

Sean Moran¹, Pierre Marza^{†,1,2}, Steven McDonagh¹, Sarah Parisot^{1,3}, Gregory Slabaugh¹

Huawei Noah's Ark Lab¹ INSA Lyon² Mila Montréal³

Introduction

Problem

- Automated image enhancement is an ill-posed problem requiring smooth local adjustments as well as global transformations.
- State of the art methods mainly rely on global (lack fine-grained details) or pixel level enhancements (noisy, difficult to interpret).

Inspiration

- Professional artists typically use a combination of global and local enhancement tools to manually enhance images.
- Highly popular local, parametrised enhancement tools allow for smooth local adjustments:

Brush tool Graduated filter Radial filter

Proposed approach and Contributions

- Introduction of learnable parametric Elliptical, Graduated, **Polynomial** image filters to reproduce artist **local** image retouching practices.
- A novel architecture enabling regression of spatially localized image filter parameters for the target application of input image enhancement.
- Filter parameterization provides interpretable and intrinsically regularised filters and facilitates human feedback.
- A plug-and-play neural block with a filter fusion mechanism enabling the learning of multiple filters simultaneously.
- State of the art performance on three competitive benchmarks.

Graduated Filter

Cubic (Polynomial) Filter

Mixture of Elliptical Filters

† work carried out during an internship at Huawei Noah's Ark Lab

DeepLPF: Deep Local Parametric Filters for Image Enhancement

Method Overview

- Estimate a $H \times W \times C$ dimensional feature map using a standard CNN backbone (e.g. ResNet, UNet).
- are estimated using two parallel regression blocks and then fused, resulting in a scaling map that is element-wise multiplied to the input.

Parametric Filters Instantiation

Graduated and Elliptical filters

- Instantiating the software Graduated and Radial filter tools respectively.
- Geometrically-regularized heatmaps: associating each pixel in the image with 3 scaling factors (one per RGB channel) to be applied.
- k instances of these filter types can be predicted and then combined.

100 % scaling factor

Polynomial filter

- General instantiation of the brush tool.
- A single filter estimated for a given input.
- Polynomial function mapping the intensity iand location (x, y) of each pixel within the image to a new intensity value i'.

Fusion of graduated and elliptical filters

- Multiple instances of the same filter type : Element-wise multiplication resulting in a final heatmap
- Fusion of graduated and elliptical heatmaps : Simple addition

• The first single stream path estimates the parameters of a polynomial filter that is subsequently applied to the pixels of the backbone enhanced image. • The two stream path applies more constrained, local enhancements in the form of elliptical and graduated filters. The adjustment maps of these filters

Filter Parameter Prediction Network

Each of the three filter blocks contains a filter parameter prediction network.

- Input : set of features inferred by a backbone network (e.g. U-Net) concatenated with the image to be enhanced.
- Regresses the parameter values of the corresponding filter type.
- k (hyperparameter) instances of a same filter type can be obtained by estimating $k * nb_{parameters}$ outputs.

Filter	# Parameters	Parameters
Graduated	G=8	$s_q^R, s_q^G, s_q^B, m, c, o_1, o_2, g_{inv}$
Elliptical	E=8	$s_e^R, s_e^G, s_e^B, h, k, heta, a, b$
Cubic-10	P = 30	$\{A \cdots J\}$ per colour channel
Cubic-20	P = 60	$\{A \cdots T\}$ per colour channel

Loss Function

Given a set of N image pairs $\{(Y_i, \hat{Y}_i)\}_{i=1}^N$, where Y_i is the reference image and \hat{Y}_i is the predicted image, we define the DeepLPF training loss function as:

 $\mathcal{L} = \sum_{i=1}^{N} \{ \omega_{\text{lab}} || Lab(\hat{Y}_i) - Lab(Y_i) ||_1 + \omega_{\text{ms-ssim}} (1 - \text{MS-SSIM}(L(\hat{Y}_i), L(Y_i))) \}$

 $Lab(\cdot)$: CIELab Lab channels of the input image $L(\cdot)$: L channel of the image in CIELab colour space

DESCRIPTION SEATTLE WASHINGTON JUNE 16-18 2020

Quantitative results

- PSNR, SSIM, LPIPS state-of-the-art performance for classical image retouching and low-light enhancement tasks
- Efficient architecture (few neural weights)

Model	PSNR ↑	$\mathbf{SSIM}\uparrow$	$\mathbf{LPIPS} \downarrow$	# Weights			
MIT-Adobe-5K-DPE dataset [4]							
DeepLPF	23.93	0.903	0.582	$1.8 \mathrm{M}$			
DPE $[4]$	23.80	0.900	0.587	3.3 M			
MIT-Adobe-5K-UPE dataset [7]							
DeepLPF	24.48	0.887	0.103	800K			
DPE $[4]$	22.15	0.850		3.3 M			
DeepUPE	[7]23.04	0.893	0.158	1.0 M			
SID dataset [3]							
DeepLPF	26.82	0.702	0.564	$2.0 \mathrm{M}$			
U-Net $[3]$	26.61	0.680	0.586	7.8 M			

Qualitative results

References

- [1] Mathieu Aubry et al. Fast local laplacian filters: Theory and applications ACM Trans. Graph., 2014.
- [2] Vladimir Bychkovsky et al. Learning photographic global tonal adjustment with a database of input/output image pairs. In CVPR, 2011. [3] Chen Chen et al. Learning to see in the dark. In CVPR, 2018.
- [4] Yu-Sheng Chen et al. Deep photo enhancer: Unpaired learning for image enhancement from photographs with GANs. In CVPR, 2018.
- [5] Yuanyuan Gao et al. Naturalness preserved non-uniform illumination estimation for image enhancement based on retinex. *IEEE Trans. on* Multimedia, 2017.
- [6] Andrey Ignatov et al. Dslr-quality photos on mobile devices with deep convolutional networks. In *ICCV*, 2017.
- [7] Ruixing Wang et al. Underexposed photo enhancement using deep illumination estimation. In CVPR, 2019.
- [8] Shuhang Wang et al. Contrast-dependent saturation adjustment for outdoor image enhancement. J. Opt. Soc. Am. A, 2017.

Links

Contact: sean.j.moran@gmail.com, pierre.marza@gmail.com

Paper:

Code: