colour, SIFT descriptors, texture

etc) using a rectangular grid and clusters these features into a representative set of visual words

to form the codebook.

Media Relevance Model (CMRM) also developed by Lavrenko et al. [35]. In contrast to

the CRM, this model applied the k-means algorithm to vector quantize or cluster the set of

image features to form a visual codebook. Furthermore the model applies a multinomial word

smoothing mechanism which has been shown to be inadequate for image tagging and retrieval

given that many datasets have widely varying annotation lengths per image. A multinomial

smoothing model focuses on the prominence of words rather than the presence of words in the

annotation, effectively splitting the word probability mass of between multiple words in the

annotation. Therefore in the application of image retrieval an image annotated with “person,

tree” would be given lower preference to an image annotated with “person” as the first image

will have a probability of 1
2

for person with a probability of 1 for person in the second image.

This is clearly undesirable.

To overcome this issue, Lavrenko et al. introduced their best performing relevance model
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Figure 2.5: This diagram illustrates the tags that the CRM has assigned to four example images

from the COREL dataset. As can be observed the CRM model, in utilizing continuous features

directly, produces more accurate tags compared to the cluster based CMRM. Source: Lavrenko

et al., A model for learning the semantics of pictures [35]

to date with has been shown to surpass the performance of the CRM on the task of image

tagging and retrieval [13]. The Multiple-Bernoulli Relevance Model (MBRM) introduced two

key advancements into the field. Firstly, the authors replace the multinomial smoothing model

of the CMRM with a Bernoulli word smoothing model. In addition, rather than applying the

commonly used Normalized Cuts [52] segmentation algorithm to segment the images into co-

herent sub-regions, the authors partition each image into a regular grid and compute continuous

image features over these regions. This latter technique avoids the computational expense of

a dedicated image segmentation algorithm and provides the model with a larger set of image

regions for learning the association between regions and words. The authors report an increase

in performance by 38% over the CRM. In their subsequent paper [34] the authors demonstrate

how the CRM model can be amended with a modified Dirichlet word smoothing distribution

(the so called Normalized CRM or N-CRM model) to capture most of the advantages of the

MBRM model. Chapter 3 we will discuss how these lessons from the MBRM have been taken

into account during the development of the custom built CRM model for the purposes of this

dissertation.

Other important developments in the block-based branch include the model of Ghoshal

et al. [18] who brought the brunt of the elegant mathematical formalism of Hidden Markov

Model’s (HMM) [50] to bear on the problem, by positing that image feature vectors describ-

ing low level image content can be stochastically generated by a HMM, the states of which

represent the keywords of interest. A multitude of other statistical techniques have also been

applied to this problem, including Latent Dirichlet Allocation (LDA) [3], Probabilistic Latent

Semantic Analysis (p-LSA) models [14] [41] and Maximum Entropy [25].
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2.3 Capturing keyword correlation

All of the aforementioned approaches predict image keywords independently. Recently, re-

searchers have turned to the question of how best to capture correlations between keywords to

enhance the performance of the annotation models. Figure 2.6 illustrates the benefits that can

arise in taking into consideration keyword correlation in the process of image tagging. Given

that we are essentially aiming to select the “best” set of keywords that are most correlated

with each other for a particular image, the question naturally arises on how one can find this

best keyword set out of the word vocabulary. The complexity of adding an optimal (highest

probability) sets of tags out of a vocabulary of words grows exponentially with the size of

the vocabulary, and therefore for the modest sized vocabularies in the literature an exhaustive

search over all possible keyword subsets is not possible2.

Figure 2.6: This diagram from the paper by Wang et al. [59] illustrates the increase in annotation

accuracy that can be brought about by taking into consideration the correlation between the

keywords for an image. For example, consider the image on the far left with the tiger - here

we can see that the CMRM annotation contains two noisy keywords “albatross” and “wings”.

Using keyword correlation the CIAR model is able to eliminate these keywords and correctly

determines that “tiger, forest” best correlates with “cat, grass”. Source: Wang et al., Content

based Image Annotation Refinement [59]

Zhou et al. [65] overcome the exponential complexity by proposing a heuristic greedy

iterative algorithm to estimate the keyword subset for a particular image which is found to

significantly improve the performance of a state of the art image annotation algorithm. The

authors essentially amend the CMRM with an objective function to determine the keyword that

brings about the maximum gain of probability to the existing keyword subset. Nevertheless

their approach has a number of notable flaws. Firstly the objective function itself is deficient in

2Take the commonly used COREL image dataset as an example. This dataset has a vocabulary size of 371

words, giving around 60 billion 5 word subsets. To find a particular set from these 60 billion sets would take on

the order of around 10 million years, assuming we could check a subset of keywords against our objective function

every 1 second.
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that the probability of a quantity arrived at by the model in two or more different ways may not

always be equal. Furthermore the function considers the word co-occurrence and word-image

co-occurrence probabilities separately3 which further reduces the discriminative power of the

function.

Wang et al. [2] improve on this approach in their “Progressive Image Annotation” model by

applying a more powerful objective function in the form of the CRM to capture keyword corre-

lation of words. As for Zhou et al., the authors attempt to overcome the exponential complexity

of finding the best subset of keyword in a vocabulary by adding words to an existing set which

lead to the greatest increase in the objective function. The suggested method involves, for each

testing image, adding successive words to the image annotation based on the joint probability

of words already in the annotation. Essentially the authors are attempting to compute the “next

best” word to add to the image annotation at each stage. The authors of the paper demonstrate

that amending the CRM in this manner can effectively improve the annotation performance.

Extending this approach a step further, Zhu et al. demonstrate that it is possible to eliminate

noisy keywords by reformulating the problem as one of graph ranking using the random walk

with restarts algorithm [57]. Having calculated an initial set of keywords using the amended

keyword correlation CRM model of Wang et al., the authors then build a graph with nodes rep-

resenting the candidate annotations and weights linking nodes reflecting the similarity between

the nodes of the graph. The random walk with restarts algorithm is then applied to this fully

connected graph to re-rank the candidate annotations, of which the top few words are chosen

as the final annotation for an image.

The content-based image annotation refinement algorithm of Wang et al. [59] is yet another

example of an approach that uses a relevance model, in this case the CMRM for image anno-

tation refinement. Here the authors re-frame the annotation refinement problem as a Markov

process and define the candidate annotations as the states of a Markov chain. The algorithm

takes into consideration both corpus information and the image features during the refinement

process leading to notable results on the standard COREL dataset.

Other interesting non-relevance based approaches have also been suggested in the litera-

ture. For example, in their paper Kang et al. [31] proposed a correlated label propagation

algorithm for multi-label learning that explicitly models interactions between labels efficiently.

In this approach the authors use properties of sub-modular functions to develop a model that

simultaneously co-propagates multiple labels attached to training data to the test data. This is

in contrast to standard label propagation which propagates labels individually from training to

test set.

In their paper, Wang et al. [61] present a probabilistic approach using a relevance vector

3The authors assume that the current predicted subset of keywords and the image features are conditionally

independent given the current word - a blatantly false assumption.
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machine (RVM) to refine image annotations by incorporating semantic relations between an-

notation words. The authors model semantic relationships between words using a conditional

random field (CRF) model where each vertex indicates the final decision (true / false) on a

candidate annotation word. The refined annotation is obtained by using the model to infer the

most likely states of the vertexes. In this approach the confidence scores given by the RVM

classifiers are used as local evidence with the Normalized Google distances (NGD’s) between

two words taking into consideration their contextual relationship. The authors obtain excellent

results on the standard COREL dataset.

In contrast, Jin et al. [26] apply the EM algorithm to a coherent language model (CLM) in

order to generate a subset of annotation keywords. Besides capturing keyword correlation, the

authors also suggest a means to automatically determine annotation length and apply an active

learning technique to reduce the number of labelled training images required for the model.

Naphade et al. [44] suggested a graphical modelling approach to multimedia indexing that

captured the correlation between different concepts whilst Qi et al. [48] tackled the problem

in the case of video annotation by using a correlative multi-label (CML) annotation framework

which simultaneously classified concepts and modelled their respective correlations in a single

step.

Other authors make use of the large lexical WordNet database to prune noisy keywords

[40]. Jin et al. [27] discard an annotated keyword from an image that does not correlate well

with other annotated keywords that appear in the image by applying WordNet coupled with

multiple evidence fusion based on Dempster-Shafer evidence combination. However, it has

been shown that this approach, whilst removing noisy keywords, also has the undesirable effect

of removing many relevant keywords as well leading to a decrease in the F1 measure. Srikanth

et al. [55] investigated the extent to which a hierarchy created based on the annotation words

derived from WordNet could be applied to capture keyword correlations. In a similar vein, Liu

et al. [36] proposed a novel automatic image annotation method that utilized WordNet to obtain

the word-to-word correlations to prune irrelevant annotations for each image. By conducting

experiments on the standard COREL dataset and a web image dataset the authors were able to

demonstrate the effectiveness and efficiency of their proposed method for image annotation.

2.4 The Continuous Relevance Model (CRM)

2.4.1 Overview

Having reviewed the relevant literature in the field of automatic image tagging, a more detailed

exposition will now be provided into one particular annotation model, the Continuous Rele-

vance Model (CRM) of Lavrenko et al. [35]. As mentioned in Chapter 1, in this dissertation

we will aim to develop the original CRM model from first principles and then augment the
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model to capture keyword correlation efficiently through application of the Beam Search algo-

rithm. In this description we roughly follow the approach given in the original paper [35] but

simplify the explanation of the model without any loss of generality4 .

In commonality with many authors, Lavrenko et al. take inspiration from the field of

text information retrieval, and develop the CRM, a statistical generative language model with

respect to images which is similar to the relevance language models of text information re-

trieval [47]. The CRM attempts to estimate the joint probability distribution of a set of words

wI = {w1 . . .wk} together with an image I represented by a set of image features denoted by

fI = { f1 . . . fm}
5. The modelling of the joint distribution P(wI, fI) of words and image regions

in this manner is key to the model and gives it the ability to both annotate images and to perform

image retrieval:

• Image Annotation: Knowing the image features f we can use the joint distribution to

arrive at the P(w|fI). Ranking the keywords in the vocabulary by their conditional prob-

ability given the image features and taking the top 3-5 words will allow us to annotate a

novel image based on its contents.

• Image Retrieval: Given a query wqry consisting of one or more keywords, we can

utilize the joint probability distribution to arrive at P(wqry|fI) for every testing image I

of interest. Ranking the images by these probabilities will give a list of images sorted by

relevance to the user query.

2.4.2 Image representation

Given the high dimensionality of the raw image regions {r1 . . . rn}, it is necessary to firstly

distil the regions down into a lower-dimensional set of discriminative image feature vectors

for use with the CRM. We will assume that we have an algorithm in place for computing

feature vectors { f1 . . . fnT} for every region {r1 . . . rn}. The feature vectors typically consist of

colour, texture, shape and position information for each extracted region although SIFT [37]

features are rising in prominence due to their desirable qualities of invariance to object scale

and rotation.

2.4.3 Annotation Model

Having pre-processed the images in the aforementioned manner, the question now turns to

how we can effectively link both the words and images to perform the automatic tagging task.

4An alternative presentation of the model, more biased towards the application of image retrieval, is given in the

book, “A Generative Theory of Relevance’ [33].
5Compared to the Translation Model [10], the authors here do not isolate particular image features as being

associated to particular keywords, so it is not possible to tell which feature gave rise to a keyword using this

methodology.
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In the image tagging field we are given a collection C of testing images with no associated

annotations, alongside a typically larger training collection of images Ctrain with associated

manually provided tags per image. The basic goal of the CRM model is to annotate the unseen

test images using the joint probability distribution learned from the training image dataset.

Section 2.4.3.1 describes how the CRM formulates this joint distribution.

2.4.3.1 Joint distribution of Images and Words

To construct this joint distribution of words and images, the model makes the assumption that

the training images J consisting of features { f1 . . . fnT} and tags {w1 . . .wl} are generated by

two underlying probability distributions for the words and image features:

• Word distribution, PV (.|J): This is modelled as a multinomial distribution in the origi-

nal formulation, although there exists many other maximum likelihood smoothing func-

tions for words including Bernoulli and Dirichlet smoothing. We will touch upon these

latter representations in Section 2.4.3.4.

• Image feature distribution, PF ( fi| f jT ): This distribution captures the similarity be-

tween the testing fi and training f jT image feature vectors respectively.

Having defined these distributions we are now in a position to perform image tagging on the

unseen test images. As the CRM is a generative model we can best think of this process as one

of generating the unseen test image features fI = f1, . . . , fm and associated tags wI = w1, . . . ,wk

by a process of sampling using the aforementioned word and image feature vector distributions

respectively6 .

Intuitively, for a candidate test image I, the relevance model (denoted by P(.|I)) assumes

that the words and associated features are contained in a hypothetical urn and that we can

effectively generate the features fI = f1, . . . , fm making up the image by taking random samples

from this urn. Therefore to annotate an image with keywords we need to find a method to

sample words from this urn.

Unfortunately as the form of P(.|I) is unknown, this is not directly possible, however an

estimate can be made by using the training set of images and computing a joint probabil-

ity of the words wI = w1, . . . ,wk and the image features fI = f1, . . . , fm. Assuming P(w|I) ≈

P(w| f1, . . . , fm), then, the joint distribution can be estimated as:

P(w, f1, . . . , fm) = ∑
J∈T

P(J)P(w, f1, . . . , fm|J)

6Note the number of words and image features (k and m) may be different between images.
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Where we are taking the expectation over all the images in the training set, T . The urn

model lets us assume that the two events w and f1, . . . , fm are mutually independent7 , which

permits the equation to be further decomposed in the following manner:

P(w, f1, . . . , fm) = ∑
J∈T

PT (J)PV (w|J)
m

∏
i=1

PF ( fi|J) (2.1)

This is the central equation of the CRM model. By normalizing this equation as follows we

are able to calculate the required conditional probability of a word given a set of image features

P(w| f1, . . . , fm):

P(w| f1, . . . , fm) =

∑
J∈T

PV (w|J)
m

∏
i=1

PF ( fi|J)

∑
J∈T

m

∏
i=1

PF ( fi|J)

(2.2)

The parameters and distributions of Equation 2.1 are now discussed in some detail in Sec-

tions 2.4.3.2, 2.4.3.3 and 2.4.3.4.

2.4.3.2 Uniform Prior Distribution

The probability of selecting a training image or PT (J) is modelled as a uniform prior over the

training image dataset i.e. PT (J) =
1

NT
, where NT is the size of the training set. As the prior

distribution PT (J) is uniform and constant across all images and appears in the numerator and

denominator of Equation 2.2 it therefore cancels out upon division and does not need to be

considered any further.

2.4.3.3 Non-parametric Kernel density Estimators

The image feature distribution PF ( fi|J) is modelled by non-parametric kernel density estima-

tors of the following form:

PF ( fi|J) =
1

n

n

∑
j=1

1
√

2kπk|Σ|
exp

{

|| fi − f jT ||

β

}

(2.3)

Essentially we are placing a Gaussian kernel over every feature vector of every training

image J. In this equation k denotes the dimensionality of the image feature vectors fi and β is

the kernel bandwidth parameter of the model that is optimized on a held out validation set.

7In fact exchangeability or order invariance is a sufficient but weaker criterion for the CRM than mutual inde-

pendence and allows us to decompose the formula in a similar way. This gives extra power to the use of the CRM

model as the objective function in our beam search algorithm described in Section 2.6.
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2.4.3.4 Maximum Likelihood Word Smoothing Functions

In the original specification of the model, the word smoothing distribution PV (.|J) that de-

scribes the annotations of the training images J is derived under a Bayesian framework. Specif-

ically the authors place a Dirichlet prior over the simplex of multinomial distributions ℘V over

the vocabulary V with parameters µpv with v ∈ V . As with β, µ is another parameter that is

selected based on a held out validation set. Given the observation wJ, a Dirichlet posterior

results over ℘V with parameters µpv +Nv,J, with Nv,J being the number of times the keyword

v appears in the annotation wJ of training image J. Taking the expectation of this Dirichlet

posterior leads to the following equation for PV (.|J):

PV (.|J) =
µpv +Nv,J

µ+∑v
′ Nv

′
,J

(2.4)

As with all of the smoothing functions discussed in this Section, the function in Equation

2.4 essentially mixes the observed word frequencies of the training set for a particular image

with the global word frequencies across the entire training set. This has the effect of “smoothing

over” and zero probabilities, which are generally an issue in the image tagging literature given

the relatively small dataset and vocabulary sizes that are made available. In Equation 2.4 the

value of µ determines the degree of interpolation, with a larger value of µ given more precedent

to the background probability over the image annotation word frequencies.

In addition to this Bayesian estimator, there are several other maximum likelihood word

smoothing functions worth considering, including Multinomial, Bernoulli and the so-called

“Normalized CRM” function. In this dissertation we will investigate all four of these distribu-

tions given that the type of smoothing applied to the words in the vocabulary is likely to have a

significant impact on the performance of the keyword correlation mechanism.

The Normalized CRM (or N-CRM) model was a refinement of the original CRM model

introduced by Lavrenko et al. [34] to overcome the limitations of the Dirichlet smoothing

function when annotation length varies widely:

PV (.|J) =
Nv,J +Pv(µ−∑v

′ Nv
′
,J)

µ
(2.5)

Here we essentially eliminate the spread of the probability mass across annotation words

by removing the expression ∑v
′ Nv

′
,J from the denominator of the equation. It is important

to note that the parameter µ can take on any value greater than or equal to the length of the

image annotation. As touched on earlier during the literature review (see Section 2.2), the

multinomial Dirichlet formulation spreads the probability between words implying that that

annotations focus on prominence rather than presence of objects. So the longer the annotation

length, the lower the probability of the word for that image. As discussed in the literature

review, using the N-CRM model has been found to reap most of the benefits of the higher
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performance MBRM model.

