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ABSTRACT

In this paper we propose Regularised Cross-Modal Hashing
(RCMH) a new cross-modal hashing model that projects
annotation and visual feature descriptors into a common
Hamming space. RCMH optimises the hashcode similarity
of related data-points in the annotation modality using an
iterative three-step hashing algorithm: in the first step each
training image is assigned a K-bit hashcode based on hyper-
planes learnt at the previous iteration; in the second step the
binary bits are smoothed by a formulation of graph regular-
isation so that similar data-points have similar bits; in the
third step a set of binary classifiers are trained to predict the
regularised bits with maximum margin. Visual descriptors
are projected into the annotation Hamming space by a set of
binary classifiers learnt using the bits of the corresponding
annotations as labels. RCMH is shown to consistently im-
prove retrieval effectiveness over state-of-the-art baselines.

Categories and Subject Descriptors

H.3.3 Information Storage and Retrieval]: Information
Search and Retrieval
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1. INTRODUCTION

Hashing-based approximate nearest neighbour (ANN) search

has emerged as an effective technique for efficiently find-
ing nearest neighbours in large multimedia data collections.
Data-points are transformed into compact binary codes via
projection [6] and quantisation [7] operations that ensure
similar data-points are assigned hashcodes with low Ham-
ming distance. Hashcodes of length K are generated by
learning K hyperplanes within the data-space. Depending
on which side of a hyperplane a data-point falls its hashcode
is appended with a 1 or 0. Each subspace formed by the K
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hyperplanes constitutes the bucket of a hashtable. Similar-
ity preserving hashcodes can therefore be used as the indices
into the buckets of a hashtable for constant time search: a
given query need only be compared to data-points falling
within the same bucket vastly cutting down the search space.

Most previous hashing research has focused on generating
binary codes for data-points within the same modality, for
example, a text query executed against a database consisting
of textual documents. However it is frequently the case that
similar data-points exist in different modalities, for exam-
ple a Wikipedia page discussing Einstein and an associated
image of the scientist. An interesting research question is
whether an effective hashing scheme can be constructed to
learn hashcodes that are also similar across disparate modal-
ities - in this case the Einstein Wikipedia article will ideally
be assigned a similar hashcode to the relevant embedded
image. Hashing methods that effectively bridge the cross-
modal gap will enable the efficiency of ANN search to be
expanded to cross-modal data.

In this paper we propose Regularised Cross-Modal Hash-
ing (RCMH), an extension of the unimodal hashing model
Graph Regularised Hashing (GRH) [6]. RCMH employs a
three-step iterative scheme to learn a set of K hash func-
tions: in the first step hashcodes are assigned to the training
images using K learnt hyperplanes from the last iteration; in
the second step a formulation of graph regularisation [2] re-
fines the distribution of annotation binary bits so that anno-
tations from neighbouring images are assigned similar bits.
In the third step K binary classifiers are trained to predict
the regularised bits with maximum margin. RCMH forms
a cross-modal bridge by subsequently projecting visual de-
scriptors into the learnt annotation Hamming space: this is
achieved by learning K binary classifiers in visual space with
the bits of the associated annotations as labels.

2. RELATED WORK

Cross-modal hashing research has received increased inter-
est over the past several years due to the recent emergence
of large freely available cross-modal datasets from sources
such as Flickr. Existing cross-modal hashing schemes seek to
jointly preserve the within-modality and between-modality
similarities of related data-points in a shared Hamming space.
This requirement is frequently solved by learning two sets of
K hyperplanes that partition each space into buckets in a
manner that yields similar hashcodes for similar data-points
both within and across modalities.

Cross-Modal Semi-Supervised Hashing (CMSSH) [1] inte-
grates eigendecomposition and boosting to learn a common
multi-modal space for hashing. Cross-View Hashing (CVH)



Figure 1: Regularisation step: the hashcode for node d is updated to be more similar with its neighbours (c,b,e)

[5] employs Canonical Correlation Analysis (CCA) [4] to
learn a shared latent space from two modalities. The au-
thors of [10] proposed Co-Regularised Hashing (CRH) that
learns hash functions for each bit by solving DC (difference-
of-convex function) programs, with multiple bits learnt via
boosting. Inter-Media Hashing (IMH) [9] minimises a loss
function consisting of graph Laplacian terms for intra-modal
similarity, a trace minimisation term for inter-modal simi-
larity and linear regression for out-of-sample prediction.
The closest related work to RCMH is Predictable View
Hashing (PDH) [8]. PDH employs an iterative scheme for
hashcode learning: the annotation bits are used to learn K
hyperplanes for the image modality, while the image bits
are used to learn K hyperplanes for the annotation modal-
ity. RCMH is different to PDH in several aspects, including
our novel method of bridging the modalities, our integration
of graph regularisation [2] and the lack of an eigendecompo-
sition step. We show that RCMH is much more effective.

