Optimal Tag Sets for Automatic Image Annotation

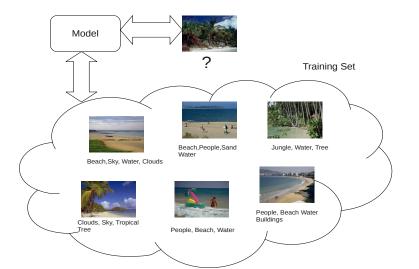
Sean Moran, Victor Lavrenko

University of Edinburgh, UK

BMVC 2011

Overview/Motivation

Image Annotation: Given an un-annotated test image and a training set of annotated images select tags that reflect the content of the test image.



- Popular field of research:
 - Annotation as machine translation [Duygulu et al. '02]
 - Continuous Relevance Model (CRM) [Lavrenko et al. '03]
 - Label diffusion over a similarity graph [Liu et al. '09]
 - Supervised multiclass labeling [Carneiro et al. '07]
- Limiting assumptions across a broad class of models:
 - Gaussian kernel: Standard workhorse of many models. But is it necessarily the most accurate default kernel?
 - Tags independent: Leads to incohesive and contradictory tags e.g. {tropical, blizzard, supernova}.
- BS-CRM: principled framework for solving both limitations in a *generative model* of image annotation.

- Continuous Relevance Model (CRM)
- Capturing Feature Covariance with Minkowski Kernels
- Capturing Keyword Correlation through Beam Search
- Experiments
- Discussion

Continuous Relevance Model [Lavrenko et al. 2003]

- Statistical generative model for automatic image annotation.
- Estimates joint distribution of visterms and tags [De Finetti'31]:

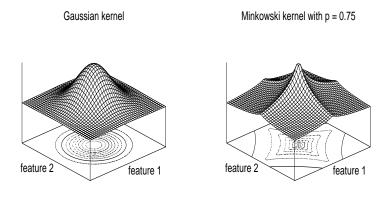
$$P(\mathbf{w},\mathbf{f}) = \sum_{J\in\mathcal{T}} P(J) \prod_{j=1}^{n} P(w_j|J) \prod_{i=1}^{m} P(\vec{f}_i|J)$$

- P(J): Uniform prior
- $P(\vec{f}_i|J)$: Gaussian non-parametric kernel density estimate
- $P(w_i|J)$: Dirichlet prior for word smoothing
- Estimate marginal probability distribution over individual tags:

$$P(w|\mathbf{f}) = \frac{P(w,\mathbf{f})}{\sum_{w} P(w,\mathbf{f})}$$

• Top e.g. 5 words used as annotation of image.

Capturing Feature Covariance with Minkowski Kernels



$$P(\vec{f}_i|J) = \frac{1}{n} \sum_{j=1}^{n} c_{p} exp\left\{\frac{-|\vec{f}_i - \vec{f}_j|^{p}}{\beta}\right\}$$

Sensing subtle changes

Minkowski kernel much more sensitive to subtle feature changes. Known to be an important facet of human vision [Howarth'05].

Conjunction of features

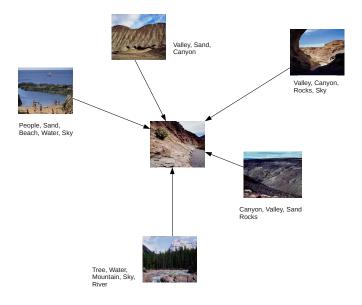
Minkowski kernel mimicks logical AND of variations in feature values whilst Gaussian kernel is closer to a logical OR.

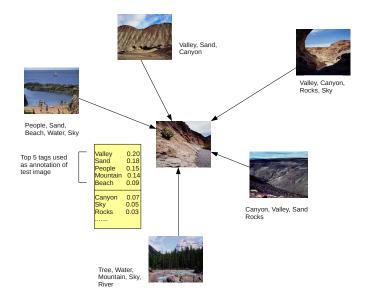
- CRM computes a set to set mapping of tags to visterms $P(\mathbf{w}, \mathbf{f})$
- Add measure to penalize frequent words $I(\mathbf{w})$.

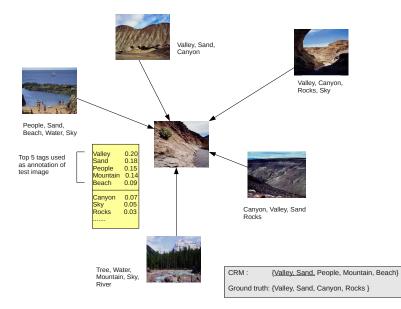
$$I(\mathbf{w}) = P(\mathbf{w}|\mathbf{f}) \cdot \log \frac{P(\mathbf{w}|\mathbf{f})}{P_0(\mathbf{w})}$$

- $P(\mathbf{w}|\mathbf{f})$: Dependence model between a tag set and image features.
- $P_0(\mathbf{w})$: Background model that treats every tag as an isolated event.
- Goal: Find optimal tag set maximizing $S_k^* = \operatorname{argmax}_{S_k \subset V} I(S_k)$
- Optimisation over universe of all possible tag sets: use efficient approximation via *Beam Search*.

