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Abstract
This thesis is concerned with improving the effectiveness of nearest neighbour search.

Nearest neighbour search is the problem of finding the most similar data-points to a

query in a database, and is a fundamental operation that has found wide applicabil-

ity in many fields. In this thesis the focus is placed on hashing-based approximate

nearest neighbour search methods that generate similar binary hashcodes for similar

data-points. These hashcodes can be used as the indices into the buckets of hashta-

bles for fast search. This work explores how the quality of search can be improved by

learning task specific binary hashcodes.

The generation of a binary hashcode comprises two main steps carried out sequen-

tially: projection of the image feature vector onto the normal vectors of a set of hyper-

planes partitioning the input feature space followed by a quantisation operation that

uses a single threshold to binarise the resulting projections to obtain the hashcodes.

The degree to which these operations preserve the relative distances between the data-

points in the input feature space has a direct influence on the effectiveness of using

the resulting hashcodes for nearest neighbour search. In this thesis I argue that the

retrieval effectiveness of existing hashing-based nearest neighbour search methods can

be increased by learning the thresholds and hyperplanes based on the distribution of

the input data.

The first contribution is a model for learning multiple quantisation thresholds. I

demonstrate that the best threshold positioning is projection specific and introduce a

novel clustering algorithm for threshold optimisation. The second contribution extends

this algorithm by learning the optimal allocation of quantisation thresholds per hyper-

plane. In doing so I argue that some hyperplanes are naturally more effective than oth-

ers at capturing the distribution of the data and should therefore attract a greater alloca-

tion of quantisation thresholds. The third contribution focuses on the complementary

problem of learning the hashing hyperplanes. I introduce a multi-step iterative model

that, in the first step, regularises the hashcodes over a data-point adjacency graph,

which encourages similar data-points to be assigned similar hashcodes. In the second

step, binary classifiers are learnt to separate opposing bits with maximum margin. This

algorithm is extended to learn hyperplanes that can generate similar hashcodes for sim-

ilar data-points in two different feature spaces (e.g. text and images). Individually the

performance of these algorithms is often superior to competitive baselines. I unify my

contributions by demonstrating that learning hyperplanes and thresholds as part of the

same model can yield an additive increase in retrieval effectiveness.

iii



Lay Summary

We are interested in finding similar images in large image databases, a task that is

popularly known as image retrieval. In this task images are represented not as pixels,

but as a feature vector consisting of a series of numbers that succinctly capture the

salient properties of the image, such as the colour or texture distribution. We present

the search system with the feature vector of a query image depicting the scene or ob-

ject we wish to find in the database. The database then returns a set images most

related to our image query. A simple way to solve this search problem is to compare

the query image feature vector to the features of every image in the database. In this

thesis I examine faster algorithms that permit nearest neighbours to be found without

an exhaustive comparison. These algorithms convert an image feature vector into a

hashcode that consists of bits i.e. a string of 0’s and 1’s. The hashcodes are more sim-

ilar, that is share more bits in common, for images that describe the same scenes. This

property allows the hashcodes to be used as pointers into the buckets of a hashtable,

a standard Computer Science data structure that permits direct access to images that

share the same hashcode as the query. We can therefore find related images while

ignoring the majority of the images in the database.

This dissertation improves the quality of the hashcodes so that the hashcodes of

similar images share more bits in common. We can imagine each image feature vec-

tor as representing a point in a high-dimensional “image space”. A hashcode is then

nothing more than a geometric identifier that points to the region occupied by a group

of related images in this space. To generate a hashcode we divide up the space using

hyperplanes (in two dimensions a hyperplane is a line). Each bit of the hashcode is

determined by finding out on which sides of the hyperplanes each image feature vector

lies: mathematically this involves computing the distances of an image feature vector

from the hyperplanes followed by thresholding the resulting numbers to obtain binary

bits. A bit is set to ‘0’ if the image lies on one side of a given hyperplane and a ‘1’ if it

lies on the other side. This thesis introduces new algorithms for intelligently position-

ing the hyperplanes and thresholds in a way that encourages more related images to be

within the same partitioned regions of the “image space”. This goal is achieved by pro-

viding the algorithms with a small amount of human assigned supervision identifying

which images should be considered similar and which images should be considered

dissimilar. I find that my proposed algorithms facilitate the generation of high quality

hashcodes that allow many more relevant images to be retrieved from the database.
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Chapter 1