3. REGULARISED CROSS-MODAL HASH-
ING (RCMH)

3.1 Problem definition

Let D = {(a;,v;) : i = 1...N} denote a collection of N
annotated images. Each image is represented by two com-
ponents: the annotation a;, and the visual descriptor v;.
The annotation a; is a vector over textual features. Visual
descriptor v; is a vector of real-valued visual features. Our
goal is to learn a pair of hash functions F, G that map an-
notations and visual descriptors into binary hashcodes con-
sisting of K bits. We impose two constraints on our hash
functions: (i) the annotation hashcode F(a;) should be sim-
ilar to the visual hashcode G(v;) of the same image; and (ii)
the annotation hashcodes F'(a;) and F(a;) should be simi-
lar whenever images 7 and j are considered neighbours. The
neighbourhood structure for the collection is dictated by an
affinity matrix S, where S;; = 1 indicates that ¢ and j are
neighbours, and S;; = 0 indicates they are not.

3.2 The algorithm

Our approach is based on a unimodal method GRH [6].
GRH is restricted to a single modality, while we propose a
method that learns a pair of hash functions across two sep-

arate modalities: text annotations a; and visual descriptors
vi. The hash functions F,G are based on K hyperplanes
each: fi...fx for the space of words and g,...g, for the
space of visual features. The hyperplane f; is used to assign
the j’th bit in the annotation hashcode, while g; determines
the j’th bit in the visual hashcode. We initialise all hyper-
planes randomly, and iteratively perform the following steps:
(1) hashing, where the hyperplanes fi.. .fx are used to as-
sign hashcodes bi...bx to the training images, (2) regu-
larisation, where the hashcodes b;...by are made more
consistent with the affinity matrix S and (3) partitioning,
where we adjust the hyperplanes f;, g; to be consistent with
the j’th bit of the hashcodes from step (2).

3.2.1 Step 1: Hashing

We start by assigning a K-bit binary hashcode b; to each
training image ¢. Each of the K bits in b, is based on a dot
product between the image annotation a; and one of the
hyperplanes fi. . .fx:

b; = F(a;) = Half...a]fk] (1)

Here H(z) is the Heaviside step function that returns 0 for
negative x and 1 otherwise. At test time, hashcodes of visual
features G(v;) can be computed in the same manner, but
using the visual hyperplanes gi...gx.

3.2.2  Step 2: Regularisation

The aim of this step is to make the hashcodes we obtained
in step 1 more consistent with the affinity matrix S. Specif-
ically, whenever images 7 and j are neighbours, we would
like the hashcodes b; and b; to be similar in terms of their
Hamming distance. We achieve this by interpolating the
hashcode of image i with the hashcodes of all neighbouring
images j for which S;; = 1. Our approach is similar to the
score regularisation method of [2]. Formally, we regularise
the hashcodes via the following equation:

B« H(aSD™'B+ (1-a) B - 0.5) (2)

Here S is the affinity matrix and D is a diagonal matrix
containing the number of neighbours for each image. The
matrix B € {0,1}V*% represents the hashcodes assigned
to every image in step 1 of the algorithm and « is a free
parameter that specifies how aggressively we regularise the
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Figure 2: Partitioning step: hyperplanes are learnt in the annotation and visual space using annotation bits as labels.

bits. We show our approach intuitively in Figure 1. In the
left side we show 5 images a...e with their initial hashcodes
(K=2 bits for this example). The lines between images re-
flect the neighbourhood structure encoded in the affinity
matrix S. Image d has a hashcode 01, but its neighbours
b, ¢, e have hashcodes 00, 11 and 10 respectively. The right
side of Figure [l shows the effect of equation (2) for image
d: its hashcode changes to 10, which is more consistent with
neighbouring hashcodes (on average).

3.2.3 Step 3: Fartitioning

In the final step of the algorithm, we re-estimate the hy-
perplanes fi.. .fx and g;...g, to make them consistent with
the regularised hashcodes from step 2 of the algorithm. For
each bit j = 1...K, we treat the values b1;...bn; as the
training labels. Specifically, if b;; = 1 then the annotation
vector a; constitutes a positive example for the hyperplane
fj, and the visual vector v; is a positive example for g,. If
bi; = 0 then a; and v; are negative examples for f; and g;-
Each hyperplane is learned using liblinear [3] to maximise
the margin between positive and negative examples.