Aside from the Bayesian formulations of the Dirichlet and Normalized-CRM smoothing

functions, we also have the basic multinomial and Bernoulli smoothing distributions. The

multinomial smoothing distribution is defined as:

PV (.|J) = λ
Nv,J

NJ

+(1−λ)
Nv

N
(2.6)

In this equation, Nv,J is the number of times v occurred in the annotation of image J, NJ is

the length of the annotation, Nv is the total number of times v occurred in the training set and

N is the aggregate length of all training annotations. As per µ in the Dirichlet function, here λ

is the parameter that controls the degree of smoothing between the global training set and local

image annotation word frequencies.

In contrast, the Bernoulli smoothing distribution is given by:

PV (.|J) = λ1v∈J +(1−λ)
∑J 1v∈J

∑J 1
(2.7)

The Bernoulli and Multinomial smoothing distributions as presented, both model com-

pletely different events. For the multinomial distribution the event space is the set of all words

in the vocabulary, with the probability being that of a random word from J being word w. For

the Bernoulli model on the other hand, the event space is the set {0,1} and the probability

being modelling is the probability of the presence of absence of the word w.

For all of the aforementioned smoothing functions, the absolute value of the smoothing

parameters µ and λ generally do not matter too much for one word queries. However, when

one comes to consider multiple word queries and for capturing word correlation the setting of

these smoothing parameters will be absolutely critical to performance.

2.4.4 Image Annotation and Retrieval

Having formulated this joint distribution in Equation 2.1 we are able to annotate an unknown

image, I, by extracting feature vectors from the image and computing P(w|fI). Ordering the

resultant probabilities in terms of decreasing value, we typically select the 3-5 words with the

highest probability as the annotation keywords for the candidate image.

We are also in a position to use the joint distribution to assign probabilities to multi-word

queries, allowing us to retrieve unlabelled images given a query q1 . . .qk:

P(q1 . . .qk| f1, . . . , fm) =
k

∏
j=1

P(q j| f1, . . . , fm) (2.8)

The important point to note in Equation 2.8 is that we are assuming that the keywords are

conditionally independent given the current test image, which is a blatantly false assumption

as has been discussed in detail in Chapter 1. This dissertation centres on relaxing this rather
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dubious assumption and amending the CRM model to take into account the correlation between

keywords. The manner in which this is achieved for the model is postponed until Chapter 3.

2.5 Evaluating Image Tagging Performance

The question naturally arises as to how one can best evaluate the performance of the plethora

of widely varying image tagging models. A common theme to many of the approaches in the

literature is the use of evaluation metrics borrowed from the field of text information retrieval

such as recall and precision. Variations on these metrics adapted for specific use in the im-

age annotation field were popularised by Duygulu et al. [10] in their seminal paper on the

translation model. Since the publication of this paper many subsequent authors have followed

a similar evaluation methodology both using the same dataset and the same metrics. As the

use of these metrics ensures that different approaches can be compared in a strictly controlled

manner the decision was therefore taken to adopt the evaluation approach of Duygulu et al. in

this dissertation.

When evaluating image tagging models we need to take into consideration both annotation

and retrieval performance. Both approaches differ in their unit of evaluation: for annotation,

we take the unit of measurement as an image and seek to calculate the proportion of images that

have been correctly annotated with a given word for all words in the vocabulary. In contrast,

for retrieval we take a word as the basic unit of evaluation, and seek to rank all of the images

by their probability of containing this word, and applying evaluation measures that take into

account the position of the relevant images in the ranked list. Whilst retrieval performance

takes into account all of the images for a given word, annotation performance only considers

the top e.g. 5 words for each image. Both of these evaluation approaches will now be discussed

in some detail.

2.5.1 Annotation Performance

As touched upon in our discussion of the CRM model, we annotate a novel test image J with

automatically generated keywords wauto and compare these annotations to the ground truth

annotation wJ for the image. In this dissertation we will follow, unchanged, the annotation

evaluation methodology of Lavrenko et al. [35] in their original CRM paper. Given pre-

segmented image regions rJ, Equation 2.4 is used to calculate the P(w|rJ). The top e.g. 5

words are then taken from this distribution and used to annotate the test image J.

• Word Recall: is the number of images correctly annotated with a given word, divided by

the number of images that have that word in the human annotation. This metric measures

the completeness in annotating images with word w:
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pw =
cw

ew

(2.9)

Here cw is the number of correct images annotated with word w and ew the number of

images annotated with w in the ground truth.

• Word Precision: is the number of correctly annotated images divided by the total num-

ber of images annotated with that particular word (correctly or not). This metric mea-

sures the accuracy in annotating images with word w.

pw =
cw

rw

(2.10)

Here rw is the number of images the system has annotated with word w.

• Number of words with recall greater than zero: This metric seeks to measure the

ability of the system to label images with rare keywords which are hard to annotate due

to the small number of positive instances in the training set. This metric is also important

as it is possible to achieve high precision and recall values by performing very well on a

small selection of common words.

Typically the single word recall and precision are averaged over all words that exist in the

testing dataset. The mean per word precision is given by:

P̄n =
1

n

n

∑
w=1

pw (2.11)

With the mean per word recall expressed as:

R̄n =
1

n

n

∑
w=1

rw (2.12)

For the COREL dataset, it is also quite popular in the literature [10] to calculate the mean

per word precision of the top 49 words (those with precision greater than 0.15) and the mean

per word recall of the top 49 words (those with recall greater than 0.4).

The recall and precision values can be combined into one metric of performance referred

to as the F1 measure, which is the harmonic mean of precision and recall that penalizes very

low values of either quantity:

F =
2pr

p+ r
(2.13)

As before, the F1 measure can be calculated on a per word basis or averaged across the en-

tire set of words in the vocabulary. Computing these metrics for the novel approach suggested

in this dissertation will be sufficient to compare the algorithm with the state-of-the-art image

tagging models in the literature.
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2.5.2 Retrieval Performance

Unlike the annotation performance, for retrieval performance we seek to specifically take into

account the ranking of the images that the system has specified are relevant to both a single

query and typically multi-word queries, consisting of 2, 3 and 4 words.

Many authors [35] in the image tagging literature choose to measure the Mean Average

Precision (MAP) and Precision at 5 (P@5) for the ranked list of images8.

• Mean Average Precision (MAP): or non-interpolated average precision, is the mean

of the average precision (AP) for each query, where the average precision for a query

is calculated as the average of the precision values where the relevant images occur in

the ranked list (see Figure 2.7). The average precision (AP) gives an indication for the

retrieval quality for one topic and the mean average precision (MAP) provides a single-

figure measure of quality across recall levels averaged over all queries.

• Precision at 5 (P@5): This metric measures the precision of the system at 5 retrieved

images.

These metrics essentially measure the needs of two different types of potential users of

image retrieval systems: professional users (MAP) who seek to find a large number of relevant

items, and casual users (P@5) who only wish to obtain a small number of relevant items without

viewing too many irrelevant items in between. Both of these metrics produce a single number

to measure the performance. In addition to measuring the precision and recall at fixed ranks, it

is also very useful to construct a graph (recall-precision plot) detailing how precision and recall

vary as we increase the recall.

In this dissertation we will evaluate the original (non beam search) algorithm on the multi-

word retrieval performance only so as to determine whether or not the basic CRM algorithm

custom implemented for this dissertation matches the results as published in the original paper

[35]. This accords with the majority of the existing work in the literature on capturing keyword

correlation for image tagging who focus solely on the annotation performance of the algorithm.

2.6 Reducing computational complexity through Beam Search

Having so far discussed the current image tagging models, we will now conclude our foray

into the background of the image tagging field by taking a brief detour into the arena of com-

binatorial optimisation, where we will consider the properties of the beam search algorithm.

As discussed in Chapter 1 a key research idea of this dissertation is in the application of beam

8Note these metrics still make sense in the annotation paradigm, given that we can rank the annotation labels in

order of probability for any given image.
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Figure 2.7: This diagram illustrates the calculation of the Mean Average Precision metric for a

toy example. Essentially we record the precision values at those points in the ranking where the

recall increases and take the average of this value per query. This is the average precision per

query. We then average the per query average precision across all queries to derive the value

of the Mean Average Precision. . Source: Edinburgh School of Informatics, Text Technologies

Lecture Notes 2008/2009: http://www.inf.ed.ac.uk/teaching/courses/tts/pdf/eval-2x2.pdf

search to efficiently search of sets of tags to find the set that have the (close to) highest mutual

correlation for the test image of interest.

A useful and succinct summary of the Beam Search algorithm has been provided by Bisiani

[4]. Bisiani states that Beam Search is any search algorithm..

“...in which a number of [...] alternatives (the beam) are examined in parallel. [It]

is a heuristic technique because heuristic rules are used to discard [prune] non-

promising alternatives in order to keep the size of the beam as small as possible.”

The essential reason for wishing to perform beam search is to overcome the excessive mem-

ory requirements of best-first search whilst still obtaining a near to optimal solution. In this

algorithm only the most promising nodes at each level of the search graph are selected for fur-

ther branching, and the remaining nodes are pruned off permanently. Since its inception beam

search has found many practical applications particularly with regards to problems requiring

combinatorial optimisation such as Speech Recognition [45], Job Scheduling [58] and Image

Understanding [51].

Figure 2.8 illustrates the operation of Beam Search on an example problem. The standard

version of beam search expands nodes in breadth-first order. In each layer of a breadth-first

search graph, it expands only the B most promising nodes, and discards the rest, where the
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integer B is called the beam width. A heuristic is used to select the most promising nodes.

By bounding the width, the complexity of the search becomes linear in the depth of the search

instead of exponential; the time and memory complexity of beam search is wd, where d is the

depth of the search9. Pseudo-code describing the original beam search algorithm is presented

in Algorithm 1.

1em boxed Leftleft Thisthis Upup UnionUnion FindCompressFindCompress Inputinput

Outputoutput The original Beam Search algorithm. The algorithm maintains a set of B partial

solutions. At the start B only contains the empty partial solution ε. The set C contains all

of the children of the partial solutions in B. Each partial solution is then retrieved from C

and evaluated using a heuristic evaluation function HEURISTIC. If the value is lower than

a threshold then the partial solution is discarded. If the value is higher the partial solution is

appended to B. After evaluating all of the partial solutions the solutions in B are reduced by the

function REDUCE if B contains more than kbw (beam width) partial solutions. REDUCE could

simply sort the values in B by heuristic value and take the top kbw solutions to expand at the

next iteration. kbw,sbs f argmax {|s|s ∈ B} let B = {ε} B 6= /0 let C = CHILDREN OF(B) letB

= /0 C 6= /0 let st = GET PARTIAL SOLUTION(C) HEURISTIC(st)≤ |sbs f | B = B ∪{st} let

C = C \{st} let B = REDUCE(B, kbw) 1em

This reduction in computation and memory comes at a cost, in this case, the algorithm is

not guaranteed to find an optimal solution and cannot recover from wrong decisions. That is to

say, if a node leading to the optimal solution is discarded during the search, there is no longer

any way to reach that optimal solution10 . Varying the beam width parameter B trades off the

risk of missing optimal goal states against the computational cost of the search - a wider beam

considers more hypotheses concurrently, whilst taking up more memory and processing power,

and vice-versa for lower beam widths.

9Relating this to Image Tagging, in terms of the vocabulary size v, the complexity of the greedy beam search

algorithm is dvw, whereas the non-greedy search is of complexity vd . A substantial improvement.
10It is worth noting that some authors have since amended the original beam search algorithm with back tracking

to essentially allow the algorithm to investigate previously pruned paths. A good example is the Beam Stack Search

algorithm of Zhou et al. [64].
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Figure 2.8: This diagram compares Breadth First Search with Beam Search. Essentially Beam

Search narrows the width of the breadth first search using a parameter B, the width of the beam

which is the maximum number of states at each level. At each level beam search generates all

successors of the states at the current level, sorts them in order of increasing heuristic values,

splits them into slices of at most B states each, and then extends the beam by storing the

first slice only. Beam search terminates when it generates a goal state or runs out of memory.

Source: Furcy et al., Limited Discrepancy Beam Search [16]
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Methodology

This Chapter will describe the implementation of the CRM model and its adaptation to capture

keyword correlation efficiently through the use of beam search. The Chapter will be arranged

to mirror the typical sequence of processing events in most automatic image tagging systems,

namely image pre-processing, image tagging and system evaluation. We begin this Chapter by

discussing the adopted system architecture in Section 3.1. This will provide an introduction and

high-level view of the major system components the implementation of which will be further

described in the remaining sections of the Chapter.

3.1 Software & Architecture

It was decided that the CRM and BS-CRM models would be implemented in the MATLAB pro-

gramming language. The reason for this choice was due to the wide use of MATLAB amongst

the research community enabling the code developed as part of this dissertation to be re-used

in the future and to enable the author to leverage open source research code libraries where

possible. Furthermore, the high-level of abstraction from the underlying machine provided

by MATLAB would ensure a respectable level of productivity on the actual model develop-

ment rather than needless work on memory management and low-level processing that is the

hallmark of other languages such as C.

On the other hand we trade-off efficiency and speed in using such a high-level language,

which meant that any algorithms produced would need to be highly optimised for the CRM

and BS-CRM models to run in reasonable amounts of time and memory. Essentially it was

crucial for one to think of the basic unit of implementation as a matrix and to work with

matrices and matrix operations as far as possible in order to avoid expensive for-loops. The

latter programming constructs are notoriously inefficient and time consuming in MATLAB.

Section 3.4 will describe how the CRM and BS-CRM models were engineered to run extremely

quickly within MATLAB cutting down on the published runtime of 660 seconds in the literature

33
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to a remarkable 0.45 seconds (amortised) for the custom built solution.

Figure 3.1 illustrates the adopted system architecture detailing the main components of the

image tagging model and their interaction. Initially, if the features do not already exist on disk,

we run the image pre-processing module to take each image and extract a representative set of

features. The aim of this step is to replace the high-dimensional images with lower-dimensional

features that capture the main properties of the images and enable the model to work on the

data with limited memory and computational resources. This module is only ever executed

once (unless the nature of the features change) and so pure speed is not a requirement and the

pre-computed feature sets can simply be stored in a text file and loaded in by the algorithm at

runtime. This module is discussed in Section 3.2.

Figure 3.1: This diagram provides an overview of the main components of the automatic image

tagging system. The system consists of four main processing components, namely data input,

data pre-processing, automatic image tagging and performance evaluation. The dotted arrows

are a one off path that is followed initially to extract features from the images. In the future the

features are then simply pre-loaded from disk.

The system loads in the pre-computed image features from the text files stored on disk in the
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next step of processing which is referred to as the feature pre-processing module. Before input

into the model these features are further processed to, for example, extract word frequency

counts, standardize image features, compute all combinations of 2, 3 and 4 word queries and

re-arrange the image features into data structures that allow fast processing within the model.

We describe this module in Section 3.3.

The output of the feature pre-processing module is then fed into the CRM model itself

which constructs a probability distribution to link the provided words and features and allow

for the actual automated image tagging and ranked retrieval (described in Section 3.4.1). The

initial tags assigned to the images can then be further refined by an optional beam search tag

refinement module that seeks to find a near to optimal set of tags with high mutual correlation

(see Section 3.4.4). Finally, the model outputs the results in a format amendable to processing

by the performance evaluation component. This final component calculates both the annotation

and retrieval performance metrics of the algorithm during the run (refer to Section 3.5).

3.2 Image Pre-processing

3.2.1 COREL Dataset

3.2.1.1 Overview

The COREL dataset is a very commonly used dataset throughout the image annotation litera-

ture with many of the best known image tagging algorithms having been evaluated on this set of

images. The dataset contains 5,000 photographs from 50 COREL Stock photograph CD’s, with

each CD containing 100 images on the same topic. Each image in the dataset contains between

1 and 5 keywords, with a total of 374 keywords in the vocabulary, 371 words of which are

present in the training dataset. If we include only those words that exist in the testing set then

the vocabulary size is reduced further to 260 words. Most authors appear to split the dataset

into 4500 training images, and 500 test images. The training images are also typically further

subdivided into 4000 training images and 500 validation images for the purposes of parameter

optimisation.

3.2.1.2 Feature Representation

Given the copyright restrictions imposed on the COREL dataset, the author was unable to get

hold of the actual images themselves and so the decision was made to utilize the already pre-

processed dataset provided by Duygulu et al.1 which was used in their original translation

model paper [10]. The pre-processed data consisted of several text files containing feature

vectors for every image in the dataset, the annotations for each image and the image regions

1Freely available to download from: http://kobus.ca/research/data/eccv_2002/index.html
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to which the features vectors correspond. The feature representation chosen by Duygulu et al.

was designed to capture colour, texture, position and shape information from the Normalized

Cuts [52] segmented image regions. Specifically, the authors chose to extract (the number in

brackets beside each feature denotes its dimensionality):

• Position

– X,Y coordinates of the region normalized by image dimensions (1).

• Shape

– Area of the region (1).

– The length of the boundary of the region divided by its area (1).

– Convexity of the region (1).

– Moment-of-inertia or angular mass of the region (1).

• Colour

– Average RGB (3).

– Average RBG (duplicated) (3).2

– RGB standard deviation (3).

– Average L*a*b* by transforming RGB colour-space (3).

– Average L*a*b* (duplicated) (3).

– L*a*b* standard deviation (3).

• Texture

– Mean orientated energy in 30 degree increments (12).

The final feature vector for each region had a dimensionality of 36 with 1-10 regions per

image. Whilst there are certainly better feature representations available in the literature3 , the

chosen representation does have the advantages of being relatively compact thereby saving on

memory requirements and allowing fast processing with a non-parametric model such as the

CRM which needs to store and manipulate the training set at runtime. Furthermore having

the exact set of features and the training and testing set splits will bring the further advantage

of allowing us to compare the methods developed in this dissertation directly to the work of

Duygulu et al. and all subsequent authors that have used their pre-processed dataset.

2The authors cite that the RGB and L*a*b features were duplicated so as to increase their weight for a previous

experiment, and that they did not subsequently remove the duplicated columns. There is no good reason to have

these duplicated for the purposes of image tagging, nevertheless they were retained in the pre-processed dataset to

ensure comparability.
3For example, as we will discuss in Section 3.2.2 SIFT [37] and Colour SIFT [7] descriptors coupled with salient

region image detectors such as such as the Kadir & Brady saliency operator [30] which are specifically designed to

be invariant to rotation and scale have found to be particularly effective.
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3.2.2 PASCAL Dataset

3.2.2.1 Overview

There has to be some concern voiced over the validity of the COREL dataset as a challeng-

ing and representative testing suite of images for image retrieval. Muller et al. [43] cite that a

chance pick of a subset of these images may yield significantly better performance compared to

the case where another subset of the images are chosen as the validation set. Furthermore many

of the test images in the COREL dataset are very similar to the corresponding training image4

(see Figure 3.2), which is does not give one confidence of how such models will perform on

more challenging datasets such as images from the Internet [63]. Indeed, Yavlinksy et al. [63]

have demonstrated that taking into account simple features such as the global colour distribu-

tion in an image can yield excellent annotation and retrieval performance on this dataset.

Figure 3.2: These example images from the COREL dataset demonstrate how similar some

images are to each other in the dataset. For this reason many authors have criticised this

dataset as being relatively easy to annotate. Source: Jiayu Tang, Automatic Image Annotation

and Object Detection, PhD Thesis [28]

Given this, it was decided that in this dissertation the CRM and BS-CRM models would

4This can be shown as follows: in the training set there are 2705 images with 4 word tags comprising a vocabu-

lary of 342 different words. These 4 word annotations only make up 1833 different combinations. The probability

of getting such an extremely low number of combinations for a sample size of 2705, assuming random selection, is

approximately zero.
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be further evaluated on the much more challenging PASCAL VOC 2007 image dataset (Fig-

ure 3.3 demonstrates some example images from this dataset) that includes objects over wide

viewpoint and pose variations. Furthermore the actual images are freely available and therefore

it will be possible to demonstrate the system generated annotations against the original images.

The PASCAL Visual Objects Challenge (VOC) is an object recognition competition that

has been running annually since 20055 with the express objectives of both evaluating perfor-

mance on object class recognition and compiling a standardised collection of object recognition

databases. The dataset consists of 5011 training images and 4052 testing images with standard

splits provided that partition the training set into 2501 training and 2510 validation images.

In total there are 9,963 images, containing 24,640 annotated objects. Despite having nearly

double the number of images of the COREL dataset, the total vocabulary size is significantly

smaller with 20 words.

Figure 3.3: Some example images from the PASCAL VOC 2007 challenge dataset.

It has to be noted that most of the publications using the PASCAL VOC 2007 dataset are

more specifically related to the pure object recognition and detection literature rather than to

automated image tagging. The image tagging literature does not include many past publications

that use this dataset and in this sense by testing both the CRM model and BS-CRM model on

this dataset the research boundaries are being extended in this dissertation by ascertaining how

5http://pascallin.ecs.soton.ac.uk/challenges/VOC/
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well the model migrates from a relatively easy dataset to a dataset that is generally considered

to be much more challenging.

3.2.2.2 Feature Representation

In terms of feature extraction, unlike COREL, there is no widely available pre-processed ver-

sion of the PASCAL VOC 2007 dataset. Therefore, a custom feature extraction module had

to be engineered for this dataset. Given the wide availability of standard code in MATLAB,

the use of 128 dimensional SIFT descriptors alongside the SIFT salient region detector were

initially investigated6 .

(a) First consideration: SIFT - a local descriptor for saliency

The Scale Invariant Feature Transform or SIFT [37] (also referred to as a Circular Region

Detector [14]) is a technique for detecting and describing local image features for the purpose

of object recognition in Computer Vision. The feature set extracted by the algorithm has the

appealing properties of invariance to scale, translation and rotation, with a partial invariance to

illumination changes and affine or 3D projection. To extract these features the SIFT algorithm

applies a four stage approach to feature detection and description:

1. Identification of points of interest (or keypoints) that are detectable from different view-

points of the same object. This is achieved by applying the difference of Gaussians scale

space operator.

2. Filtering out those keypoints that have poor contrast and those that are poorly localized

on edges.

3. Assignment of consistent orientations to the remaining keypoints using local image prop-

erties. This is performed to achieve rotation invariance.

4. Calculating a set of 128 element feature vectors (known as a SIFT feature vectors) from

the keypoints. Each SIFT feature consists of 16 histograms, aligned in a 4x4 grid, each

with 8 orientation bins.

It is typically the case that around the order of 2000 SIFT features are extracted for a

500x500 pixel image with the sheer number of features ensuring that the algorithm has consid-

erable robustness to occlusions in images. SIFT features have also been demonstrated to yield

better performance compared to other methods used in the literature [29] making the algorithm

a popular choice for region detection and representation.

6The open source VLFeat SIFT descriptor and detector MATLAB package were used (http://www.vlfeat.

org/overview/sift.html).
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However this SIFT based approach was eventually discarded as a potential image descriptor

for the PASCAL dataset exactly due to the high volume of features the algorithm extracts per

image (see Figure 3.4). For the PASCAL dataset SIFT typically produced 1000 or more salient

regions per image, and given each of these salient regions are represented in 128 dimensional

feature vectors, the final feature datasets for all 9,963 images were over 4GB in size on disk.

Loading and manipulating such large matrices in 32-bit MATLAB was simply not possible, so

a number of other methods were attempted to handle the sheer size of the SIFT representation

before the final rejection of the idea.
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Figure 3.4: The VLFeat SIFT library used to create a SIFT representation of an image from the

PASCAL training dataset. Notice the large number of descriptors (denoted by the yellow circles)

extracted for this image (there are 545 in total, although not all can be clearly seen by the human

eye).

Firstly, an attempt was made to take “slices” of the features from file and build up the

image feature similarity matrix incrementally (see Section 3.4 for a discussion of the similarity

matrix in the context of the CRM model). However continually loading from disk, even from

an optimized memory mapped file was substantially slower than main memory, and it was

estimated that the calculation of the final image feature similarity matrix for the dataset would

take of the order of 40 days, which is clearly infeasible, especially considering that this matrix

needs to be re-calculated many times the β parameter for the CRM model changes which is
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required in the parameter sweep during cross-validation.

Therefore, as a next attempt the author reduced the sensitivity setting on the SIFT salient

region detector so that it would return fewer salient regions per image. Unfortunately, at the

setting that would give workable sized feature sets this detector was quite temperamental re-

turning widely varying number of salient regions from 300 to 0 depending on the image of

interest. This wide variability, especially with some images returning 0 features is clearly un-

acceptable if we wish to obtain reasonable image tagging performance on the dataset. As a

final attempt to quell the curse of dimensionality with this particular image representation the

use of the recently developed PCA-SIFT [32] algorithm was investigated.

PCA-SIFT applies principal components analysis (PCA) to the normalized gradient patch

produced by the original SIFT algorithm. The authors demonstrated that the PCA-based lo-

cal descriptors were more distinctive, more robust to image deformations, and more compact

than the standard SIFT representation and are ideal for image retrieval scenarios. The imple-

mentation of PCA-SIFT that was investigated was that provided by the original authors and

made available to download on their website7. This algorithm included a pre-processed PCA

subspace matrix that could be used with any dataset to reduce the SIFT feature dimensional-

ity. This pre-processed matrix was of dimensionality 36 therefore limiting the dimensionality

reduction of the PASCAL dataset SIFT representation from 128 to 36.

Despite this significant reduction, it was soon discovered that the real issue with the SIFT

descriptors was not the dimensionality but the number of features extracted. Over 1000 features

of reduced dimensionality of 36 were still too large to manipulate (approximately 1GB on disk).

The problems that were faced in using the SIFT features essentially boils down to the nature

of the CRM model in that it operates directly on the continuous image features without any

dimensionality reduction step such as clustering which many of the alternative models in the

literature apply to the features. Therefore the CRM is essentially trading off image feature

robustness against increased accuracy from avoiding an error prone vector quantization step.

(b) Final Representation: Mixture of simple descriptors

Having decided against the use of SIFT descriptors, inspiration was taken from the afore-

mentioned COREL dataset representation advocated by Duygulu et al. This 36 dimensional

representation has the attractive properties of being very compact and memory efficient. Fur-

thermore by selecting a large mixture of different features in this manner we can lower the bias

of any one individual feature and maximize the amount and variety of information extracted

from the images.

Therefore the decision was made to replicate as far as possible this feature representation

for the PASCAL dataset. Given that no code was provided by Duygulu et al., this necessitated

7http://www.cs.cmu.edu/˜yke/pcasift/
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engineering custom code to produce the following 42 dimensional feature vectors for every

extracted image region:

• Position

– X,Y coordinates of the region normalized by image dimensions (2).

• Colour

– Average RGB (3).

– RGB standard deviation (3).

– RGB skewness (3).

– Average L*a*b* by transforming RGB colour-space (3).

– L*a*b* standard deviation (3).

– L*a*b* skewness (3).

– Average HSV by transforming RGB colour-space (3).

– HSV standard deviation (3).

– HSV skewness (3).

• Texture

– Mean orientated energy in 30 degree increments (12).

Here we add two more simple properties to the Duygulu et al. representation, namely

the skewness metric to capture the asymmetry of the colour distributions and the HSV colour

space. Derivation of the position and colour features (standard deviation, mean per channel)

are mostly self-explanatory, however it is worth making note of why one has chosen to use both

RGB, L*a*b* and HSV features in combination. These three colour space measure different

properties of colour all of which are useful in the object recognition process. In comparison

to RGB which is the default colour space for image capturing and display, the HSV (Hue,

Saturation, and Value) colour space encodes the amount of light illuminating a colour in the

Value channel whilst the L*a*b* colour space captures human perception of brightness in its

luminance channel.

In their paper describing the MBRM model [13] Feng et al. reveal that partitioning an im-

age into a regular grid yields superior performance with the relevance model based approach

compared to the use of a dedicated segmentation algorithm such as Normalized Cuts [52] or

Blobworld [8] which attempt to find a coherent set of salient regions within the images. Seg-

mentation is a very difficult problem8 and the current set of algorithms we have at our disposal

8It is worth noting here that perfect segmentation is itself nearly as difficult as the general problem of image

understanding.
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today are by no means perfect and will fail to segment meaningful regions from time to time

ultimately leading to a degradation in annotation performance. Furthermore the segmentation

process is inherently computationally expensive and so any model relying on this function as a

pre-processing step will necessarily suffer in terms of scalability and performance.

Each PASCAL image is therefore partitioned into a regular non-overlapping grid consisting

of approximately 85x85 pixels yielding 20 regions per image. Samples of the aforementioned

features would then be taken from each of these regions. The final pre-processed dataset size

was approximately 40Mb on disk taking just over 4 hours to create for all 9,963 images (this

is a one off cost, unless the features change), a much more reasonable memory requirement

compared to the use of SIFT features. Given that we are partitioning over a regular grid rather

than irregularly shaped “blob” features as are produced by dedicated segmentation algorithms,

the shape information (which requires the silhouettes of objects) captured by Duygulu et al.

was therefore not extracted in the chosen representation.

Finally in addition to colour properties, we follow the example of Duygulu et al. and

extract texture features from each region. Texture is another important low-level visual cue for

image representation, and can be captured through the use of oriented Gabor filters which have

been shown to be particularly effective in creating sparse yet discriminative image features (see

Figure 3.5):

“Properly tuned Gabor filters, can remove noise, preserve the true ridge and

valley structures, and provide information contained in a particular orientation in

the image.” Jain et al. [23]

For the PASCAL dataset, a Gabor filter bank is constructed consisting of 12 different ori-

ented Gabor filters in 30 degree increments of orientation. This bank is applied to every ex-

tracted region across the regular grid, with the final feature value computed by calculating the

average absolute deviation from the mean of the filter responses:

Tθ =
1

N

N

∑
i=1

|Fiθ −µiθ| (3.1)

Here θ∈{0◦,30◦,60◦,90◦,120◦,150◦,180◦,210◦,240◦,270◦,300◦,330◦}, N is the number

of pixels in the extracted region, and µiθ is the mean of the pixels in region Fiθ.

3.3 Feature Pre-processing

The system loads in the pre-computed image features from the text files in the next step of

processing. Before input into the model these features are further processed in the following

manner:

• Image Features:
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Figure 3.5: This diagram illustrates the application of a Gabor filter bank to an example image.

The original image is shown on the left. On the right we can see the different responses gen-

erated by convolution of the image with the oriented Gabor filters. Only those edges in close

proximity to the preferred orientation of the given filter produce a significant output response.

– Normalization of the training features by subtracting the mean of the training fea-

ture set and dividing by the standard deviation.

– Similar normalization for the testing dataset (mean and standard deviation of the

training dataset is used).

– Re-shaping of the image features into 3-dimensional matrices amendable to fast

processing by the CRM module (see Section 3.4).

• Word Features:

– Calculation of those words that occur in the training dataset.

– Calculation of the frequencies of the training dataset words.

– Calculation of those words that occur in the testing dataset.

– Calculation of those words that occur at least twice in the testing dataset.

– Calculation of the relative frequency of the training set words.

– Calculation of all possible 2,3,4 word queries. After calculation these queries can

be loaded from disk in the future to save processing time.

3.4 CRM Model Implementation

3.4.1 Original CRM Model

Equation 2.2 presented in Chapter 2 is the defining equation of the CRM model. As discussed,

the goal of the CRM model implementation is to calculate, for a word w and image features
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f1, . . . , fm the conditional probability of the word given those features or P(w| f1, . . . , fm):

P(w| f1, . . . , fm) =

∑
J∈T

PV (w|J)
m

∏
i=1

PF ( fi|J)

∑
J∈T

m

∏
i=1

PF ( fi|J)

(3.2)

From a cursory glance at this equation, it is apparent that any implementation of the model

needs to take into consideration two basic components:

• The image feature probability: P(I|J) =
m

∏
i=1

PF ( fi|J) where J is the training image with

features f1T , . . . , fnT and I is the testing image with features f1, . . . , fm. Incorporating the

Gaussian non-parametric kernel density estimator into this equation yields:

P(I|J) =
m

∏
i=1

1

n

n

∑
j=1

1
√

2kπk|Σ|
exp

{

|| fi − f jT ||

β

}

(3.3)

We will refer to the complete set of the logarithm of these probabilities P(I|J) across all

training and test images as the image similarity matrix S.

• The word smoothing distribution: PV (w|J). The matrix holding these probabilities for

every training image and word will hereby be referred to as the word probability matrix

W.

Our goal is to use these matrices to obtain P, a matrix which has as elements P(w|I) for each

word w in the vocabulary and each image I in the test set (Figure 3.6 illustrates the structure of

these three important matrices). The construction of the word probability matrix W is relatively

straightforward and simply requires the application of the appropriate smoothing equation to

build a matrix of dimension Ntrain ×Nword
9, where Ntrain is the size of the training dataset and

Nword is the size of the vocabulary. The creation of the image similarity matrix requires more

thought however, mainly due to the sheer size of the features extracted for each image. It is to

the efficient creation of this matrix that our attention will now turn.

3.4.1.1 Image similarity matrix

The CRM model relies on having a similarity value for every testing image J against every

training image I as given in Equation 3.3. Given that we take the product of generative prob-

abilities in the CRM equation we are therefore very likely to encounter numerical underflow

during annotation. Therefore it is necessary to convert the image feature probabilities to the

9Here we use the MATLAB matrix dimension notation: RxC means we have R rows and C columns in our

matrix.
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Figure 3.6: Illustration of the structure of the three main matrices used in the CRM model for

the purposes of image tagging. W contains PV (w|J) in every entry, S contains log{P(I|J)}

as elements and P contains P(w|I) which is the final probabilities that we require for image

tagging.

logarithmic domain which effectively replaces multiplication by addition. We only come back

out into the probability domain after we divide by the denominator in Equation 2.2. To convert

the P(I|J) we take the logarithm to obtain:

log{P(I|J)}=−
m

∑
i=1

{

log(n)+ log
n

∑
j=1

exp(log

{

1
√

2kπk|Σ|
exp

{

|| fi − f jT ||

β

}

}

)

}

(3.4)

This leads to a neat implementation in MATLAB as a matrix S with the testing image

number j denoting the row and the training image number i denoting the column and every

element of the matrix giving the log similarity Si j between image j and i. The implementation

question that needs to be solved is how one processes the raw image features to obtain this

matrix of dimensions 500x4500 for COREL and 4950x5011 for PASCAL.

From Equation 3.2, we can see that in order to construct S we need to compute the pairwise

distances between the features fi and f jT of both images within the non-parametric kernel:

|| fi − f jT ||. A possible starting point therefore would be to compute a feature similarity matrix

F with each element Fi j giving the Euclidean distance between fi and f jT . From this matrix
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we could then derive the required log probabilities log{P(I|J)} by taking the appropriate sums

as given in Equation 3.4.