Introduction

1.1 Motivation

The rapid growth of the World Wide Web (WWW) over the past two decades has

brought with it a phenomenal increase in the amount of image, video and text based

data being collected, stored and shared across the world. This phenomenon has been

fuelled by the popularity of social media networks, cheap disk storage and the wide

availability of Internet-enabled smartphones. For example it has been estimated that

Facebook has in the order of 300 million images uploaded per day1, YouTube receives

10 years worth of content per day2 and there are now estimated to be well over 1 trillion

web pages3 in existence (Murphy (2012)). Figure 1.1 illustrates the explosive growth

of images being uploaded onto popular social media websites and applications during

the period 2005-2014. The trend towards real-time video sharing over the Internet

with applications such as Periscope, involving a medium that is many times the size

of individual images or documents, will severely exacerbate this torrent of data. In

the near-term future the emergence of the Internet-of-Things (IoT) and Smart Cities

promise to add further fuel to this fire, hinting at a connected society in which Internet

linked sensors embedded in everyday objects, such as CCTV cameras and thermostats,

produce an abundance of data that is automatically captured, stored and analysed so

as to produce actionable insights for interested citizens and government stakeholders

(Albakour et al. (2015)). The sheer scale of the data being produced around the world

brings with it a need for computationally efficient algorithms that ensure the storage

1Velocity 2012: Jay Parikh, “Building for a Billion Users”
2http://www.youtube.com/yt/press/en-GB/statistics.html
3http://googleblog.blogspot.co.uk/2008/07/we-knew-web-was-big.html

1

http://www.youtube.com/yt/press/en-GB/statistics.html
http://googleblog.blogspot.co.uk/2008/07/we-knew-web-was-big.html
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Figure 1.1: The amount of images being uploaded to popular social media websites

(Facebook, Flickr) and mobile applications (Instagram, SnapChat, WhatsApp) has un-

dergone a dramatic growth since 2005. Efficient algorithms for searching through such

large image datasets are needed now more than ever. This chart has been copied

directly from slide 62 of the talk “Internet Trends 2014 - Code Conference” given by

the venture capitalist Mary Meeker of Kleiner Perkins Caufield Byers (KPCB): http:

//www.kpcb.com/blog/2014-internet-trends (URL accessed on 16/12/15).

requirements and processing overhead do not grow with the quantity of the data being

produced.

In this thesis I focus on the problem of nearest neighbour (NN) search where the

goal is to find the most similar data-point(s) to a query in a large database. Similar-

ity is typically judged by representing the data-points as fixed dimensional vectors in

a vector space and computing a distance metric such as the Euclidean or cosine dis-

tance. In this case data-points with a sufficiently low distance are judged to be nearest

neighbours. Due to its generality and usefulness nearest-neighbour search finds appli-

cation in many areas of Science, ranging from the field of Information Retrieval (IR)

where we wish to find documents relevant to a query, to the problem of Genomic as-

sembly in the field of Bioinformatics. The näive way to solve the nearest-neighbour

search problem would be to compare the query to every data-point in the database, a

method known as brute-force search. Brute-force search is only feasible in relatively

small databases where performing the number of required comparisons between the

http://www.kpcb.com/blog/2014-internet-trends
http://www.kpcb.com/blog/2014-internet-trends
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data-points remains computationally tractable. Given the linear scaling of the query

time with respect to the dataset size it is impossible to exhaustively search large-scale

datasets consisting of millions to billions of data-points for nearest neighbours in a rea-

sonable amount of time. This problem is compounded in the streaming data scenario

where data-points need to be processed sequentially in real-time with potentially no

end to the amount of incoming data. To efficiently find nearest-neighbours in large-

scale datasets, algorithms are required that offer a query time that is independent of the

dataset size.