The approach is illustrated in Figure[2. We show five im-
ages a...e in two sets of coordinates: the word space on the
left and the visual feature-space on the right. Each image
is associated with a 2-bit hashcode, and each bit is used to
learn a maximum-margin hyperplane that bisects the corre-
sponding space. For example, the first bit has value 0 for
images a,b and value 1 for images c, d, e, giving rise to hy-
perplanes f; and g;, shown as dark lines on the left and
the right parts of Figure 2] Note that f; and g; look very
different, because they are defined over two completely dif-
ferent modalities: words on the left and visual features on
the right. Similarly, the second bit results in the hyperplanes
f> and g,, shown in lighter colour.

3.3 Iteration and constraints

We repeat steps 1-3 above for a small number of itera-
tions M. We briefly describe how the steps enforce the two
constraints we imposed on our hash functions in section[3.1!
Constraint (i) is enforced in step 3 of the algorithm, when
we use the same bit values b;; as targets for the word hy-
perplanes f; and visual hyperplanes g;. Any image ¢ will
either be a positive example for both hyperplanes, or it will

be negative for both, so at test time we can expect alf; to
yield the same bit value as v]g;. Constraint (ii) is enforced
in step 2 of our procedure, where the hashcode for image i is
moved towards the centroid hashcode of its neighbours. The
centroid (before it is binarised) is a point that minimizes ag-
gregate Euclidean distance to the neighbours, so after step 2
hashcodes b;...by are expected to be more consistent with
the neighbourhood structure S.

4. EXPERIMENTS

4.1 Datasets

We evaluate RCMH on two publicly available benchmark
datasets: Wik and NUS—WID. Wiki is generated from
2,866 Wikipedia articles. Each article is described with text
and an associated image. The visual modality is formed
from 128-bit SIFT descriptors, while the annotation modal-
ity is represented as 10-dimensional probability distribution
over LDA topics. NUS-WIDE is a web image dataset con-
sisting of 269,648 images downloaded from Flickr. We keep
the image-text pairs associated with the most frequent 10
classes and perform PCA on the tag co-occurrence features
to form a 1,000-dimensional annotation feature set [10] .
Each image is represented as a 500-D bag-of-words vector
derived from SIFT descriptors. The ground truth nearest
neighbours are based on the semantic labels supplied with
the datasets, that is, if two images share a class in common
they are regarded as true neighbours [10} 9]. Following pre-
vious work 9] we randomly select 20% (Wiki) and 1%
(NUS-WIDE) of the data-points as queries with the remain-
der forming the database over which our retrieval experi-
ments are performed. We randomly sample 20% (Wiki) and
1% (NUS-WIDE) of the data-points from the database to
form the training dataset (7) to learn the hash functions.

4.2 Baselines
CVH [5], CMSSH [1], CRH [10], IMH [9] and PDH [g].

4.3 Evaluation Protocol

We evaluate RCMH based on two cross-modal retrieval
tasks: 1) Image query vs. text database: an image is used to

http://www.svel.ucsd. edu/projects/crossmodal/
*http://1lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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Task Method |—gz Col‘ge:{zgength _— Task Method o Col‘ge:{zgngth _—
CRH | 0.1632 | 01752 | 0.1698 CRH | 03536 | 0.3539 | 0.358%
CVH [ 01570 01519 [0.153% CVH 03397 03436 | 03412
Image Query CMSSH [ 0.1439 | 0.1501 | 0.1420 Image Query CMSSH | 0.3429 | 0.3386 | 0.3382
vs. M 01881 [ 0.1892 [ 0.1897 vS. TMH 0.4022 | 0.4019 [ 0.4040
Text Database —ppg 02100 | 0.2186 | 0.2266 Text Database —ppg 04217 [ 0.4245 | 04272
RCMH | 0.24397 | 0.24637 | 0.25907 RCMH | 0.46057 | 0.47197 | 0.4649]
CRH [ 0.1266 | 0.1239 | 0.1267 CRH | 03495 | 03427 | 0.3481
Text Query CVH | 0.1284 | 01176 | 0.11%5 Text Query CVH 03394 | 03435 | 03410
by CMSSH [0.1119 | 0.1123 | 0.1124 iy CMSSH | 0.3420 | 0.3377 | 0.3492
Inage Database |1 01507 | 0.1514 | 0.1491 Image Database | M1 0.3926 | 0.3960 | 0.3007
PDH [ 0.1790 | 0.1860 | 0.1902 PDH [ 0.4053 | 0.4081 | 0.4096
RCMH | 0.20667 | 0.19187 | 0.22017 RCMH | 0.43257 | 0.43807 | 0.43507

Table 1: mAP scores for Wiki (7" = 574). } indicates statis-
tical significance vs. PDH (Wilcoxon: p-value < 0.01).

retrieve the most related text in the text database; 2) Text
query vs. image database: a text query is used to retrieve
the most similar images from the image database. Retrieval
accuracy is measured using Hamming ranking [10,/9]: binary
codes are generated for both the query and the database
items and the database items are then ranked in ascending
order of the Hamming distance. We evaluate using mean
average precision (mAP). Results are the average over 10
random query/database partitions.