For the COREL dataset, computing the pairwise distance outright between every fea-

ture vector of the testing and training dataset would yield a matrix of size approximately

5000x45000 (of the order of 2GB on disk) given that there are roughly 10 regions per im-

age. For PASCAL we would have an even larger matrix of size 99000x100220 (80GB on disk)

given there are 20 regions per image. Both matrices are far too large to load and manipulate in

main memory within MATLAB.

The decision was taken therefore to avoid these matrices altogether and incrementally

build up the required image similarity matrices S by taking the test image features in discrete

“blocks” of size Nblock size << Ntest . The training matrix contains all of the features vectors

for every training image in three-dimensional matrix of size Ndim ×Nblobs ×Ntrain where Ndim

is the dimensionality of the features (36 for COREL, 42 for PASCAL), Nblobs is the number

of blobs per image (1-10 for COREL, 20 for PASCAL) and Ntrain is the number of training

images (4500 for COREL, 5011 for PASCAL). As we take the testing images in blocks10 the

testing matrix will also be three-dimensional of shape Ndim ×Nblobs ×Nblock size.

The squared Euclidean distance function sqdist from the open source Lightspeed library11

is then used to efficiently calculate the distance between these two matrices returning a four-

dimensional result of shape Nblobs×Nblobs×Ntrain×Ntest with each element giving the pairwise

image feature distances.

The key point is, now that we have this four dimensional distance matrix for a subset

of the test images against all of the training images, we proceed by effectively reducing its

dimensionality by deriving the P(I|J) using Equation 3.4 for test image I and training image J

yielding a final matrix of size Nblock size ×Ntrain.

As we require a final S matrix of size Ntest × Ntrain we continually append each block

in an incremental fashion. This methodology is extremely efficient calculating (in memory)

the required similarity matrix in 30 seconds for COREL and approximately 600 seconds for

PASCAL. This similarity matrix can then be stored and loaded straight from disk in future

(unless the kernel bandwidth β changes, in which case the matrix will obviously need to be

re-calculated.).

3.4.2 Annotating Images

Having built up the required image S and word W matrices we are now in a position to tag

unseen test images. Our aim here is to calculate a matrix P of dimensions NtestxNword where

10The block size is ultimately limited by machine memory. On a 4GB 32-bit machine this was found to be 25

images. The larger the block the faster the processing, enabling the algorithm to easily scale to 64-bit machines in

the future.
11http://research.microsoft.com/en-us/um/people/minka/software/lightspeed/
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Ntest is the number of test images and Nword is the number of words in the vocabulary (for

PASCAL this is 4952x20 and COREL 500x374). Each element of the matrix Pij gives the

required conditional probability P(wi|I) of a word belonging to a particular test image.

It is possible to compute P in one matrix multiplication. To see this we need to re-arrange

the CRM joint probability:

P(w, f1, . . . , fm) = ∑
J∈T

PT (J)PV (w|J)
m

∏
i=1

PF ( fi|J)

Aggregating from the feature to the image level, this equation can also be expressed as:

P(w, I) = ∑
J∈T

PT (J)PV (w|J)P(I|J)

Given this, we calculate P(w|I) by dividing by P(I):

P(w|I) = ∑
J∈T

PV (w|J)
P(I|J)

∑
J∈T

P(I|J)
(3.5)

The prior PT (J) vanishes. Here we divide P(J|I) which is a small value by the sum of small

values ∑
J∈T

P(J|I), which will result in a much larger value that does not result in numerical

underflow.

Now, by Bayes Theorem we can re-arrange this equation to obtain the posterior probability

P(J|I):

P(w|I) = ∑
J∈T

PV (w|J)P(J|I) (3.6)

As discussed, P(w|I) are simply elements of P and PV (w|J) are elements of W. Therefore,

this equation is another way of writing the matrix multiplication of the word probability matrix

W with the posterior image similarity matrix Sap which will calculate all of the relevant P(w|I)

in P simultaneously:

P = Sap ×W (3.7)

If we can obtain the matrix Sap we will be able to annotate the entire set of testing images

in one matrix operation which will be extremely fast within MATLAB.

For Equation 3.7 to work correctly both W and Sap need to be in the probability and not

logarithmic space. This is not a problem for W as this matrix is already in the probability

space and does not suffer from numerical underflow given we are not taking the product of

probabilities as we are in the kernel density estimation part of the CRM equation.

However, working with the original image similarity matrix probabilities S is not possible

due to their extremely small magnitude. We therefore use the posterior probability matrix Sap
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which contains P(J|I) in every element. As the mathematical manipulation to obtain Equation

3.6 demonstrated, this will still correctly give us P(w|I) which is the quantity that we desire.

To calculate Sap, we firstly derive the normalization factor ∑
J∈T

P(I|J) but expressed in the

logarithmic domain:

Z = log

{

∑
J∈T

exp{log{P(I|J)}}

}

(3.8)

Now given this, the matrix Sap can be calculated in the following manner:

Sap = exp{S−{Z×11xNtrain
}} (3.9)

Z, being a vector of dimension 1xNtest is replicated by the cross-product Z×11xNtrain
column

wise by the number of training images Ntrain so that it may be subtracted from S in Equation

3.9. We now have all of the required machinery to annotate an image.

As mentioned in Section 3.1 the fact that we can now annotate all 500 test images (for

COREL) and 4052 test images (for PASCAL) in one line of code brings a significant speed

benefit. In implementation of the CRM model in [12] the authors cite a runtime of 660 seconds

to annotate all 500 COREL images. With the custom built solution for this dissertation we

can do so in 0.45 seconds12. As we are attempting to push the research boundaries in this

dissertation the quick runtime has the benefit of allowing the algorithm to be run many times

enabling one to try out a wider range of parameter values on the validation set thus ensuring

our algorithm is better tuned.

3.4.3 Adding Keyword Correlation

Mathematically, it is relatively straightforward to amend the CRM model to capture keyword

correlation. We do so as follows:

P(w1 . . .wk|I) = ∑
J∈T

k

∏
j=1

PV (w j|J)P(J|I) (3.10)

Here we are pushing the product over the word probabilities into the sum over the training

images J, rather than, as in the original CRM equation, calculating P(w|I) separately for each

word then multiplying each probability together, thereby assuming each word is conditionally

independent given the image I:

P(w1 . . .wk|I) =
k

∏
j=1

P(w j|I)

12This time assumes we have built the image similarity matrix already, if not then this adds approximately 30

seconds for the COREL dataset to be pre-processed before annotation, still significantly less than the literature.

Furthermore unless the β parameter changes we do not need to re-calculate the image similarity matrix again, and

so we are justified in quoting 0.45 seconds as the amortized runtime of the algorithm.



Chapter 3. Methodology 50

3.4.4 The BS-CRM Model

As discussed in the literature review, previous authors amend the CRM [2] and CMRM [65]

to add keywords to an existing set Sk of k words using a formula similar to Equation 3.10. As

the complexity of finding an optimal (highest probability) sets of tags out of a vocabulary of

words grows exponentially with the size of the vocabulary13 , they therefore do so in a “greedy”’

manner only adding the keyword that leads to the maximum probability P(Sk|I) of having all

of the keywords together in the set:

S∗k = argmaxSk⊂V P(Sk|I) (3.11)

In the automatic image tagging field we can live with a good sub-optimal solution if it

allows us to isolate irrelevant words that would have otherwise been selected. This dissertation

investigates to what extent augmenting this approach of Zhou et al. [65] using beam search

can be used to select a set of high probability words to describe novel images. The authors

have demonstrated that considering keyword correlations is a viable approach to increasing

the performance of automated image annotation algorithms, with for example, Zhou et al.

reporting a 15.5% improval in mean per word recall, and a 3.7% improval in mean per word

precision.

However for the existing approaches in the literature, the width of the beam search is ef-

fectively 1 as they only keep one hypothesis (set of keywords) at every step in the search tree

(please refer to Section 2.6 for a detailed review of beam search). Their approach of finding

the set of keywords {w1 . . .wk} works in the manner shown in Figure 3.7.

In this approach, we are not guaranteed that the next word chosen, even if it does contribute

the maximum gain to the selected subset, does not cause the probability mass of future words

to be skewed such that one or more relevant keywords down the line are therefore missed. To

overcome this issue, in this dissertation, we use beam search with multiple beams to keep sev-

eral hypotheses at level in the search tree and actively evaluate each in parallel. The proposed

BS-CRM algorithm operates as shown in Figure 3.8. Figure 3.9 illustrates the operation of this

algorithm on a toy example.

We can also further express the Beam Search algorithm using matrix terminology by con-

sidering the P annotation matrix defined earlier. In this case we run the original CRM model

and calculate P using Equation 3.7 as before. Now rather than sorting the probabilities in P

and simply taking the top, for example, five words as the annotation for each image, we instead

input P into the beam search keyword refinement algorithm for further processing as shown in

Figure 3.10.

13To see this, consider the number of ways of selecting a subset of size N from a vocabulary of size V , where

V >> N, this is approximately N!, a huge number for the relatively modest vocabulary sizes (typically 20-400)

used in the automated annotation literature.
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• Step 1: Suppose w1 is the keyword with largest probability:

{w1}= argmaxw∈V P(w|I)

= argmaxw∈V ∑
J∈T

PV (w|J)P(J|I)

• Step 2: We now add a second word w2 to the set that maximizes the objective function:

{w1,w2}= argmaxw1,w2∈V P(w1,w2|I)

= argmaxw1,w2∈V ∑
J∈T

PV (w1|J)PV (w2|J)P(J|I)

• Step 3: We repeat this procedure at each step adding a new word to the existing set of words that

achieves the greatest probability of all words occurring together in the set:

{w1 . . .wk}= argmaxw1...wk∈V P(w1 . . .wk|I)

= argmaxw1...wk∈V ∑
J∈T

PV (w1|J)∗ .∗PV (wk|J)P(J|I)

• Step 4: The algorithm terminates when the number of words in our set is equal to the desired

length of the caption (usually 5 words).

Figure 3.7: Amending the CRM model to capture keyword correlation in the manner suggested

by Wang et al. [59].
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• Step 1: Spawn B candidate sets, where B is the length of the beam. Add the first word w1 with

the highest probability to all B sets. At this stage all sets contain the same word. For the jth set

we have:

{w1} j = argmaxw∈V P(w|I)

= argmaxw∈V ∑
J∈T

PV (w|J)P(J|I)

• Step 2: For the jth beam we add the jth largest probability word to the current word in the set,

therefore each set will have a different second word added w
j
2, with the superscript j indicating

that the second word might be different for each set j:

{

w1,w
j
2

}

j
= arg jth max

w1,w
j
2∈V

P(w1,w
j
2|I)

= arg jth max
w1,w

j
2∈V ∑

J∈T

PV (w1|J)PV (w
j
2|J)P(J|I)

• Step 3: We then continue as per Step 1 and add the maximum probability word to each set, which

again might be different between sets:

{

w1 . . .w
j
k

}

j
= argmax

w1...w
j
k∈V

P(w1 . . .w
j
k|I)

= argmax
w1...w

j
k
∈V ∑

J∈T

PV (w1|J)∗ .∗PV (w
j

k|J)P(J|I)

• Step 4: The algorithm terminates when the number of words in each set is equal to the desired

length of the caption (usually 5 words). Out of the B sets we then select the one set with the

highest probability as the final annotation of the image.

Figure 3.8: The proposed BS-CRM model using beam search to find a close to optimal set of

tags for an image.
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Figure 3.9: This diagram illustrates the operation of beam search on an example tree in the

context of automated image tagging. In this case the beam width is set to B=2. The algo-

rithm proceeds in a breadth-first manner and branches the w (2 in this case) most promising

nodes (as measured by P(Sk|I) where k is the tree level) at each level. So we can see that

the algorithm first picks Sun as the root. From this we choose Sea and Sky giving the two hy-

potheses (Sun,Sea) and (Sun, Sky) with (Sun, Car) pruned. The algorithm then expands the

(Sun,Sea) and (Sun, Sky) nodes and picks two more best words in this case Sand and Bird giv-

ing the hypotheses (Sun,Sea,Sand) and (Sun, Sky, Bird). (Sun,Sky,Sea) and (Sun,Sea,Grass)

are pruned. We proceed in this manner until the desired annotation length has been reached.

In this case the annotation length is 3 so we determine which set (Sun,Sea,Sand) or (Sun,Sky,

Bird) has the highest probability. In this case the set (Sun,Sea,Sand) has the highest probability

and is therefore selected as the final annotation of the image.
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• Step 1: Set beam width B. Use the original CRM model to calculate Pt, where the superscript t

denotes the value of P at iteration t:

Pt = Sap ×W

• Step 2: For the jth beam, find the jth highest probability words w from Pt:

w = arg jthmaxrowwise

{

Pt
}

• Step 3: Define a function extract that obtains the probabilities h of the jth highest probability

words in Pt from W:

h = extract(w,W)

• Step 3: Add the jth highest probability words to a bookkeeping matrix Cj of dimension

Ntest xNannotation length, where Ntest is the number of test images and Nannotation length is the de-

sired annotation length:

Cj = append(h,Cj)

• Step 4: Replicate h column-wise to obtain the matrix H:

H = h× 11xNtrain

• Step 5: Obtain the probabilities Ht+1 of the new highest word occurring with the previous highest

words Ht. Here we take the matrix element pairwise product (denoted by .*) and not the matrix

product:

Ht+1 = H.∗Ht and Ht = Ht+1

• Step 6: Now we can obtain Pt+1 taking into consideration word correlation:

Pt+1 =
{

Ht+1.∗Sap

}

×W

• Step 7: Set the probabilities of the selected words in this iteration within Pt+1 to zero. This

ensures that the algorithm simply does not pull out the same word again as a word is always best

correlated with itself. Prepare for the next iteration: Pt = Pt+1

• Step 8: Repeat Steps 2-7 until the desired annotation length in Cj has been achieved. Execution

is now complete for beam j.

• Step 9: Repeat Steps 2-8 for the remaining beams.

• Step 10: Find the best wordset in {C1 . . .CB} for each image. The algorithm has now terminated.

Figure 3.10: The BS-CRM algorithm expressed in matrix terminology.
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3.5 Evaluation Framework

3.5.1 Cross-Validation

There are two main parameters that need to be set for the CRM model; the β parameter giving

the bandwidth of the kernel density estimator and either µ if we are using the N-CRM or

Dirichlet word smoothing functions or λ if we are using the Bernoulli or Multinomial functions.

These parameters have a great effect on the performance of the model and therefore a dedicated

cross-validation framework was constructed for this dissertation in order to optimize the model

before application on the testing dataset.

The cross-validation algorithm essentially performs an exhaustive search over the parame-

ter space of β-µ or β-λ for those combinations of the two parameters that maximize an objective

function (for example this could be the Mean Average Precision obtained on the validation set).

This cross-validation module is fully automated and integrated with the third-party trec eval

(see Section 3.5.2) information retrieval evaluation function so that no manual intervention is

required during the parameter optimization process.

The 4500 images of the COREL training dataset is typically divided into 4000 training

images and 500 validation images. As no splits are provided, the cross-validation framework

therefore randomly splits the 4500 training images into these portions. The splits can then be

saved on file to ensure experimental repeatability. Standard splits are provided for the PASCAL

dataset which roughly divides the training dataset into 50% training and 50% validation images.

These standard splits are therefore used by the algorithm.

3.5.2 Integration with Trec Eval

Trec eval14 is an executable provided for participants of the TREC conference to evaluate their

information retrieval algorithms. The executable is extremely comprehensive automatically

calculating many popular information retrieval evaluation metrics, including Recall, Precision,

Average Precision, Mean Average Precision, P@5 and the data required to precision-recall

chart amongst many other useful metrics.

The function requires as input two files: a so-called .qrel file detailing the actual documents

that are relevant to a particular query and a .top file with the system generated results with con-

fidence values (between 0 and 1) indicating how well the system thought a particular document

was relevant to a query.

It is reasonably straightforward to adapt these inputs for the purposes of automated image

tagging evaluation. In terms of image annotation performance we output a .qrel and .top file

with the image numbers as the query identifiers and the word numbers as the document iden-

tifiers. In contrast, for retrieval, we want a ranked list of the images for a particular query or

14http://trec.nist.gov/trec_eval/
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word. Here we therefore set the words to be the TREC query identifiers and the image num-

bers to be the corresponding document identifiers, sorted in decreasing order of probability per

query.

As mentioned in Section 3.5.1, the trec eval function has been integrated into the CRM

framework. The CRM evaluation framework outputs the required .qrel and .top files and calls

the trec eval executable. The output of trec eval is saved to a text file which is then parsed by

the CRM evaluation framework with the parameter (e.g. MAP) being used as the optimization

criterion for cross-validation being retrieved and used to drive the optimization of the model.

3.5.3 Custom Evaluation Functions

Trec eval is perfect for evaluating the image retrieval side of image tagging generating those

metrics that are used in most research papers on the topic. Unfortunately the most popular

method of image annotation evaluation, namely mean per word recall, mean per word precision

and the number of words with recall greater than zero are not calculated by trec eval. The

author therefore created a custom evaluation model within the CRM evaluation framework to

calculate these metrics.



Chapter 4

Evaluation

In this Chapter we will seek to thoroughly evaluate the performance of the CRM and BS-CRM

models as custom implemented for this dissertation. The high-level objectives of the evaluation

are as follows:

• Verify that the custom implementation of the CRM model operates as expected given

the results published in [35]. This includes both annotation and ranked retrieval perfor-

mance.

• Measure the performance of the BS-CRM model with different word smoothing func-

tions (Bernoulli, N-CRM, Multinomial, Dirichlet) and annotation lengths (3,4,5 words).

This will only encompass annotation performance.

• Test both models on the COREL and PASCAL datasets. This will ensure that the fea-

ture pre-processing of the datasets (particularly PASCAL) have been performed to the

required standard.

The entire suite of tests in this Chapter have been designed to verify these core objectives.

Having performed these tests we will then be able to determine whether or not the original

objectives of the dissertation as stated in Chapter 1 have been successfully accomplished. We

will now briefly discuss the adopted experimental methodology before conducting a detailed

analysis of the results.

4.1 Experimental Methodology

The CRM and BS-CRM models are evaluated on the standard COREL and PASCAL datasets

both of which have been pre-processed into a feature representation as explained in Section 3.2.

For the PASCAL dataset, as the same image can have the same annotation many times (such

as a photograph with multiple people), we also binarize the ground truth image annotations to

0 (representing absence) or 1 (represent the presence of the object in the image).

57
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4.1.1 COREL Dataset

For the COREL dataset we will present the experimental results of applying Normalized CRM

(N-CRM), Bernoulli (B-CRM), Multinomial (M-CRM) and Dirichlet (D-CRM) word smooth-

ing to the CRM and BS-CRM models. Given that our overriding goal is to capture keyword

correlation efficiently, we hypothesise that the nature of the word smoothing function used will

have a significant impact on the results. It is therefore interesting to investigate as wide a range

of functions as possible to ascertain their effect on the model performance. An annotation

length of 5 keywords will be investigated for all smoothing models. Furthermore in the case of

the N-CRM model we will also examine the effect of 3 and 4 keyword annotations.

Before applying the models to the testing dataset we will firstly optimize the models on

the validation set. The COREL training dataset of 4500 images is randomly split into 4000

training images and 500 validation images. For the no-beam variant we perform a joint opti-

mization over the β and µ or λ parameters as appropriate for the particular smoothing function

in question. The best β parameter is then kept constant and we vary the smoothing parameter

(µ or λ) for beam lengths of 1, 5, 10, 15 and 30 respectively. The best smoothing parameter

value for each beam is then recorded. For the N-CRM model only we also parameter optimize

the image retrieval performance with 1 word queries, optimizing the β and λ parameters in a

separate cross validation stage.

Having tuned the model on the validation set we merge the training and testing images to

create a training set of 4500 images. Using this training set we then apply the model (using the

best parameters found during cross validation) to the testing 500 image dataset and record the

annotation performance using the research standard annotation evaluation metrics as discussed

in Chapter 2.5.

For the N-CRM model we also present the image retrieval results on 1, 2, 3 and 4 word

queries on the test set, which in combination with the CRM annotation performance, will allow

us to verify that the CRM model performs at the level expected given the results in the liter-

ature. Finally examples will also be given of both the original CRM and BS-CRM annotated

keywords against the ground truth keywords so that we may easily visualize the effects of the

model with and without beam search.

4.1.2 PASCAL Dataset

The performance of the N-CRM model with and without beam search will be investigated on

the PASCAL dataset for an annotation length of 5 words. The testing methodology adopted for

this dataset will closely follow that of the COREL dataset. A first stage of parameter optimiza-

tion will be conducted. In this case we will use the PASCAL standard splits of the training set

into 2501 training images and 2510 validation images. Having found the optimal parameters
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the training and validation sets will then be merged into a training dataset consisting of 5011

images with which we use with the model to annotate the 4952 testing images. Furthermore

as the actual images themselves are not subject to copyright restrictions we will also display a

selection of images against their system generated annotations.

4.2 COREL: N-CRM Model

In this section we report the parameter optimization and test results for the Normalized CRM

(N-CRM) model both for annotation (Section 4.2.1) and retrieval (Section 4.2.2) performance.

4.2.1 Image Annotation Performance

4.2.1.1 Parameter Optimization

In this Section we optimize the parameters of the CRM model based on an annotation length

of 5 as this is the most common annotation length in the literature. Furthermore, as is also

standard in the literature, the vocabulary of the COREL dataset has been filtered to contain

only those 260 words that occur in the testing dataset [24] [35]. Figure 4.1 presents the results

of parameter optimization on this dataset.

For the annotation performance, we optimize on the annotation MAP performing an ex-

haustive search jointly over the β and µ parameters for the original CRM model without beam

search. As the dataset is standardized to have a zero mean and unit standard deviation we can

expect that the β parameter will be in the region of 1.0. Given the log-linear structure of the

CRM model we therefore chose a log scale of β values to sweep, namely: 0.01, 0.03, 0.1, 0.3,

1, 3, 10 and 30. For each of these β values, we traverse through the following range of µ values:

5, 10, 15, 30. As we are using the normalized CRM smoothing function we must have a min-

imum µ value of 5 (the maximum annotation length of any image in the original collection).

The maximum µ value is theoretically unconstrained, but for computational reasons we limit

our search to a ceiling of 30 for this particular parameter.

As the results in Figure 4.1(a) demonstrate, the CRM model has a peak MAP at 0.30780

for β = 1 and µ = 5. Holding the β constant at 1.0 we then search through the µ parameters for

beam widths of 1, 5, 10, 15 and 30. Here we make the, not unreasonable assumption, that the β

parameter, which has the most direct effect on the distribution of image features, will not have

as significant an effect on the word smoothing distribution of the CRM model. Thus we will

only optimize on µ for each beam width whilst holding β constant. Figure 4.1(b) illustrates that

the best µ for all beam widths is 5.

We now fix the CRM model parameters at a β of 1.0 and a µ of 5 and examine the perfor-

mance of the model on the held out test set for annotation lengths of 3, 4 and 5.
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4.2.1.2 Annotation Length 5

Figure 4.2 and Table 4.1 hold the results of applying the N-CRM model to the test set. The

first point of note is that the CRM model (without beam search) designed for this dissertation

performs as expected given that the mean per word recall and precision are in close proximity

to the original model. The mean per word recall is 0.184 and precision is 0.197 for the custom

solution compared to 0.190 and 0.16 for the original CRM model. Having demonstrated the

annotation capability of the custom developed CRM model all that remains to be done to prove

its correctness is to test ranked retrieval performance. We will perform the ranked retrieval test

in Section 4.2.2.

Examining the BS-CRM results in Figure 4.2 and Table 4.2 we observe that the model

outperforms a selection of the state-of-the-art models in the literature. The performance on the

model appears to depend on the beam width selected and peaks at a value of 15 with an F1

measure of 0.20612. Over the original CRM model as published by Lavrenko et al.[35] the

BS-CRM model achieves a 6.8% increase in mean per word recall and a 31.0% in increase in

mean per word precision. For the top words the recall increases by 3.4% and the precision by

28.0%. The rise in the number of words with a recall greater than zero is also significant (97

to 114 a rise of 6.5%), which demonstrates that the BS-CRM model is able to “promote” rarer

words to the keyword set through using keyword correlation.

Compared to the keyword correlation model of Zhou et al. [65] the BS-CRM model

achieves a 9.1% increase in mean per word recall and an increase of 6.3% increase in mean

per word precision. This result demonstrates that our methodology of capturing keyword cor-

relation is more effective on the COREL dataset than that proposed by Zhou et al. Table 4.3

illustrates the actual labels assigned by the BS-CRM and CRM models to an example subset of

the COREL images against the manually assigned ground truth. In this table we can easily vi-

sualize the operation of the BS-CRM model and how it is able to increase annotation accuracy

by eliminating a selection of noisy keywords.

Following the authors of the CMRM [24] we also present the mean per word recall and

precision for 70 selected COREL words in the bar charts of Figure 4.3 and Figure 4.4. Here

we can obtain a detailed overview of how the BS-CRM model compared to the original CRM

model on individual words. The per word precision in bar chart 4.3 for many of the BS-CRM

words exceeds that of the CRM model (mean precision is 0.44 for the BS-CRM and 0.41 for the

CRM). However for recall performance (Figure 4.4), due to the subset of keywords selected,

the CRM model outperforms the BS-CRM model with an average recall of 0.46 over these 70

words compared to 0.42 for the BS-CRM model. This latter observation can be explained due

to the fact that, by selecting these 70 words, we effectively eliminate the “rarer” words that were

annotated by the BS-CRM and not the CRM model thus reducing the observed performance.
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Figure 4.1: Figure 4.1(a) illustrates the joint optimization of the kernel bandwidth β and µ value

for annotation MAP performance on the validation COREL dataset for an annotation length of

5. The surface reaches a maximum of 0.308 at β = 1 and µ = 5. In Figure 4.1(b) we hold the

β parameter constant at 1.0 and optimize µ for varying lengths of Beams 1,5,10,15,30 for an

annotation length of 5. The best value of µ for all beam widths is found to be 5.
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N-CRM (Annotation Length=5) No Beam Beam 1 Beam 5 Beam 10 Beam 15 Beam 30

Mean Per Word Recall 0.184 0.183 0.196 0.200 0.203 0.202

Mean Per Word Precision 0.197 0.208 0.216 0.211 0.209 0.198

Words with Recall > 0 97 108 113 114 114 112

F1-Measure 0.190 0.195 0.206 0.206 0.206 0.200

Mean Per Word Recall (top words) 0.693 N/A 0.710 0.725 0.724 0.723

Mean Per Word Precision (top words) 0.739 0.767 0.805 0.771 0.755 0.720

Table 4.1: N-CRM model performance on the COREL testing dataset for differing beam widths. The BS-CRM model dominates the original CRM over all

beam widths, with the peak performance occurring at a beam width of 15 which yields an F1 measure of 0.20612 which is 8.5% above the 0.190 value

obtained by the CRM model.
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Figure 4.2: This chart depicts the performance of the BS-CRM model against the state-of-the-art image tagging models in the literature. The BS-CRM model

clearly exceeds all models in performance on the COREL dataset.
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N-CRM (Annotation Length=5) Co-occurrence Translation CMRM Original CRM Zhou [65] BS-CRM

Mean Per Word Recall 0.020 0.040 0.090 0.190 0.186 0.203

Mean Per Word Precision 0.030 0.060 0.100 0.160 0.197 0.209

Words with Recall > 0 19 49 66 107 N/A 114

F1-Measure 0.020 0.050 0.090 0.170 0.190 0.206

Mean Per Word Recall (top words) N/A 0.340 0.480 0.700 N/A 0.724

Mean Per Word Precision (top words) N/A 0.200 0.400 0.590 N/A 0.755

Table 4.2: Comparing the BS-CRM model developed in this dissertation against the state-of-the-art results from the literature. Over the original CRM model

the BS-CRM model achieves a 6.8% increase in mean per word recall and a 31.0% in increase in mean per word precision with an increase of 6.5% in

the number of words with recall greater than zero. For the top words the recall increases by 3.4% and the precision by 28.0%. Compared to the keyword

correlation model of Zhou et al. [65] the BS-CRM model achieves a 9.1% increase in mean per word recall and an increase of 6.3% in mean per word

precision.
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Image ID: 100067 BS-CRM CRM Ground Truth

grass grass grass

water tree bear

bear water meadow

grizzly bear grizzly

meadow field

Image ID: 104082 BS-CRM CRM Ground Truth

grass grass grass

water water tundra

antlers tree caribou

caribou deer

bulls white-tailed

Image ID: 13092 BS-CRM CRM Ground Truth

flowers flowers sky

water water flowers

branch branch stems

petals petals

sky people

Image ID: 130062 BS-CRM CRM Ground Truth

grass grass grass

tree tree birds

water cars plane

plane tracks zebra

zebra prototype

Table 4.3: This table demonstrates the actual labels assigned to some of the COREL test set

images (actual COREL image id’s are shown). It is clear that the BS-CRM model is able to elim-

inate some of the noisy keywords produced by the CRM model to increase annotation accuracy.

For example, consider the first image. Here we see that the BS-CRM model selects “grizzly

and meadow” as more correlated to the existing labels of “bear, water, grass” than are “tree and

field”. Eliminating the noisy keywords of “tree and field” enables the BS-CRM model to perfectly

label this particular image in comparison to the CRM.
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Figure 4.3: This chart depicts the mean per word precision for 70 COREL words as obtained by applying the CRM and BS-CRM models to the testing

dataset with an an annotation length of 5.
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Figure 4.4: This chart depicts the mean per word recall for 70 COREL words as obtained by applying the CRM and BS-CRM models to the testing dataset

with an annotation length of 5.



Chapter 4. Evaluation 68

4.2.1.3 Annotation Length 4

In this Section we reduce the number of words that the N-CRM tags a particular image with

from 5 to 4 and evaluate the model performance with and without beam search. As for an

annotation length of 5, the parameters of the model for this particular test were set to β = 1.0

and µ = 5.

The results on the testing set are presented in Table 4.4. Again we can see a definite increase

in all three of the key annotation performance measures through the use of the BS-CRM model.

In this particular case a beam width of 5 results in the best performance giving a 8.7% increase

in precision and a 20.3% increase in recall with a 23.1% increase in the number of words with

recall greater than zero compared to the custom implemented CRM algorithm.

The general recall and precision results obtained for the shorter annotation length concord

well with our expectations. Theoretically we can expect the number of words in the annotation

to have a direct influence on the recall and precision of the system, with shorter annotations

leading to higher precision and lower recall, since fewer images will be annotated with any

given word. In our results we find that, for the non beam CRM model with an annotation

length of 5, the recall drops to 0.158 from a high of 0.184 and the precision rises from 0.197 to

0.200.

We can also observe a rather interesting result in Figure 4.5 which measures precision and

recall performance (F1 measure) against beam width. Here we can see that the BS-CRM model

performance is particularly sensitive to the beam width with an optimum width existing (in this

case 5). Furthermore, it would appear that excessively long beam widths, for example 15 and

30, do not necessarily increase performance, suggesting that it may not be worth the extra

computational effort of investigating beam widths of above 15.
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Figure 4.5: Chart depicting the effect of beam width on F1 measure for the N-CRM model with

annotation length of 4.
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N-CRM (Annotation Length=4) No Beam Beam 1 Beam 5 Beam 10 Beam 15 Beam 30

Mean Per Word Recall 0.158 0.180 0.190 0.188 0.190 0.190

Mean Per Word Precision 0.200 0.210 0.220 0.210 0.206 0.205

Words with Recall > 0 91 107 112 110 111 111

F1-Measure 0.176 0.193 0.203 0.197 0.197 0.197

Mean Per Word Recall (top words) N/A N/A 0.689 0.685 0.687 0.687

Mean Per Word Precision (top words) 0.763 0.768 0.803 0.776 0.764 0.763

Table 4.4: N-CRM model performance on the COREL testing dataset (annotation length=4) for differing beam widths. Again we reap a clear performance

gain by using the BS-CRM model with an increase in F1 measure of 14.8% (at a beam width of 5) over the CRM model.
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4.2.1.4 Annotation Length 3

Finally we evaluate the performance of the N-CRM model with an annotation length of 3.

Again the model parameters were set at β = 1.0 and µ = 5 for this experiment. The results on

the test set are displayed in Table 4.5. Here we again find that the beam width has a significant

impact on performance with a beam width of 1 being the best performing in this particular test

with a 21.1% gain in mean per word recall, 5.6% in mean word precision and a 15.6% increase

in the number of words greater than zero over the CRM model.

Even though the F1 measure remains above that of the CRM model over all beam lengths,

we do recognise a drop in mean per word precision below that of the CRM model for beams

of 5, 10, 15 and 30. Furthermore at this particular annotation length any beam of 10 and over

yield the same performance statistics suggesting that no further significant gains can be made

on higher beam widths. This observation concords with that made in Section 4.2.1.3 for the

N-CRM model with an annotation length of 4. Here we also found that there was an optimum

beam width with decreasing returns realised for widths over 15.

Given the results presented in this Section and in Sections 4.2.1.3 and 4.2.1.2 for annotation

lengths of 4 and 5 respectively, we see an increase in the performance (in terms of F1 measure)

of the BS-CRM model over the CRM as the annotation length decreases from 5 (8.6%) to 4

(14.8%) and 3 (14.6%). We posit that this performance increase directly relates to the nature

of the COREL dataset where it is more common for images to have 3-4 closely related salient

objects in this dataset.

In addition we also have to keep in mind that word-to-word correlation generally has little

impact on the very top-ranked words that have been determined by the image features with

high confidence. The correlation measure is much more effective in retrieving those words

not ranked at the very top by the image features. In this case the BS-CRM model effectively

“promotes” the words that are more consistent with the very top-ranked words and hence the

observed performance increase from 3 to 4 annotation keywords.

Furthermore we can observe the average precision reaches its maximum value (0.220) when

the annotation length is set as 4. We suggest that this is because even though a longer annotation

length results in more matched words, the number of unmatched words is also increased. Since

precision is a ratio of the number of matched words to the total number of generated words, an

annotation length of 4 appears to give the best trade-off between these two conflicting factors.

In summary, after examining annotation lengths of 3, 4 and 5 keywords, we have found that

the proposed BS-CRM model for automatic image tagging performs consistently better than as

the original CRM in all three annotation performance metrics, with the most significant gains

being produced at an annotation length of 4 keywords.
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N-CRM (Annotation Length=3) No Beam Beam 1 Beam 5 Beam 10 Beam 15 Beam 30

Mean Per Word Recall 0.114 0.139 0.142 0.142 0.142 0.142

Mean Per Word Precision 0.182 0.192 0.178 0.179 0.179 0.179

Words with Recall > 0 77 89 92 92 92 92

F1-Measure 0.140 0.161 0.158 0.158 0.158 0.158

Mean Per Word Recall (top words) N/A N/A N/A N/A N/A N/A

Mean Per Word Precision (top words) 0.773 0.772 0.718 0.719 0.719 0.719

Table 4.5: N-CRM model performance on the COREL testing dataset (annotation length=3) for differing beam widths. Performance in this case peaks at a

beam width of 1 in comparison to the annotation lengths of 4 and 5 which showed a preference for a wider beam width of 5. Here we recognise an increase

in the F1 measure of 14.6% over the CRM model.
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4.2.2 Ranked Retrieval Performance

In this Section we will evaluate the performance of the N-CRM model on the task of image

retrieval. As discussed in Section 2.5, for image retrieval performance we seek to issue queries

consisting of 1 or more words and measure the performance on a ranked list of un-annotated

images returned by the system. For a given query the relevant images are those that happen to

contain all query words in the manual annotation.