Hashing-based approximate nearest neighbour (ANN) search methods are a popu-

lar class of algorithms that permit the nearest neighbours to a query data-point to be

retrieved in constant time, independent of the dataset size. Hashing has proved to be an

extremely useful method for ANN search over high-dimensional, large-scale datasets

that are prevalent in the modern data-rich world. Hashing permits constant time search

per query by condensing both the database and the query into fixed-length compact

binary hashcodes or fingerprints. The hashcodes exhibit the neighbourhood preserv-

ing property that similar data-points will be assigned similar (low Hamming distance)

hashcodes. Crucially, unlike cryptographic hash functions such as MD5 or SHA-1, the

data-points need not be identical to receive matching hashcodes. Rather the degree

of similarity between the hashcodes is a direct function of the similarity between the

feature representation of the data-points. This property is ideal for my chosen task of

image retrieval where we rarely wish to find only those images that are identical down

to the pixel level. Most people would deem two images to be related even if the seman-

tically equivalent objects (e.g. a tiger) depicted in both images are in widely different

poses, and therefore the images have a completely different pixel consistency.

The aforementioned similarity preserving property enables the hashcodes to be

used as the keys into the buckets of hashtables so that similar, but not necessarily

identical, images will collide in the same buckets (Figure 1.2). This is a rather differ-

ent use-case to the typical application of hashtables in Computer Science in which it

is imperative to avoid collisions between non-identical data-points. In hashing-based

ANN search we are actively encouraging collisions between similar data-points. The

bucketing of the data-points drastically reduces the computational overhead of nearest

neighbour search by reducing the number of comparisons that are required between

the data-points: at query time we need only compare our query to those data-points

colliding in the same buckets. There is no free lunch however as we pay for the re-

duced query time with a non-zero probability of failing to retrieve the closest nearest
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Figure 1.2: Nearest neighbour search with hashcodes. Similarity preserving binary

codes generated by a hash function H can be used as the indices into the buckets of a

hashtable for constant time search. Only those images that are in the same bucket as

the query need be compared thereby reducing the size of the search space. The focus

of this thesis is learning the hash function H to maximise the similarity of hashcodes for

similar data-points. On the right-hand side I present examples of tasks for which near-

est neighbour search has proved to be fundamental: from content-based information

retrieval (IR) to near duplicate detection and location recognition. The three images on

the right have been taken from Imense Ltd (http://www.imense.com) and Doersch

et al. (2012); Xu et al. (2010); Grauman and Fergus (2013).

neighbours in the case where they happen to fall in different buckets. Nevertheless this

quantifiable non-zero false negative probability turns out to be an acceptable trade-off

in many application areas in which sub-optimal nearest neighbours can be almost as

good as finding the exact nearest neighbour (Dean et al. (2013); Petrović et al. (2010)).

This thesis makes fundamental contributions to increasing the retrieval effective-

ness of the core algorithmic processes underlying a well-known and widely applied

method for hashing-based ANN search. I evaluate the effectiveness of these contri-

butions on the task of content-based image retrieval, a signature problem encountered

within the fields of IR and Computer Vision that is characterised by an abundance

http://www.imense.com
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of data and the need for accurate and efficient search. Hashing-based ANN has also

shown great promise in terms of efficient query processing and data storage reduction

across a wide range of other interesting application areas within IR and Computer Vi-

sion. For example Petrović et al. (2010) present an efficient method for event detection

in Twitter that scales to unbounded streams through a novel application of Locality

Sensitive Hashing (LSH), a seminal randomised approach for ANN search (Indyk and

Motwani (1998)). In the streaming data scenario of Petrović et al. (2010) the O(N)

worst case complexity of inverted indexing is undesirable, motivating the use of LSH

to maintain a constant O(1) query time4. Hashing-based ANN has also proved particu-

larly useful for search over dense and much lower dimensional (compared to text) fea-

ture vectors, such as GIST (Oliva and Torralba (2001)), that are commonly employed

in the field Computer Vision. In one recent application of LSH within Computer Vi-

sion, similarity preserving hashcodes have been successfully used for fast and accurate

detection of 100,000 object classes on just a single machine (Dean et al. (2013)).

The ANN search hashing models I will examine and build upon in this thesis all

partition the input feature space into disjoint regions with a set of hypersurfaces, either

linear (hyperplanes) or non-linear. In the case of linear hypersurfaces the polytope-

shaped regions formed by the intersecting hyperplanes constitute the hashtable buckets

(Figure 1.3). The hashtable key for a data-point is generated by simply determining

which side of the hyperplanes the data-point lies. Depending on which side it falls a

‘0’ or a ‘1’ is appended to the hashcode for that data-point. By repeating this procedure

for each hyperplane we can build up a hashcode for each data-point that is the same

length as the number of hyperplanes partitioning the space. Intuitively, the hashcode

can be thought of as an identifier that captures the geometric position of the data-points

within the input feature space with each bit encoding the position of the data-point with

respect to a given hyperplane. Algorithmically this hashcode generation procedure can

be accomplished in two separate steps performed in a pipeline: projection followed

by quantisation. This procedure is illustrated with a toy example in Figure 1.3. Pro-

jection involves a dot product of the feature vector representation of a data-point onto

4This is only true if we ignore the hashing cost (cost of generating the hashcode) and assume that
each database data-point goes into its own hashtable bucket. In practice the LSH computational cost for
a single hashtable and a single data-point is a sum of the hashing cost (O(KD)), lookup cost (O(1)) and
the candidate test cost (O(ND/2K)), where K is the hashcode length and assuming a uniform distribution
of data-points to buckets. Observe that there is a trade-off between the hashing cost and the candidate
test cost, both of which are dependent on K. For example, in the situation where the data-points are
evenly distributed into their own hashtable bucket (N = 2K), the total computational cost for LSH is
actually sub-linear (O(D logN)).
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Figure 1.3: The projection and quantisation operations. In Figure (a) a 2D space is

partitioned with two hyperplanes h1 and h2 with normal vectors w1,w2 creating four

buckets. Data-points are shown as coloured shapes, with similar data-points having the

same colour and shape. The hashcode for each data-point is found by taking the dot-

product of the feature representation onto the normal vectors (w1, w2) of each hyper-

plane. The resulting projected dimensions are binarised by thresholding at zero (Figure

(b)) with two thresholds t1, t2. Concatenating the resulting bits yields a 2-bit hashcode

for each data-point (indicated by the unfilled squares). For example the projection of

data-point a is greater than threshold t1 and so a ‘1’ is appended to its hashcode. Data-

point a’s projection onto normal vector w2 is also greater than t2 and so a ‘1’ is further

appended to its hashcode. The hashcode for data-point a is therefore ‘11’ which is also

the label for the top-right region of the feature space in Figure (a).
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the hyperplane normal vectors positioned either randomly or in data-aware positions

in the feature space. The hyperplanes should ideally partition the space in a manner

that gives a higher likelihood that similar data points will fall within the same region,

and therefore assigned the same hashcode. In the second step the real-valued projec-

tions are quantised into binary (‘0’ or ‘1’) by thresholding the corresponding projected

dimensions5 typically with a single threshold placed at zero for mean centered data.

Despite the success and wide application of algorithms for hashing-based ANN

search there still remains considerable downsides to the manner in which the projec-

tion and quantisation steps are typically performed. Locality Sensitive Hashing (LSH),

one of the arguably most well-known and widely applied methods for hashing-based

ANN search, sets the hashing hyperplanes and the quantisation thresholds in a manner

that is independent of the distribution of the data. For example, in the variant of LSH

for preserving the cosine similarity, the normal vectors of the hashing hyperplanes are

randomly sampled from a zero mean unit variance multidimensional Gaussian distri-

bution. This data-oblivious mechanism for generating the hashing hypersurfaces runs

a high risk of separating dense areas of the feature space and therefore partitioning

related data-points into different hashtable buckets (e.g. points a and b in Figure 1.3).

To ameliorate this low recall problem a typical LSH deployment involves partition-

ing the data with multiple independent hashtables and presenting the union of all the

data-points in the colliding hashtable buckets as candidate nearest neighbours. Un-

fortunately, the greater the number of hashtables the higher the memory requirements

needed for an LSH deployment. The quantisation thresholds are also set in a data-

independent manner, typically by thresholding at zero along a projected dimension. In

this context a projected dimension is formed from collating the projections from all

data-points onto the normal vector to a hyperplane. Unfortunately, the region around

zero on a projected dimension is usually the area of highest point density which means

that there is a high chance of related data-points falling on opposite sides of the thresh-

old and therefore being assigned different bits.

There is clearly a wide scope for improving the retrieval effectiveness of LSH and

many other influential but data-oblivious algorithms for hashing-based approximate

nearest neighbour search by tackling both of these issues head on: it is this task that

forms the focus of this thesis. Specifically I am interested in maximising the neigh-

bourhood preservation of both of these steps in the pipeline, that is the preservation of

5I define a projected dimension as the collection of the real-valued projections (dot products) of all
data-points onto the normal vector to a hyperplane.
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the relative distances in the input feature space in the corresponding Hamming space,

as this will directly translate into compact binary codes that are more similar for similar

data points, yielding a corresponding increase in retrieval effectiveness. Furthermore,

there is the added demand that this criterion be met with the shortest possible length of

hashcode to conserve storage space and computation time.

1.2 Thesis Contributions

In this thesis I undertake a detailed study of the projection and quantisation operations

as they relate to hashing-based ANN search. As identified in Section 1.1, both steps

are crucial components in the process which many existing hashing-based ANN search

models use to generate similarity preserving hashcodes for data-points. The central

hypothesis examined in this thesis can be compactly stated as follows:

The retrieval effectiveness of existing hashing-based ANN search methods can
be significantly improved by learning the quantisation thresholds and hashing
hyperplanes in a manner that is directly influenced by the distribution of the data.

This thesis statement forms the backbone of the dissertation and all contributions

and experiments are focused on gathering evidence to demonstrate its validity. Re-

call from Section 1.1 that a popular algorithm for solving the ANN search problem,

Locality Sensitive Hashing (LSH), firstly picks a random dimension in the input fea-

ture space and then projects a data-point onto this dimension. This projection step is

then followed by a quantisation operation that converts the projection into binary (0

or 1) by thresholding at zero with a single threshold. The projection and quantisation

operations are repeated K times to build up a K-bit hashcode for a given data-point.

This hashcode generation pipeline effectively relies on the following three underlying

assumptions6:

• A1: Single static threshold placed at zero (for mean centered data)

• A2: Uniform allocation of thresholds across each dimension
6These three specific assumptions were chosen as they are the simplest assumptions that are fre-

quently made in the literature, and whose relaxation I thought would result in the largest gain in retrieval
effectiveness. This list is not exhaustive and other limiting assumptions exist such as learning the hyper-
planes independently of each other. Examination of these assumptions is left to future work (Chapter
8).
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• A3: Linear hypersurfaces (hyperplanes) positioned randomly

These three assumptions permeate the learning to hash literature and can be found,

in some form or another, in most existing work in the field (Indyk and Motwani (1998);

Weiss et al. (2008); Liu et al. (2012); Gong and Lazebnik (2011); Raginsky and Lazeb-

nik (2009); Kulis and Darrell (2009)). In this dissertation, for each identified assump-

tion, I introduce a novel data-driven algorithm that relaxes that assumption. In each

case I evaluate the proposed algorithm with respect to state-of-the-art baselines on

standard image retrieval datasets and demonstrate statistically significant increases in

retrieval effectiveness. There are three advantages to the algorithms presented in this

thesis: firstly, they can be used to improve the retrieval effectiveness of almost any

existing model for hashing-based ANN search not just LSH. Secondly a simple ex-

tension permits cross-domain applicability, such as retrieving images using a textual

query. Thirdly, as a further contribution, I will show in Chapter 7 that the algorithms

can be combined in a synergistic manner to increase the retrieval effectiveness over

what is possible using either algorithm in isolation, at the expense of additional train-

ing time.

The specific contributions of this thesis to relaxing these three assumptions are:

A1) Single static threshold placed at zero (for mean centered data): I address as-

sumption A1 by formulating a new quantisation algorithm that assigns multiple thresh-

olds for each projected dimension, rather than a single threshold. I show that retrieval

effectiveness depends heavily on the correct positioning of the threshold(s) along a

projected dimension and that a static positioning is sub-optimal. To learn the optimal

threshold positions I introduce a novel semi-supervised clustering algorithm that di-

rectly optimises an F1-measure based objective function computed from a data-point

adjacency matrix. This objective function seeks to maximise the number of true near-

est neighbours assigned identical bits while minimising the number of unrelated data-

points receiving the same bits. Under the same bit budget constraint I demonstrate

an improved retrieval effectiveness from a multi-threshold quantisation versus a single

threshold quantisation. This work is presented in Chapter 4.

A2) Uniform allocation of thresholds across each dimension: It is usually the

case that a collection of hyperplanes are not equally informative about the structure of

the input feature space. For example, hyperplanes generated by solving an eigenvalue

problem tend to capture the majority of the variance of the data in a small subset of the

eigenvectors with the largest associated eigenvalues (Gong and Lazebnik (2011)). This
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means that the lower-variance hyperplanes are unreliable and typically do not capture

any meaningful structure in the input space. Intuitively we would like to maximally

exploit the additional structure captured by the more informative hyperplanes so as to

generate more discriminative hashcodes. I show that this is possible by learning a vari-

able threshold allocation across hyperplanes. I relax assumption A2 and allocate more

thresholds (bits) from a fixed threshold budget to the more informative hyperplanes

and less thresholds (bits) to the less informative hyperplanes. I propose two novel

algorithms for computing a non-uniform allocation of thresholds across projected di-

mensions. For certain classes of projection functions both algorithms demonstrate

significantly improved effectiveness over a uniform threshold allocation. This work is

presented in Chapter 5.

A3) Linear hypersurfaces placed at random in the feature space: I introduce

a novel three-step iterative hashing algorithm that learns linear or non-linear hyper-

surfaces based on the distribution of the data. Hashcodes initialised from an existing

hashing scheme such as LSH, are regularised in step A over an adjacency matrix de-

rived from the training dataset. This step has the effect of setting the hashcode for a

given data-point to be the average of the hashcodes of its nearest neighbours (as spec-

ified by the adjacency matrix). In the second step (B) a set of binary classifiers are

learnt to predict the regularised hashcodes with maximum margin. The regularised

hashcodes are then re-labelled using the learned classifiers in Step C and these re-

labelled bits are then fed into Step A, with the three steps repeating for a fixed number

of iterations. I report significant increases in retrieval effectiveness for hashing with

hyperplanes that are specifically adapted to the distribution of the data. I obtain a fur-

ther boost in retrieval effectiveness through learning non-linear hypersurfaces induced

by a radial-basis function (RBF) kernel. This work is presented in Chapter 6.