4.4 Parameter Optimisation

RCMH has three meta-parameters: the number of iter-
ations M, the amount of regularisation « and the flexibil-
ity of margin C'. We optimise all meta-parameters via grid
search on the validation dataset. Holding the margin pa-
rameter constant at C' = 1, we perform a grid search over
M e {1...5} and « € {0.1,...,0.9,1.0}. We then hold M
and « constant at their optimised values, and sweep C €
{0.01,0.1,1.0,10,100}. We equally weigh both classes (0
and 1). The IMH 8 and X parameters are set via grid search
over the range {10_67 1073,1,103, 106}. The CRH A; and
Ay parameters are tuned over the range {0.001,0.01,0.1,1}
and {0.01,0.1,1.0, 10, 100, 1000} for . We sweep C' for PDH
in an identical manner to RCMH.

4.5 Results

Our cross-modal retrieval results are presented in Tables
1-2. We observe that RCMH outperforms the baseline sys-
tems on both datasets and across all hashcode lengths. For
example, for image-text retrieval, RCMH outperforms PDH
by a substantial 16% relative mAP at 24 bits on the Wiki
dataset and 9% on the NUS-WIDE dataset. We test the
statistical significance of the gain in mAP vs. PDH using
a Wilcoxon signed rank test on the mAP scores resulting
from each random query/database partition: the difference
is statistically significant for p < 0.01. This is an encourag-
ing result: RCMH is devoid of a computationally expensive
eigendecomposition step as most baselines [9] (8] 5], relying
instead on graph regularisation to maintain the neighbour-
hood structure.

5.  CONCLUSIONS

In this paper we introduced Regularised Cross-Modal Hash-
ing (RCMH). RCMH employs an iterative three-step scheme

Table 2: mAP scores for NUS-WIDE (T = 1866). { indicates
statistical significance vs. PDH (Wilcoxon: p-value < 0.01).

to learn a shared multi-modal Hamming space: in the first
step hashcodes are assigned to images based on learnt hyper-
planes; in the second step hashcodes within the annotation
space are refined by updating a node’s hashcode to be the
average of the hashcodes of its nearest neighbours. In the
third step RCMH learns a set of hyperplanes to partition the
annotation space into buckets using the bits from the previ-
ous step as labels. Visual descriptors are projected into the
annotation Hamming space by learning a set of hyperplanes
in the visual space using the associated annotation bits as
labels. RCMH outperforms a set of strong cross-modal hash-
ing baselines.

6. REFERENCES

[1] M. M. Bronstein, A. M. Bronstein, F. Michel, and
N. Paragios. Data fusion through cross-modality
metric learning using similarity-sensitive hashing. In
CVPR, pages 3594-3601, 2010.

[2] F. Diaz. Regularizing query-based retrieval scores. In
IR, pages 531-562, 2007.

[3] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. Liblinear: A library for large linear
classification. In JLMR, pages 1871-1874, 2008.

[4] D. R. Hardoon, S. R. Szedmak, and J. R.
Shawe-taylor. Canonical correlation analysis: An
overview with application to learning methods. In NC;
pages 2639-2664, 2004.

[5] S. Kumar and R. Udupa. Learning hash functions for
cross-view similarity search. In IJCAI’11, pages
1360-1365, 2011.

[6] S. Moran and V. Lavrenko. Graph regularised
hashing. In ECIR, pages 135-146, 2015.

[7] S. Moran, V. Lavrenko, and M. Osborne.
Neighbourhood preserving quantisation for LSH. In
SIGIR, pages 1009-1012, 2013.

[8] M. Rastegari, J. Choi, S. Fakhraei, H. D. III, and L. S.
Davis. Predictable dual-view hashing. In ICML, pages
1328-1336, 2013.

[9] J. Song, Y. Yang, Y. Yang, Z. Huang, and H. T. Shen.
Inter-media hashing for large-scale retrieval from
heterogeneous data sources. In SIGMOD, pages
785-796, 2013.

[10] Y. Zhen and D. yan Yeung. Co-regularized hashing for
multimodal data. In NIPS, pages 1385—-1393, 2012.




	Introduction
	Related Work
	Regularised Cross-Modal Hashing (RCMH)
	Problem definition
	The algorithm
	Step 1: Hashing
	Step 2: Regularisation
	Step 3: Partitioning

	Iteration and constraints

	Experiments
	Datasets
	Baselines
	Evaluation Protocol
	Parameter Optimisation
	Results

	Conclusions
	References