For this particular evaluation, we follow the methodology of Lavrenko et al. in their orig-

inal paper on the CRM model [35]. Since the number of all 3 and 4 word combinations is

prohibitively large we filter the COREL vocabulary to have only those words that occur at least

twice in the testing dataset. This yields a vocabulary size of 179 words.

As per our evaluation of the annotation performance, a cross-validation step is performed

first to determine the appropriate values of the β and µ parameters for the model. Here we

follow the same methodology as for the annotation performance performing an exhaustive

search (guided by MAP) over β values 0.01, 0.03, 0.1, 0.3, 1.0, 10, 30 and µ values 5,10,15,30.

Figure 4.6(a) charts the variation in MAP as these parameters are adjusted. The best µ is found

to be 5 and the best β is 1.0 giving a MAP of 0.212 on the validation set.

The retrieval results for the custom N-CRM model on queries of 1,2,3 and 4 words are

presented in Table 4.6 alongside established baselines and state-of-the-art models. The results

we have obtained are very encouraging indeed, being in very close proximity (or slightly better

than) original CRM published retrieval results. This result in combination with the CRM an-

notation performance on an annotation length of 5 words serves to prove that the custom built

CRM model operates as expected.

Furthermore, from Table 4.6 it is interesting to observe that the precision at 5 metric is

between 0.2 and 0.3 suggesting that there is at least one relevant keyword within the top 5

images returned by the system. This is a particularly good result given that the results are

averaged over many queries. Finally from the recall-precision chart in 4.6(b) we can observe

that the longer queries are higher performing dominating the shorter queries at all recall levels

which accords with our expectations [24].
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Figure 4.6: Figure 4.6(a) illustrates the optimization of the β and µ parameters of the N-CRM

model for ranked image retrieval. The surface reaches a maximum at a MAP of 0.212 for µ of 5

and β of 1.0. Setting the parameters to these optimum values and applying the model to the test

set results in the recall-precision chart depicted in Figure 4.6(b) for 1, 2, 3 and 4 word queries.

Comparing this recall-precision chart to that in [24] for the CMRM, we can see that the 1 word

query line in our chart dominates that in the paper by a considerable margin for all recall levels.
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Query Length 1 2 3 4

Number of queries 179 386 178 24

Relevant Images 1675 1647 542 67

Precision at 5

CMRM 0.199 0.131 0.149 0.208

CRM (original) 0.248 0.190 0.189 0.233

N-CRM 0.289 0.214 0.231 0.283

Mean average precision

CMRM 0.170 0.164 0.203 0.277

CRM (original) 0.235 0.253 0.315 0.447

N-CRM 0.273 0.275 0.340 0.489

Table 4.6: Table with the image retrieval performance of the N-CRM model engineered for this

dissertation against the performance of the original CRM model as published in [35] and the

original CMRM model [24]. The custom built N-CRM model outperforms the CMRM model and

matches or exceeds the performance of the original CRM model on the task of image retrieval.

4.3 COREL: Dirichlet Model

This Section reports on the results of applying the Dirichlet CRM (D-CRM) model with anno-

tation length 5 to the COREL dataset.

4.3.1 Image Annotation Performance

4.3.1.1 Parameter Optimization

The optimization results are displayed in Figure 4.7. The MAP metric peaks at a value of

0.31150 for a β of 1.0 and a µ of 1, with a µ value of 1 preferred across all beam widths.

4.3.1.2 Annotation Length 5

The test results are presented in Table 4.7. It is immediately apparent that the performance of

beam search with this particular smoothing function is not as pronounced as that of the N-CRM

model. Indeed for beam widths of 1,10,15, and 30, the performance actually decreases, with,

for example, a beam width of 1 causing a drop in mean per word recall by 11.3% and mean

per word precision by 6.7% over the no beam variant of the D-CRM model. Nevertheless as

the beam is set 5 the BS-CRM model now outperforms both the normal CRM model and the

BS-CRM model with Beam of 1. Here we realise a modest gain in mean per word recall of

1.2% and a gain in precision of 5.9% over the normal CRM model.
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The effect of increasing the beam width is particularly interesting for this experiment given

that we actually suffer a decline in performance in going from a beam width of 0 to a beam

width of 1. This clearly demonstrates the merit underlying the idea of using beam search in the

first place: with beam search we consider many different hypotheses for the next best word in

parallel only evaluating which is the best set of words at the termination of the algorithm.

We can therefore explain the performance of the D-CRM model in this case by positing

that, for a beam width of 1, the highest probability word added to the set at the second iteration

had the effect of causing more noisy keywords to be added later on during execution. For wider

beam widths, we not only consider adding the highest probability keyword at the second itera-

tion but also more lower probability words. This clearly has a beneficial effect on performance

given the performance increase at a beam width of 5.
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Figure 4.7: Figure 4.7(a) illustrates the optimization of the β and µ parameters of the D-CRM

model for image annotation. The surface reaches a maximum at a MAP of 0.312 for µ of 1 and

β of 1.0 Figure 4.7(b) illustrates that a µ of 1 is the optimal value for the Dirichlet smoothing

function for this dataset across all beam widths.
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D-CRM (Annotation Length=5) No Beam Beam 1 Beam 5 Beam 10 Beam 15 Beam 30

Mean Per Word Recall 0.191 0.171 0.193 0.185 0.189 0.196

Mean Per Word Precision 0.200 0.187 0.211 0.198 0.198 0.193

Words with Recall > 0 101 103 112 110 110 110

F1-Measure 0.195 0.179 0.201 0.191 0.194 0.194

Mean Per Word Recall (top words) 0.700 N/A 0.701 0.677 0.686 0.696

Mean Per Word Precision (top words) 0.737 0.707 0.787 0.743 0.734 0.704

Table 4.7: Dirichlet CRM (D-CRM) model performance on the COREL testing dataset (annotation length=5) for differing beam widths. Here we find a

performance gain over the no-beam model at a width of 5, with a decrease in performance at the remaining beam widths of 1, 10, 15 and 30.
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4.4 COREL: Multinomial Model

In this section we report on the test results for the Multinomial CRM (M-CRM) model for

annotation length 5 on the COREL dataset.

4.4.1 Image Annotation Performance

4.4.1.1 Parameter Optimization

The optimization results are displayed in Figure 4.8. The MAP metric peaks at a value of

0.31230 for a β of 1.0 and a λ of 0.9. The optimum λ for beam widths of 1, 5 and 10 is 0.9 and

0.7 for the higher widths of 15 and 30.

4.4.1.2 Annotation Length 5

The results of applying the M-CRM model to the test set are presented in Table 4.8. As for

the D-CRM model we notice a decrease in performance in going from the no beam M-CRM

model to a beam width of 1. As for the D-CRM model, we suggest that this might also be a

result of constraining the search for correlated keywords to just the top probability keywords

which might well introduce more noisy keywords into the set further down the line.

Introducing a wider beam of width 5 can be seen to increase the performance of the CRM

model, though again not as much as was observed for the N-CRM model. The peak perfor-

mance occurs for a beam width of 10 with an F1 measure 5.7% above the CRM model. After

a width of 10 the performance clearly falls below that of the no beam model suggesting the

greater predominance of noisy keywords being added to the sets for wider beam widths.

The fact that the N-CRM, M-CRM and D-CRM models all seem to reach peak performance

for beam widths of 1-15 is quite suggestive and further re-enforces the emerging observation

that higher beam widths are less beneficial to annotation accuracy. A possible reason for this

observation is that, in adding lower and lower probability words at very high beam widths, we

are effectively increasing the possibility of adding some noisy/unreliable keywords to the set

that “attract” (through correlation) more noisy keywords at each iteration thereby swamping

the set with irrelevant words.
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Figure 4.8: Figure 4.8(a) illustrates the optimization of the β and λ parameters of the M-CRM

model for image annotation. The surface reaches a maximum at a MAP of 0.312 for µ of 1.0

and λ of 0.9. Optimizing the λ parameter for the BS-CRM model (β held constant at 1.0) yields

a value of 0.9 for beam widths 1, 5 and 10, with a width of 0.7 preferred by beams of width 15

and 30 (Figure 4.8(b)).
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M-CRM (Annotation Length=5) No Beam Beam 1 Beam 5 Beam 10 Beam 15 Beam 30

Mean Per Word Recall 0.196 0.176 0.197 0.218 0.191 0.197

Mean Per Word Precision 0.193 0.186 0.210 0.194 0.187 0.185

Words with Recall > 0 103 104 111 115 106 107

F1-Measure 0.194 0.181 0.204 0.205 0.189 0.191

Mean Per Word Recall (top words) 0.705 N/A 0.710 0.762 0.708 0.709

Mean Per Word Precision (top words) 0.703 0.697 0.776 0.719 0.705 0.680

Table 4.8: Multinomial CRM (M-CRM) model performance on the COREL testing dataset (annotation length=5) for differing beam widths. The F1 measure

reaches a maximum at a beam width of 10, with a performance decrease over the CRM model realised at beam widths of 1, 15 and 30.
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4.5 COREL: Bernoulli Model

We conclude our evaluation of the COREL dataset by testing the Bernoulli word smoothing

function with the CRM model (B-CRM) for an annotation length 5.

4.5.1 Image Annotation Performance

4.5.1.1 Parameter Optimization

The parameter optimization for the B-CRM model (Figure 4.9(a)) finds a peak MAP at a value

of 0.31310 for a β of 1.0 and a λ of 0.9 for widths of 1 and 5, with a value of 0.5 for widths of

10, 15 and 30. In accordance with past experiments we therefore set the model parameters to

these values before applying the algorithm to the testing dataset.

4.5.1.2 Annotation Length 5

Comparing the B-CRM model with no beam to that of the M-CRM model with no beam it is

clear that we do not particularly see a significant increase in the F1 measure realising only an

increase of 2.6% from 0.194 to 0.199. This is rather surprising in a sense as from the arguments

in the literature [13] one would come to expect a much larger increase in accuracy given that we

are no longer spreading the probability over the length of the annotation as per the multinomial

model. One reason for this difference might be due to the rectangular features used by the

authors in [13] which they also cite as a contributing factor (in combination with the Bernoulli

model) to the observed performance gain. In contrast, the pre-processed COREL dataset of

Duygulu et al. used in this dissertation was segmented using the Normalized Cuts algorithm.

Considering the addition of beam search to this model we observe, once again as for the

M-CRM model, a decrease in performance for a beam width of 1, with increasing performance

for widths of 5 and 10, the latter width just managing to surpass the no beam model by a minor,

if not insignificant, amount in F1 measure (0.5%). This lower performance with a Bernoulli

word smoothing function at this annotation length suggests that the benefits of the BS-CRM

algorithm highly depends on the function that is ultimately used with the model, a result that

is not unexpected given the dependence of the word correlation calculation of the nature and

degree of smoothing. Given the results obtained on the N-CRM, M-CRM and D-CRM it would

appear that the BS-CRM is at its most effective in combination with the N-CRM smoothing

function.
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Figure 4.9: Figure 4.9(a) illustrates the optimization of the β and λ parameters of the B-CRM

model for image annotation. The surface reaches a maximum at a MAP of 0.313 for β of 1.0

and λ of 0.9. Holding β constant at 1.0, we find an optimal value of λ of 0.9 for beam widths of

1 and 5, with a value of 0.5 for widths of 10, 15 and 30.
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B-CRM (Annotation Length=5) No Beam Beam 1 Beam 5 Beam 10 Beam 15 Beam 30

Mean Per Word Recall 0.200 0.187 0.195 0.192 0.191 0.191

Mean Per Word Precision 0.198 0.198 0.204 0.209 0.190 0.189

Words with Recall > 0 106 108 111 110 106 105

F1-Measure 0.199 0.192 0.199 0.200 0.190 0.190

Mean Per Word Recall (top words) 0.706 0.675 0.700 0.707 0.707 0.706

Mean Per Word Precision (top words) 0.720 0.740 0.754 0.781 0.708 0.711

Table 4.9: Bernoulli CRM (B-CRM) model performance on the COREL testing dataset (annotation length=5) for differing beam widths. Here we can observe

very little performance benefit from using the BS-CRM model with Bernoulli word smoothing.
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4.6 PASCAL: N-CRM Model

In this section we report the parameter optimization and test results for the Normalized CRM

(N-CRM) model on the PASCAL dataset both ranked retrieval (Section 4.6.1) and for annota-

tion (Section 4.6.2).

4.6.1 Ranked Retrieval Performance

We will begin our evaluation on the PASCAL dataset by examining the retrieval performance of

the algorithm. This mirrors the evaluation performed by all of the research papers that use this

dataset and so it will help us to firstly determine whether or not the feature based representation

we have chosen and indeed the performance of the CRM model itself is at the standard of the

research literature.

4.6.1.1 Parameter Optimization

Figure 4.10 illustrates the result of the parameter optimization step for ranked retrieval. The

MAP metric peaks at a value of 0.179 for a µ of 9 and a β of 0.3.

4.6.1.2 Ranked Retrieval

PASCAL VOC 2007 participants are evaluated based on the precision/recall curve with the

quantitative measure used being the average precision (AP). We therefore follow the evaluation

procedure recommended by the competition organizers and sort the images by their probability

of containing a particular object. This results in 20 recall-precision charts (Figures 4.11, 4.12,

4.13, 4.14) and 20 average precision values (Table 4.10), one for each word in the vocabulary.

The parameters of the CRM model are set to a µ of 9 and a β of 0.3 for this test. From

the results in Table 4.10 we can observe that the N-CRM with the custom computed feature

representation performs at the level of a model using a similar feature based representation in

the literature. Here we compare our average precision results to that of Wang et al. [60] who

also use a predominantly colour based representation along with an SVM classifier. Our results

are within close proximity to that of Wang et al. which gives credence to the chosen feature

representation.

Having shown that the ranked retrieval performance is at the expected level based on the

standard evaluation metrics it is now interesting to visualize the top 5 images that are retrieved

by the system for some of the classes. In Figures 4.15, 4.16 and 4.17 we display the retrieved

images for the horse, person and TV monitor classes respectively. As can be observed from

these images, the N-CRM model is able to retrieve at least 2 relevant images for each class

peaking at 4 out of 5 correct images for the person class.
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Figure 4.10: This figure illustrates the optimization of the β and µ parameters of the N-CRM

model for ranked image retrieval. The surface reaches a maximum at a MAP of 0.179 for µ of 7

and β of 0.3.
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Average Precision Aeroplane Bicycle Bird Boat bottle Bus Car Cat Chair cow

Wang 0.367 0.124 0.220 0.215 0.112 0.085 0.323 0.134 0.242 0.075

N-CRM 0.425 0.138 0.131 0.280 0.079 0.168 0.323 0.161 0.231 0.087

Average Precision Table Dog Horse Motorbike Person Plant Sheep Sofa Train monitor

Wang 0.128 0.186 0.442 0.182 0.594 0.146 0.162 0.083 0.243 0.122

N-CRM 0.144 0.184 0.447 0.238 0.582 0.087 0.087 0.089 0.293 0.165

Table 4.10: This table presents the average precision results that have been achieved by the N-CRM model on the PASCAL dataset using the custom

computed feature set. As can be observed, the average precision results match that of the results presented by Wang et al. [60] who also predominately

use colour features on the same dataset.
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Figure 4.11: Recall-precision charts for the aeroplane, bicycle, bird, boat and bottle classes in

the PASCAL VOC 2007 dataset.
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Figure 4.12: Recall-precision charts for the bus, car, cat, chair and cow classes in the PASCAL

VOC 2007 dataset.
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Figure 4.13: Recall-precision charts for the table, dog, horse, motorbike and person classes in

the PASCAL VOC 2007 dataset.
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Figure 4.14: Recall-precision charts for the plant, sheep, sofa, train and TV monitor classes in

the PASCAL VOC 2007 dataset.
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(a) (b)

(c) (d)

(e)

Figure 4.15: Ranked retrieval results of the N-CRM model on the PASCAL dataset. Here we

rank the images according to the probability of a horse occurring in the image and take the top 5.

Two of the images returned by the system are relevant to the query which is not unreasonable

performance given the basic feature representation that has been used with the model (here

two of the images, the image of the sheep and the ruins are of a colour similar to that of a horse

which may have confused the predominantly colour based representation we have chosen).
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(a) (b)

(c) (d)

(e)

Figure 4.16: Ranked retrieval results of the N-CRM model on the PASCAL dataset. Here we

rank the images according to the probability of a person occurring in the image and take the top

5 (images presented in rank order). The system has returned 4 out of 5 relevant images. This

good performance is partly due to the over-representation of the person class in the PASCAL

training dataset thereby giving the model many exemplars on which to train.
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(a) (b)

(c) (d)

(e)

Figure 4.17: Ranked retrieval results of the N-CRM model on the PASCAL dataset. Here we

rank the images according to the probability of a TV monitor occurring in the image and take the

top 5 (the images are presented here in rank order). This is a particularly valuable test of the

system performance given that the TV monitor class is not a majority class (as is person) in the

PASCAL dataset. Here we can see that the system has returned 3 out of 5 relevant images.
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4.6.2 Image Annotation Performance

4.6.2.1 Parameter Optimization

The parameters of the CRM model are optimized as for the COREL dataset with a search over

the β− µ parameter space for the combination that maximize the MAP on the validation set.