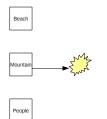






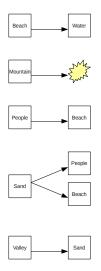


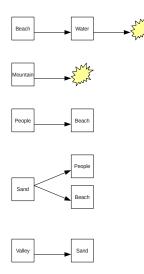
Initialise beam with top B=5 words from CRM

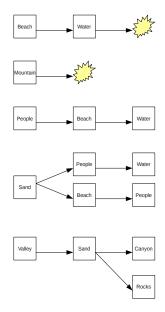


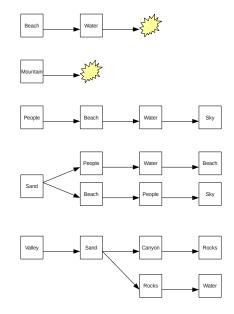
Sand

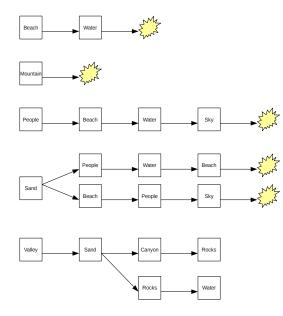
Valley

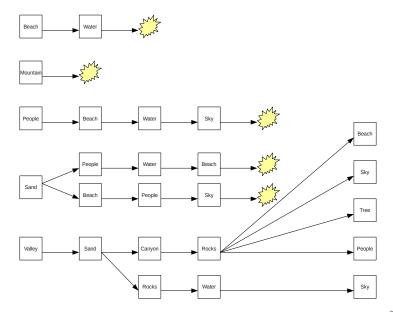


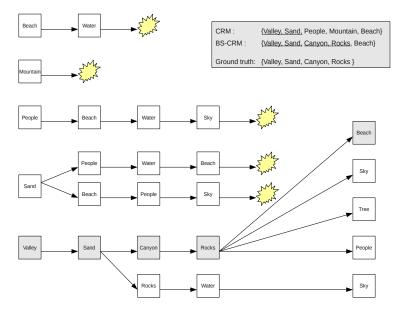












Setup of Experiments - Data

- Corel 5K:
 - 5000 images: landscape, animals, cities
 - Vocabulary of 260 words

Setup of Experiments - Data

- IAPR TC-12:
 - 20,000 images: touristic photos, sports
 - Vocabulary of 291 words
 - Annotations extracted from descriptive text (nouns)

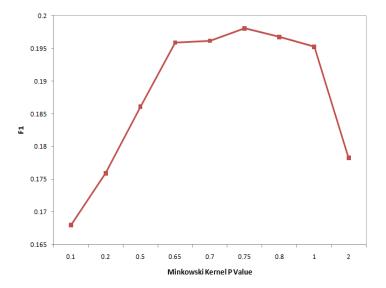
Setup of Experiments - Data

• University of Washington (UW):

- 1109 images: natural scenes, sports
- Vocabulary of 158 words
- Manually removed function words and morphological variants

- Colour and texture based features:
 - Region colour average, standard deviation, skewness
 - Gabor mean orientated energy in 30 degree increments
- Model parameters optimized on a held out validation set:
 - **(**) Grid search over the β and μ for standard CRM model.
 - **2** Hold β and μ constant: optimize *B* for varying beam widths.
 - **③** Hold β , μ and *B* constant: optimize p for Minkowski density.
- Evaluation metrics (for fixed annotation length):
 - Mean per word Recall
 - Mean per word Precision
 - F1 Measure
 - Number of words with Recall > 0

Setup of Experiments - Optimisation



Setup of Experiments - Evaluation

Model	R	Р	F1	N^+
COREL				
CRM (p=2)	19	16	17	106
Zhou et al.	20	19	19	
Liu et al.	24	19	21	125
CRM (p=0.75)	25	21	23	119
Wang et al.	23	23	23	123
BS-CRM (p=0.75)	27	22	24	130

Corel 5k:

- CRM (p=2) vs CRM (p=0.75): 35% increase in F1
- T-test: *p*≤0.00004
- CRM (p=2) vs BS-CRM (p=0.75): 41% increase in F1
- T-test: *p*≤0.00001

Setup of Experiments - Evaluation

Model	R	Р	F1	N^+
UW				
CRM (p=0.70)	36	36	36	86
BS-CRM (p=0.70)	46	42	44	106
IAPR TC-12				
CRM (p=0.70)	15	23	19	202
BS-CRM (p=0.70)	22	24	23	250

• UW:

- CRM (p=0.70) vs BS-CRM (p=0.70): 22% increase in F1
- T-test: *p*≤0.001

• IAPR TC-12:

- CRM (p=0.70) vs BS-CRM (p=0.70): 19% increase in F1
- T-test: $p \le 2 \times 10^{-9}$

Contributions

- BS-CRM: a considerably more powerful model of image annotation:
 - Minkowski kernel to model the covariance of image features.
 - Beam search to select the optimal mutually correlated tag set.
- Consistent performance gains on standard evaluation datasets.
- Much greater recall of the more rarer words in the vocabularly.
- Ideas could be used to improve the performance of other models.

Future Work

- Datasets with larger number of average tags per image: more correlations for set based model.
- Dynamically adapt model parameters, beam width B, μ and $\beta.$

Thank you for listening