This hypersurface learning algorithm is then extended to the cross-modal hashing

scenario in which the query and database points are now in two different feature spaces

(e.g. text and image descriptors). This extension requires a straightforward change to

the unimodal hypersurface learning algorithm: rather than learning K hypersurfaces

in a single feature space, I now learn 2K hypersurfaces, one set of K hypersurfaces in

each of the two feature spaces. Within the textual modality the algorithm is identical

to the unimodal model: the annotation hashcode bits are regularised over the data

affinity graph and K hypersurfaces are learnt using the textual features and the textual

hashcode bits as labels. To form the cross-modal bridge I simply use the regularised



1.3. Thesis Outline 11

hashcode bits in the textual modality as the labels to position K hypersurfaces in the

visual feature space. This latter step encourages the hypersurfaces in the two modalities

to form buckets that are consistent in both feature spaces. Experimental evaluation

of the multimodal hashing scheme demonstrates state-of-the-art cross-modal retrieval

effectiveness in comparison to strong multimodal hashing baselines from the literature.

Finally I bring together all the contributions of this thesis by learning both the hash-

ing hyperplanes and quantisation thresholds together in the same model, overcoming

the main limitation of previous work where either the projection function or quanti-

sation function, or both, remain uninformed by the data distribution. To achieve this

learning objective I combine the multi-threshold quantisation algorithms introduced

as a means of relaxing assumptions A1-A2 with the projection function introduced to

relax assumption A3. The result is a new hashing model for ANN search that is fully

flexible, adapting the positioning of the hyperplanes and the quantisation thresholds to

the statistics of a given dataset. In the experimental evaluation it is shown conclusively

that this combination of models exhibits a retrieval effectiveness greater than using ei-

ther component in isolation. This result neatly unifies the main contributions of this

thesis while also revealing a potentially fruitful new research direction in which the

entire hashing model becomes data-adaptive. This work is presented in Chapter 7.

1.3 Thesis Outline

The remainder of this document is structured as follows:

Chapter 2: Background, provides background on the problem of hashing-based
ANN search and a review of existing relevant research, placing my contributions
in the context of prior-art. The learning to hash research field is at a point where

a consolidated review of previous existing work is required. I therefore contribute

one of the first thorough reviews of the field encompassing the important functions of

quantisation and projection.

Chapter 3: Experimental Methodology, introduces the standard datasets, evalu-
ation paradigms and evaluation metrics used in the literature. I also identify and

suggest corrections to certain flaws in the way existing work is evaluated.

Chapter 4: Learning Multiple Quantisation Thresholds, outlines my quantisation



12 Chapter 1. Introduction

algorithm for positioning multiple thresholds along each projected dimension. I

show how the model optimises threshold positions based on maximisation of an Fβ-

measure objective computed on a data-point adjacency matrix. This objective function

encourages a positioning of the thresholds so that more related data-points fall within

the same quantised regions and thereby are assigned similar bits. I describe how a

brute-force optimisation of the threshold positions is computationally intractable and

introduce an efficient stochastic search algorithm that rapidly finds a good local optima

in the Fβ-measure objective function.

Chapter 5: Learning Variable Quantisation Thresholds, relaxes the uniform thresh-
old allocation assumption introduced by the quantisation model presented in Chap-
ter 4. Specifically I examine the benefits of varying the number of thresholds allocated

per projected dimension. The two proposed adaptive threshold learning algorithms are

found to be more effective for image retrieval than the model presented in Chapter 4.

Chapter 6: Learning the Hashing Hypersurfaces, departs from Chapters 4-5 and
focuses on the complementary problem of data-dependent projection function
learning. I show how this problem reduces to the optimisation of a set of hypersur-

faces in the input feature space guided by must-link and cannot-link constraints on the

data-points pairs. I introduce a novel three-step iterative algorithm for learning hashing

hyperplanes and show that it can be readily extended to learn non-linear hypersurfaces

induced by the radial basis function kernel. I discuss how the model exhibits a number

of considerable advantages over previous work, most notably the absence of a com-

putationally expensive matrix factorisation. I then further extend the model to tackle

the task of cross-modal retrieval where the query and database data-points are in two

different feature spaces (for example, image and textual descriptors).