The optimization results are shown in Figure 4.18(a). Here we find that the surface peaks at a

MAP of 0.409 for β of 0.3 and µ of 7. Holding the β constant as before we then seek the best

value for the word smoothing parameter µ for beam widths of 1 ,3, 5, 10 and 15. The results

of the µ parameter optimization for the BS-CRM model are depicted in Figure 4.18(b). Here

we can see that a µ of 5 is clearly the best performing parameter value with a steep decline in

performance realised for higher values. Furthermore the graphs for each µ at differing beam

widths track each other very closely suggesting that, for this particular dataset, the degree of

word smoothing is invariant to different settings of the beam width.

4.6.2.2 Annotation Length 5

Table 4.11 presents the annotation performance results for an annotation length of 5 words.

Here we can observe a modest increase of 2.4% in the F1 measure over the CRM model. The

mean per word precision increases and the mean per word recall falls slightly for the BS-CRM

model, but the overall result of the moves in these measure result in the F1 measure increasing.

Furthermore we can also observe that for beam widths of 3 and above there is no change in

the performance suggesting that there is no reason to search over beams larger than 1-3 for this

particular dataset.

There are many possible reasons for this observed performance. Firstly as discussed in

Chapter 3 the PASCAL dataset is recognised as being much more challenging that the COREL

dataset with objects found in many different poses and scales. Our chosen feature represen-

tation is certainly not the best possible to represent salient image regions. These factors have

both surely contributed to the more modest performance gain.

Furthermore we only have 20 keywords for this dataset which is much less than that of

COREL, with typically only 1-2 salient objects (such as “person and dog”) appearing in each

image (4-5 keyword annotations are quite rare). Thus there is not as great an opportunity

compared to the COREL dataset for us to leverage a keyword correlation measure in order to

eliminate noisy keywords.
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Figure 4.18: Figure 4.18(a) illustrates the optimization of the β and µ parameters of the B-CRM

model for image annotation. The surface reaches a maximum at a MAP of 0.409 for β of 0.3

and µ of 7. The optimal value of µ for the PASCAL dataset is constant at 7 across all beam

widths as shown by Figure 4.18(b).
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N-CRM (Annotation Length=5) No Beam Beam 1 Beam 3 Beam 5 Beam 10 Beam 15

Mean Per Word Recall 0.427 0.416 0.417 0.418 0.418 0.418

Mean Per Word Precision 0.197 0.206 0.206 0.206 0.206 0.206

Words with Recall > 0 20 20 20 20 20 20

F1-Measure 0.270 0.275 0.276 0.276 0.276 0.276

Mean Per Word Recall (top words) N/A N/A N/A N/A N/A N/A

Mean Per Word Precision (top words) N/A N/A N/A N/A N/A N/A

Table 4.11: N-CRM model performance on the PASCAL testing dataset (annotation length=5) for differing beam widths.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.19: Figure 4.19(a) was annotated with the keywords {person, dog, car, chair, sofa}.

Figure 4.19(b) was annotated with {person, bird, car, chair, dog}. Figure 4.19(c) was assigned

the tags of {person, horse,sheep,car,chair}. Figure 4.19(d) was given the tags {person, boat,

car, chair, dog}. Figure 4.19(e) was annotated with {person, chair, pottedplant, bottle, din-

ingtable}. Figure 4.19(f) was tagged with {chair, sofa, car, person, dog}. Here we can see that,

in the top 5 system assigned annotations, the N-CRM model was able to find the correct 1-2
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(a)
(b)

(c) (d)

(e) (f)

Figure 4.20: Here we have further successful annotation examples from the PASCAL dataset.

Figure 4.20(a) has been assigned the tags of {person, horse, car, chair, dog}. The image in

Figure 4.20(b) was given the tags {person, car, diningtable, bottle, chair}. Figure 4.20(c) was

annotated with {person, aeroplane, car, chair, dog}. Figure 4.20(d) was tagged with {cow,

person, car, chair, dog}. Figure 4.20(e) was annotated with {person, tvmonitor, car, chair,

dog}. Figure 4.20(f) was annotated with the keywords {motorbike, person, car, chair, dog}. In



Chapter 4. Evaluation 100

(a)

(b)

Figure 4.21: These example images demonstrate the increase in accuracy obtained using the

BS-CRM model on the PASCAL dataset. Figure 4.21(a) was tagged with the keywords {person,

dog, car, chair, sofa} by the BS-CRM model. The CRM model tagged the image with {person,

dog, car, chair, sheep}. The keyword correlation measure has determined that “sofa” best goes

with the existing set {person, dog, car, chair} than does “sheep”. Another example is provided

in Figure 4.21(b). Here the BS-CRM model tagged the image with {person, chair, pottedplant,

diningtable, bottle}, whilst the CRM model tagged the image with {person, chair, pottedplant,

diningtable, bicycle}. Here we observe that the BS-CRM determines that “bottle” best goes with

the existing word set than does “bicycle”.



Chapter 5

Conclusions and Future Work

5.1 Overview

In this dissertation we have investigated the effect of using beam search with the Continuous

Relevance Model (CRM) to retrieve a near-optimal set of correlated keywords for the purposes

of image annotation refinement. The novel model that was developed as part of this dissertation

was christened the “Beam Search CRM” or BS-CRM model. In this Chapter we summarise the

main findings of the research and provide some pointers to possible future research questions

in the field.

5.2 Summary of dissertation achievements

The original Continuous Relevance Model (CRM) and the augmented model with beam search

and keyword correlation (the BS-CRM model) were both successfully implemented. A signif-

icant amount of thought went into the design of the model so as to ensure that they both ran in

reasonable time and memory. Through expressing the central CRM equation as a sequence of

matrix operations the amortized runtime to annotate all 500 COREL images was found to be

0.45 seconds compared to 660 seconds as reported in the literature. The memory requirements

of the algorithm were of a sufficiently modest level so as to allow the nearly 10,000 image

PASCAL dataset to be processed in memory. Furthermore through a comprehensive evaluation

we have uncovered several interesting insights into the situations in which the beam search

keyword correlation algorithm is most effective on the standard research image datasets.

The results suggest that, in some cases, the BS-CRM model can be an effective means of

increasing annotation accuracy as measured by mean per word recall and precision. The best

results obtained demonstrated that, over the original CRM model as published by Lavrenko et

al. [35], the BS-CRM model achieves a 6.8% increase in mean per word recall and a 31.0% in

increase in mean per word precision with an increase of 6.5% in the number of words with re-

101
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call greater than zero. Clearly keyword correlation has the ability to eliminate noisy keywords

from the image annotation and thereby increase accuracy. Furthermore over varying annota-

tion lengths of 3, 4 and 5 keywords we found that the proposed BS-CRM model performed

consistently better than the original CRM model in all three annotation performance metrics,

with the most gains being produced at an annotation length of 4 keywords.

We also found that the performance of the BS-CRM model greatly depends on the beam

width selected, with widths between 1-15 performing the best on the COREL dataset, with

performance declining for wider beam widths. This suggested that there was no advantage

in expending additional computation effort search over wider beams than around 15. The

hypothesized reason for this observation was thought to be the low probability words that

are considered for higher and higher beam widths which might serve to “attract” more noisy

keywords to the set through keyword correlation.

In addition, another notable result suggests that the performance of the BS-CRM is also

highly dependent on the word smoothing function that is chosen with the most significant gains

being realised for the N-CRM model, lower gains with the Multinomial and Dirichlet models

and no significant gains at all with the Bernoulli word smoothing model. In this respect it

would appear that, through the nature and degree of smoothing provided, the N-CRM model is

better able to allow the correlation measure to capture the relationships between the keywords.

The CRM and BS-CRM models were also evaluated on the PASCAL dataset which has

been cited as being more challenging compared to the COREL dataset. Indeed the modest

increase in F1 measure of 2.4% realised by the BS-CRM is suggestive of the difficultly of this

particular dataset. We also have to take into account the relatively simple set of features selected

to model the salient regions in the PASCAL images which, along with the small vocabulary

size, may have contributed the most to the lower performance of the BS-CRM model on this

dataset.

5.3 Limitations

There are two areas that in hindsight could be improved upon in this dissertation should more

time have been made available both of which relate to the pre-processing of images. Firstly

and foremostly, the image feature representation chosen for the PASCAL dataset (mixture of

simple colour, texture and position descriptors) was certainly not the most optimal feature

representation and may well have lead to the modest performance that was experienced on

this dataset. It was certainly very challenging to trade-off the computational and memory

limitations of a 4GB, 32-bit machine running MATLAB with the depth of representation given

by the extracted features.

Whilst it was an achievement in itself to actually successfully test the CRM model on this
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dataset and obtain literature quality results it is nevertheless the author’s opinion that to fully

ascertain the benefits of the new BS-CRM algorithm a better feature representation would need

to be examined. This would result in more high quality words being retrieved initially into the

word sets through the strong image features, which the BS-CRM model could subsequently

leverage to attract correlated keywords to the set.

In addition some questions have to be raised as to the validity of the PASCAL dataset in

itself as a good test bed for the keyword correlation mechanism given the small vocabulary size

of 20 keywords and the fact that usually only 1-2 salient objects appear in each image (there is

an average of only 1.7 keywords per image in the training dataset). Given this it is likely to be

very difficult to make full use of keyword correlation to prune noisy keywords. In hindsight, for

this dissertation, it might have been better to examine standard datasets such as those advocated

by Makadia et al [38]. Here the authors use the IAPR TC-12 and the ESP Game datasets both

of which are of a more challenging nature and of a larger size that the COREL dataset with the

further advantage of having an average of 4.5 words per image.

5.4 Future Work

There are a significant number of avenues for future work both within the narrow domain

of image tagging considered in this dissertation (keyword correlation) and in the field as a

whole. In terms of capturing keyword correlation, the following would be interesting avenues

for further research:

1. Different annotation lengths: We were able to investigate only a small selection of

different keyword lengths on the COREL dataset of 3, 4 and 5 words for only one partic-

ular word smoothing function (the Normalized CRM model). This experiment could be

extended further both to consider datasets that have longer annotations for each image

(above 5) and to determine the effect that the word smoothing function used with the

BS-CRM has on the annotation refinement capability.

Extending this issue further, given that we observed a peak in performance of the BS-

CRM algorithm at a particular annotation length (4 in this case), one could investigate

how automatic annotation length determination techniques like those suggested by Jin et

al. [26] could be used, if at all, to further improve on performance with the BS-CRM

model.

2. Investigation of much larger keyword vocabularies: In this dissertation we have fol-

lowed the bulk of the work in the literature and limited ourselves to relatively small

vocabulary sizes (260 words for the COREL dataset). It would certainly be very interest-

ing to ascertain how the BS-CRM algorithm is able to leverage a much larger vocabulary
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size to eliminate noisy annotation keywords.

3. Utilization of outside sources of keyword knowledge: In a similar spirit, another ad-

ditional avenue for future research would be to investigate how the World Wide Web

and the large WorldNet lexical database could be mined in combination with the image

dataset vocabulary itself in order to gain further information on word correlation that

may be used by the BS-CRM model to increase keyword refinement accuracy.

4. Active learning: In this dissertation we experienced significant difficulty (due to mem-

ory limitations) in processing large datasets such as the PASCAL VOC 2007 dataset with

nearly 10,000 images. To overcome the memory limitations with large datasets one pos-

sibility would be to apply an active learning technique to significantly reduce the number

of training examples by selectively sampling annotated images. The basic premise of ac-

tive learning is to selectively sample data samples so that the uncertainty in determining

the right model is reduced by the largest possible margin. Such an approach has been

applied to image annotation in [26] with notable success.

With regards to the automatic tagging field as a whole, after conducting a review of the

literature in Chapter 2, it is the author’s own personal opinion that future research avenues in

the field can be usefully summarised along the following four distinct dimensions:

1. Precision/Recall Accuracy: There already seems to be a flurry of effort in the field

within this area. Many of the papers one encounters are interested in improving the

precision/recall accuracy of the annotation algorithms on fixed datasets as their major

concern. This is both a good and a bad objective, given that in maximizing the pre-

cision/recall accuracy other important but perhaps less attractive areas such as feature

representation and extraction and unsupervised learning will suffer as a consequence.

It will certainly only be a matter of time before aspects such as feature extraction and

representation, and unsupervised learning present themselves on the critical path barring

further significant progress in the field. This author would like to encourage more effort

in these related areas, but with also a continuing, but perhaps less intense, focus on

introducing and refining algorithms which improve the annotation accuracy.

2. Feature Extraction & Representation: This area seems to be neglected to an extent

at the moment, which simply could be a reflection of the fact that the field is still in its

infancy and other areas such a model development are being giving precedence before

attention then turns to feature engineering. Firstly a review is badly needed into the best

set of feature representations for annotation, given that many authors seem to be simply

using feature sets from existing authors (e.g. the COREL dataset of Duygulu et al.).
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Furthermore, the dependence on segmentation and region based interest operators needs

to be reduced or eliminated given the problems these algorithms have in finding coherent

objects in images and returning a suitably representative number of regions from images.

A method of extending the popular “bag of features” approach with spatial information is

also another useful extension which may have the possibility of extending the robustness

of the annotation algorithms.

3. Unsupervised Learning: There is a dependence on high quality and relatively small

manually labelled image libraries in the literature. This is an unhealthy fixation for a

number of reasons, the most prominent being the fact that the algorithms are not entirely

being tested to the maximum possible extent in environments that would be common

outside of a purely research domain, for example in the commercial or private domains.

This limits applicability of the algorithms to real world applications.

In the short term, work therefore needs to be conducted in extending the standard set

of testing libraries to include images from diverse sources that have images varying in

quality, resolution and colour depth. This would then entice new research to tackle these

variations by producing more robust algorithms.

In the medium to long term, researchers would do well to take inspiration from the work

of Fergus et al. [14] on unsupervised learning. Here the authors effectively bootstrap

their model using images downloaded from Google image search. Advancements in

this area would reduce the reliance on high quality manually labelled image datasets

completely, thereby further opening up the transition of the annotation technology to

commercial mainstream applications.

4. Scalability & Performance: Finally if the annotation systems in the literature are ever

to reach the mainstream it is crucial that future research is concentrated on ensuring that

mechanisms are in place to improve the scalability of the algorithms, with regards to the

number of images they can handle in terms of training and indeed in the time it takes to

learn new annotation concepts.

Depending on the time taken to surmount the aforementioned challenges, the development

of a robust and reliable commercially available automated image tagging system may only

take only a decade or perhaps may well follow that of Roman character recognition which

was a problem that took 50 years to solve but now manages to achieve a remarkable accuracy

approaching 99.5%. Nevertheless, no matter how long it may take for researchers to solve

these remaining challenges in the field, we can be sure that when they are finally surmounted

the advent of robust automated image annotation systems coupled with efficient CBIR solutions

will certainly revolutionize our daily lives by placing a truly huge collection of images at our

fingertips.



Appendix A

A.1 Example Source Code Listing

This Appendix contains a sample of the main functions used for the CRM and BS-CRM mod-

els. The following source code is listed which together cover the majority of the main compo-

nents of the image tagging system:

• Image annotation algorithm

• Beam search algorithm

• Non-parametric kernel density estimation

• Image feature extraction

• Cross validation framework

A.1.1 Image annotation algorithm

1 % CRM_ANNOTATE Annotates a set of images with keywords from the

2 % vocabularly

3 %

4 % Authors: Sean Moran

5 function [annotations,crm_prob] = crm_annotate(train_image_ind, test_image_ind,

test_word_ind)

6

7 global MAT_PATH;

8 global DATASET;

9 global WORD_SMOOTHING_FUNCTION;

10 global BETA;

11 global MU;

12 global LAMBDA;

13 global WORD_SMOOTHING_FUNCTION_NAME;

106
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14 global DO_BEAM_SEARCH;

15

16 disp(’CRM INFO: Beginning Image Annotation...’)

17 disp(’ ’)

18

19 matfile = [MAT_PATH,’\’,DATASET,’_similarity_matrices.mat’];

20

21 if (exist(matfile, ’file’) > 0)

22

23 BETA_CUR = BETA;

24 MU_CUR=MU;

25 LAMBDA_CUR=LAMBDA;

26 WORD_SMOOTHING_FUNCTION_NAME_CUR=WORD_SMOOTHING_FUNCTION_NAME;

27

28 load(matfile, ’log_kde_prob’, ’log_word_prob’, ’log_kde_norm_prob’, ’MU’, ’

LAMBDA’,’BETA’, ’WORD_SMOOTHING_FUNCTION_NAME’);

29

30 % Check if parameters have changed since last execution - if so

we need to re-compute...

31 if (BETA˜=BETA_CUR)

32

33 disp(’ ’)

34 disp(’CRM INFO: BETA parameter has changed...re-calculating KDE

Similarity Matrix...’)

35 disp(’ ’)

36

37 BETA=BETA_CUR;

38

39 log_kde_prob = compute_kdesim_matrix(train_image_ind, test_image_ind);

40 log_kde_norm_prob = repmat(logsumexp(log_kde_prob,2),[1 size(

train_image_ind,1)]);

41

42 save(matfile,’log_kde_prob’, ’log_word_prob’, ’log_kde_norm_prob’, ’MU’,

’LAMBDA’,’BETA’,’WORD_SMOOTHING_FUNCTION_NAME’);

43 end

44

45 % We re-compute the word smoothing matrix if the paramters MU,

LAMBDA

46 % have changed, or if the vocab size has changed or if we change

the

47 % smoothing function.
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48 if ((MU_CUR˜=MU) || (LAMBDA_CUR˜=LAMBDA) ||(size(test_word_ind,1)˜=size(

log_word_prob,2)) || (strcmp(WORD_SMOOTHING_FUNCTION_NAME,

WORD_SMOOTHING_FUNCTION_NAME_CUR)˜=1))

49

50 disp(’ ’)

51 disp(’CRM INFO: Word smoothing parameter/vocab size has changed...re-

calculating Word similarity matrix...’)

52 disp(’ ’)

53

54 WORD_SMOOTHING_FUNCTION_NAME=WORD_SMOOTHING_FUNCTION_NAME_CUR;

55 WORD_SMOOTHING_FUNCTION=str2func(WORD_SMOOTHING_FUNCTION_NAME);

56

57 LAMBDA=LAMBDA_CUR;

58 MU=MU_CUR;

59

60 log_word_prob = WORD_SMOOTHING_FUNCTION(test_word_ind, train_image_ind);

61

62 save(matfile,’log_kde_prob’, ’log_word_prob’, ’log_kde_norm_prob’, ’MU’,

’LAMBDA’,’BETA’,’WORD_SMOOTHING_FUNCTION_NAME’);

63 end

64

65 else

66 disp(’ ’)

67 disp(’CRM INFO: Calculating Word and KDE similarity matrices...Please wait

....’)

68 disp(’ ’)

69

70 log_kde_prob = compute_kdesim_matrix(train_image_ind, test_image_ind);

71 log_kde_norm_prob = repmat(logsumexp(log_kde_prob,2),[1 size(train_image_ind

,1)]);

72 log_word_prob = WORD_SMOOTHING_FUNCTION(test_word_ind, train_image_ind);

73

74 save(matfile,’log_kde_prob’, ’log_word_prob’, ’log_kde_norm_prob’, ’MU’, ’

LAMBDA’,’BETA’,’WORD_SMOOTHING_FUNCTION_NAME’);

75 end

76

77 word_prob = exp(log_word_prob);

78 image_posterior_prob = exp(log_kde_prob-log_kde_norm_prob);

79 crm_prob = image_posterior_prob*word_prob;

80

81 beam_word_sets=[]; beam_probs=[];

82 if (DO_BEAM_SEARCH)
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83 % Refine the annotation results via beam search

84 [beam_word_sets,beam_probs] = crm_beam_search(crm_prob, image_posterior_prob

, word_prob, test_word_ind);

85 end

86

87 annotations = store_result_in_struct(crm_prob, test_word_ind, beam_word_sets,

beam_probs);

88

89 disp(’ ’)

90 disp(’CRM INFO: Image Annotation complete...’)

91 disp(’ ’)

A.1.2 Beam search algorithm

1 % CRM_BEAM_SEARCH Effficently searches for a set of tags maximizing

the CRM

2 % keyword correlation objective function.

3 %

4 % Authors:: Sean Moran

5 function [top_word_sets,word_probs] = crm_beam_search(crm_prob,

image_posterior_prob, word_prob, test_word_ind)

6

7 global BEAM_WIDTH;

8 global TOP_ANNOTATION_WORDS_NO;

9

10 disp(’CRM INFO: Refining Annotations using Beam Search...’);

11

12 crm_prob_orig=crm_prob; % Take a copy of the original CRM results to

re-use for each beam

13

14 word_sets_total=[];

15 real_word_sets_total=[];

16 set_probs_total=[];

17 no_test_images=size(image_posterior_prob,1);

18

19 for i=1:BEAM_WIDTH

20

21 disp([’CRM INFO: On Beam number...’,int2str(i)]);

22

23 count = 1;

24 crm_prob=crm_prob_orig;

25
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26 set_probs=[];

27 top_probs_prev=[];

28 word_sets=[];

29 real_word_sets=[];

30

31 while count <= TOP_ANNOTATION_WORDS_NO

32

33 [top_probs, top_words] = sort(crm_prob,2,’descend’);

34

35 if (count == 1)

36 top_probs = top_probs(:,1);

37 top_words = top_words(:,1);

38 elseif(count == 2)

39 top_probs = top_probs(:,i);

40 top_words = top_words(:,i);

41 else

42 top_probs = top_probs(:,1);

43 top_words = top_words(:,1);

44 end

45

46 word_sets = [word_sets,top_words];

47

48 % The word indices in the following set correspond to the

actual

49 % word indices in the original vocabularly

50 real_word_sets = [real_word_sets,test_word_ind(top_words)];

51

52 set_probs = top_probs;

53

54 %top_probs_rep=repmat(top_probs,[1 size(image_posterior_prob

,2)]);

55

56 top_probs_rep=word_prob(:,top_words)’;

57

58 if (˜isempty(top_probs_prev))

59 top_probs_rep=top_probs_rep.*top_probs_prev;

60 end

61

62 top_probs_prev = top_probs_rep;

63

64 % Re-calculate the annotation probabilities

65 crm_prob = (top_probs_rep.*image_posterior_prob)*word_prob;
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66

67 % Set the top words probability to zero so we don’t take out

the same word again

68 indy = reshape(word_sets’, [size(word_sets,1)*size(word_sets,2),1])’;

69 indx = reshape(repmat((1:1:no_test_images)’,[1,size(word_sets,2)])’,[

size(word_sets,1)*size(word_sets,2),1])’;

70 ind = sub2ind(size(crm_prob), indx, indy);

71 crm_prob(ind)=0;

72

73 count = count + 1;

74 end

75

76 word_sets = reshape(word_sets’,[TOP_ANNOTATION_WORDS_NO,1, no_test_images])

;

77 real_word_sets= reshape(real_word_sets’,[TOP_ANNOTATION_WORDS_NO,1,

no_test_images]);

78

79 word_sets_total = [word_sets_total,word_sets];

80 real_word_sets_total = [real_word_sets_total,real_word_sets];

81

82 set_probs_total=[set_probs_total,set_probs];

83

84 end

85

86 % Pull out the top wordsets for each image across all beams

87 [sorted_probs, sorted_prob_ind] = sort(set_probs_total,2,’descend’);

88 top_set_probs=sorted_probs(:,1);

89

90 real_word_sets_total=reshape(real_word_sets_total(:),[TOP_ANNOTATION_WORDS_NO

BEAM_WIDTH*no_test_images]);

91 word_sets_total=reshape(word_sets_total(:),[TOP_ANNOTATION_WORDS_NO BEAM_WIDTH*

no_test_images]);

92

93 top_beams = sorted_prob_ind(:,1);

94 beam_offset_ind = (0:BEAM_WIDTH:(BEAM_WIDTH*no_test_images-1))+top_beams’;

95 top_word_sets=real_word_sets_total(:,beam_offset_ind);

96

97 % Now we want to pull out P(w|I) for each word selected for the

purposes of TREC eval

98 word_sets_total=word_sets_total(:,beam_offset_ind);

99 word_sets_total = [word_sets_total(:),reshape(repmat((1:1:no_test_images)’,[1

TOP_ANNOTATION_WORDS_NO])’,[no_test_images*TOP_ANNOTATION_WORDS_NO,1])];
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100

101 % Get the words in the sets in the correct order

102 ind=sub2ind(size(crm_prob_orig),word_sets_total(:,2),word_sets_total(:,1));

103 [word_probs,pos] = sort(reshape(crm_prob_orig(ind),[TOP_ANNOTATION_WORDS_NO,

no_test_images]),1,’descend’);

104 pos = [pos(:),reshape(repmat((1:1:no_test_images)’,[1 TOP_ANNOTATION_WORDS_NO])

’,[no_test_images*TOP_ANNOTATION_WORDS_NO,1])];

105 ind=sub2ind(size(top_word_sets),pos(:,1),pos(:,2));

106 top_word_sets=reshape(top_word_sets(ind),[TOP_ANNOTATION_WORDS_NO

no_test_images]);

A.1.3 Non-parametric kernel density estimation

1 % COMPUTE_GAUSSKDE_LOGPROB Computes the similarity between images I

and J

2 %

3 % Authors: Sean Moran

4 function log_prob = compute_gausskde_logprob(test_image_ind, train_image_ind)

5

6 global BETA;

7 global DIM;

8 global LOG_INV_TRAIN_FEATURE_SET_SIZES;

9 global TEST_DOC_BLOBS_MAT;

10 global DOC_BLOBS_MAT;

11

12 kde_coeff = -1*((log(2*pi*BETA))*(DIM/2));

13

14 test_blobs= TEST_DOC_BLOBS_MAT(:,:,test_image_ind);

15 features = DOC_BLOBS_MAT(:,:,train_image_ind);

16

17 train_feature_dims = size(features);

18 test_feature_dims = size(permute(test_blobs,[2 1 3]));

19

20 if (size(test_feature_dims,2)==2) % In the case where the block size is

1 test image

21 test_feature_dims(3)=1;

22 end

23

24 dist = reshape(sqrt(sqdist(test_blobs(:,:),features(:,:))),[test_feature_dims

(1) test_feature_dims(3) train_feature_dims(2:end)]);

25 dist = permute(dist,[3 1 4 2]);

26
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27 kde_exp_val = (-1*(dist./BETA));

28

29 log_probs = kde_coeff+kde_exp_val;

30

31 log_probs = logsumexp(log_probs);

32

33 log_inv_train_feature_set_sizes=repmat(LOG_INV_TRAIN_FEATURE_SET_SIZES,[1 1 1

size(log_probs,4)]);

34

35 log_prob = nansum(log_probs+log_inv_train_feature_set_sizes(:,:,train_image_ind

,:),2);

36

37 log_prob = squeeze(permute(log_prob, [1 3 2 4]))’;

A.1.4 Image feature extraction

1 % COMPUTE_GAUSSKDE_LOGPROB Extracts image features using a mixture

of

2 % simple colour, position and texture descriptors.

3 %

4 % Authors: Sean Moran

5 function [] = compute_image_features(image_dir, results_dir, annotation_path,

vocab_path, image_type)

6

7 image_files=dir([ image_dir ’/*.jpg’]);

8 image_file = { image_files.name };

9

10 no_images= length(image_file);

11

12 blobs_fname = [results_dir,’\’,image_type,’_blobs.txt’];

13 doc_blobs_fname = [results_dir,’\’,image_type,’_document_blobs.txt’];

14 words_fname = [results_dir,’\’,image_type,’_document_words.txt’];

15

16 indices_fname = [results_dir,’\’,image_type,’_image_indices.txt’];

17

18 fp = fopen(indices_fname, ’wt’);

19

20 fid = fopen(vocab_path,’r’);

21 vocab = textscan(fid,’%s’,’delimiter’,’\n’);

22 fclose(fid);

23 vocab = vocab{:};

24
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25 blob_id = 1;

26 feature_count =1;

27 M = 85; % spacing of points in the grid

28

29 for i = 1:no_images

30

31 disp([’Pre-processing image: ’,image_file{i}]);

32 image = imread([ image_dir ’/’ image_file{i} ]);

33

34 image = im2double(imresize(image, [375 500]));

35

36 xyz_im=vl_rgb2xyz(image);

37 hsv_im=rgb2hsv(image);

38 lab_im=vl_xyz2lab(xyz_im);

39

40 [ nx ny dummy ] = size(image);

41

42 x = M:M:(nx);

43 y = M:M:(ny);

44

45 no_features = size(x,2)*size(y,2);

46 feature_vec=[];

47 for xx = 1:length(x)

48 for yy = 1:length(y);

49 feature_vec = [feature_vec;extract_image_features(image, lab_im,

hsv_im, (x(xx)-M+1):x(xx),(y(yy)-M+1):y(yy),(x(xx)/2)/nx,(y(yy)/2)/ny)];

50 end

51 end

52

53 blob_id_vec = [feature_count:1:((feature_count+no_features)-1)];

54

55 rec=PASreadrecord([annotation_path,’\’,image_file{i}(1:end-4),’.xml’]);

56

57 % Find the indices of the words from the annotations

58 words=[];

59 for j=1:size(rec.objects,2)

60 word = rec.objects(j).class;

61 for k=1:size(vocab,1)

62 if (˜isempty(strfind(word,vocab{k})))

63 break;

64 end

65 end
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66 if isempty(intersect([k],words))

67 words=[words,k];

68 end

69 end

70

71 no_words = size(words,2);

72 words = [words,repmat(-99,[1 10-no_words])]; % Again we pad the

words to a length of 10

73

74 dlmwrite(words_fname,words,’delimiter’,’\t’,’-append’);

75 dlmwrite(blobs_fname,feature_vec,’delimiter’,’\t’,’-append’);

76 dlmwrite(doc_blobs_fname,blob_id_vec,’delimiter’,’\t’,’-append’);

77

78 fprintf(fp, ’%d\t%s\n’, blob_id, image_file{i}(1:end-4));

79

80 disp([int2str(blob_id),’/’,int2str(no_images),’ images processed...’]);

81

82 blob_id = blob_id +1;

83 feature_count = feature_count + no_features;

84 end

85

86 fclose(fp);

A.1.5 Cross validation framework

1 % OPTIMIZE_MU_AND_BETA Cross validation framework for the mu and

beta

2 % parameters of the CRM model

3 %

4 % Authors: Sean Moran

5 function [] = optimize_mu_and_beta(train_set_ind,test_set_ind,root_dir_name)

6

7 global BETA;

8 global MU;

9 global VOCAB_TEST_SET;

10 global TREC_ANN_CV_REL_FILE;

11 global TREC_RET_CV_REL_FILE;

12 global ANN_CV_QREL_DATA;

13

14 % We need to create the trec .qrel files for this particular split

of data
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15 ANN_CV_QREL_DATA = create_ann_trec_qrel_file(VOCAB_TEST_SET, test_set_ind,

TREC_ANN_CV_REL_FILE);

16 create_ret_trec_qrel_file(VOCAB_TEST_SET, test_set_ind, TREC_RET_CV_REL_FILE);

17

18 disp(’ ’)

19 disp(’CRM INFO: Finding optimum MU and BETA parameters for the Model ...’);

20

21 beta_values=[0.01,0.03,0.1,0.3,1,3,10,30];

22 mu_values=[5,10,15,20,30];

23

24 max_ann_fm = -Inf;

25 max_ret_map = -Inf;

26 max_ann_mu = 0;

27 max_ann_beta = 0;

28 max_ret_mu = 0;

29 max_ret_beta = 0;

30

31 beta_count = 1;

32

33 ann_results_fname = [root_dir_name,’\cv_ann_results.txt’];

34 fp1 = fopen(ann_results_fname, ’wt’);

35 ret_results_fname = [root_dir_name,’\cv_ret_results.txt’];

36 fp2 = fopen(ret_results_fname, ’wt’);

37

38 while (beta_count <= size(beta_values,2))

39

40 BETA=beta_values(:,beta_count);

41 mu_count= 1;

42

43 while (mu_count <= size(mu_values,2))

44

45 MU= mu_values(:,mu_count);

46

47 disp(’ ’)

48 disp([’CRM INFO: MU =’,sprintf(’%.3f’,MU),’ BETA =’,sprintf(’%.3f’,

BETA)]);

49

50 [ann_fm, ret_map] = compute_cv_stats(train_set_ind, test_set_ind,

root_dir_name);

51

52 if (ann_fm > max_ann_fm)

53 max_ann_fm = ann_fm;
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54 max_ann_mu = MU;

55 max_ann_beta = BETA;

56 end

57

58 if (ret_map > max_ret_map)

59 max_ret_map = ret_map;

60 max_ret_mu = MU;

61 max_ret_beta = BETA;

62 end

63

64 fprintf(fp1, ’%.5f\t%.5f\t%.5f\n’,MU,BETA,ann_fm);

65 fprintf(fp2, ’%.5f\t%.5f\t%.5f\n’,MU,BETA,ret_map);

66

67 disp([’CRM INFO: Current Annotation MAP ... ’, sprintf(’%.5f’,ann_fm)

]);

68 disp([’CRM INFO: Best Annotation MAP ... ’, sprintf(’%.5f’,max_ann_fm

)]);

69

70 mu_count = mu_count + 1;

71

72 end

73

74 beta_count = beta_count + 1;

75 end

76

77 fclose(fp1);

78 fclose(fp2);

79

80 disp(’CRM INFO: Optimization finished ...’);

81

82 disp(’ ’);

83

84 best_results_fname = [root_dir_name,’\cv_best_results.txt’];

85 fp3 = fopen(best_results_fname, ’wt’);

86

87 fprintf(fp3, ’%s\t%.5f\t%.5f\n’,’Best ANN MAP’,max_ann_fm);

88 fprintf(fp3, ’%s\t%.5f\t%.5f\n’,’Best ANN MU’,max_ann_mu);

89 fprintf(fp3, ’%s\t%.5f\t%.5f\n’,’Best ANN BETA’,max_ann_beta);

90 fprintf(fp3, ’%s\t%.5f\t%.5f\n’,’Best RET MAP’,max_ret_map);

91 fprintf(fp3, ’%s\t%.5f\t%.5f\n’,’Best RET MU’,max_ret_mu);

92 fprintf(fp3, ’%s\t%.5f\t%.5f\n’,’Best RET BETA’,max_ret_beta);

93



Appendix A. 118

94 fclose(fp3);

95

96 disp(’CRM INFO: Annotation Results ...’);

97 disp([’CRM INFO: Best MAP: ’, sprintf(’%.5f’,max_ann_fm)]);

98 disp([’CRM INFO: Best MU: ’, sprintf(’%.5f’,max_ann_mu)]);

99 disp([’CRM INFO: Best BETA: ’, sprintf(’%.5f’,max_ann_beta)]);

100 disp(’ ’)

101 disp(’CRM INFO: Retrieval Results ...’);

102 disp([’CRM INFO: Best MAP: ’, sprintf(’%.5f’,max_ret_map)]);

103 disp([’CRM INFO: Best MU: ’, sprintf(’%.5f’,max_ret_mu)]);

104 disp([’CRM INFO: Best BETA: ’, sprintf(’%.5f’,max_ret_beta)]);
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