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o Can we automatically estimate, and apply, image adjustment curves to
improve perceptual quality?
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e Context is accounted for by fusing global and mid-level features using a multi-scale contextual awareness (VISCA) connection

e Our single skip connection trades-off parameter complexity and image quality
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e We highlight that endowing a skip connection with multi-scale processing reduces relative parameter counts yet can also improve image quality

® Does adjustment application ordering matter? e Fusing multiple levels of image context delivers more contextually relevant features for the decoder path
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differentiable image transforms in multiple colour spaces (HSV, Lab, RGB)

e 1'IN[): Transformed Encoder-Decoder backbone. We modify network
backbone architectures by streamlining the use of skip connections towards
improving decoder performance

e [nspired by digital artists, we learn image retouching adjustment curves

CURL: Neural Curve Layers for (Global Image Adjustment

e [ixploitation of image representation in three different colours spaces

(CIELab, HSV, RGB)
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o CURL: our global image colour, saturation and luminance retouching block o
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retouching block (CURL) learns curve layers that allow global remap colours c.f. existing approaches
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