Chapter 7: Learning Hypersurfaces and Quantisation Thresholds, provides a
preliminary exploration into the effects of combining multiple complementary
relaxations in the same hashing model. The multi-threshold optimisation algorithms

introduced in Chapters 4-5 are used to quantise the projections resulting from the hy-

persurface learning algorithm introduced in Chapter 6. This chapter unifies my main

contributions to hypersurface and quantisation threshold learning in a single model for

hashing-based ANN search. I show the important result that relaxing multiple assump-

tions as part of the same model can have an additive benefit on retrieval effectiveness.

Chapter 8: Conclusions and Future Work, summarises the main contributions in
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this thesis and reviews the central claim set out in Chapter 1 in the context of the
results presented in Chapters 4-7. Potential fruitful avenues for future research are

also proposed.

1.4 Published Work

Chapter 4 expands on the work previously published in SIGIR’13 by providing more

detail on the stochastic search algorithms used for threshold learning and giving addi-

tional experimental results and analysis.

• Moran, S. and Lavrenko, V. and Osborne, M. (2013). Neighbourhood Preserving

Quantisation for LSH. In ACM SIGIR Conference on Research and Development

in Information Retrieval (SIGIR). Dublin, Ireland.

Chapter 5 provides more detail on the work previously published in ACL’13. Specifi-

cally, I introduce a second greedy algorithm for solving the variable threshold alloca-

tion problem and provide an expanded set of experiments.

• Moran, S. and Lavrenko, V. and Osborne, M. (2013). Variable Bit Quantisation

for LSH. In Association for Computational Linguistics (ACL). Sofia, Bulgaria.

The unimodal part of Chapter 6 was previously published as follows:

• Moran, S. and Lavrenko, V. (2015). Graph Regularised Hashing. In European

Conference on Information Retrieval (ECIR). Vienna, Austria.

The cross-modal part of Chapter 6 was previously published in SIGIR’15:

• Moran, S. and Lavrenko (2015). Regularised Cross Modal Hashing. In ACM

SIGIR Conference on Research and Development in Information Retrieval (SI-

GIR). Santiago, Chile.

Chapter 7 was previously published in SIGIR’16:

• Moran, S. (2016). Learning to Project and Binarise for Hashing Based Approx-

imate Nearest Neighbour Search. In ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR). Pisa, Italy.





Chapter 2

Background

2.1 Introduction

In this chapter I provide an overview of existing research that is crucial for understand-

ing the contributions made in this thesis. The chapter begins in Section 2.3 with an

introduction to nearest neighbour (NN) search, why the problem is important and how

it can be solved. This introduction is then followed by a discussion in Section 2.3 as

to why a relaxed version of the problem is required, known commonly as approximate

nearest neighbour (ANN) search. In Section 2.4, I describe a seminal method, Local-

ity Sensitive Hashing (LSH), for solving the ANN search problem in a time constant

in the number of data-points. The limitations of LSH are discussed and I use those

drawbacks as a motivation for a review of a host of more recently proposed algorithms

for ANN search that demonstrate a higher retrieval effectiveness on the task of image

retrieval. I divide this latter part of the review into methods for binary quantisation

(Section 2.5) and projection function learning (Section 2.6), mirroring the two stages

of hashcode generation first introduced in Chapter 1.

2.2 Preliminaries and Notation Definition

This thesis adheres to the standard typography for vectors x (lowercase bold) and ma-

trices X (uppercase bold). The ijth entry of matrix X is denoted by an uppercase, non-

bold letter Xi j. Vectors x = [x1,x2 . . . ,xN ]
ᵀ are assumed to be column vectors formed

by stacking N scalar values. X = [x1,x2, . . . ,xN ]
ᵀ signifies the stacking of the N col-

umn vectors
{

xi ∈ RD}N
i=1 row-wise to form matrix X ∈ RN×D. I use the notation

xc = X•c to refer to the vector of elements in the cth column of matrix X. In a similar

15
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manner xr = Xr• denotes the vector of elements in the rth row of matrix X. Functions

are indicated by lowercase, non-bold letters e.g d(., .). I summarise the notation used

throughout this thesis in Table A.1 situated in Appendix A.

The related work described in this chapter all share the same problem definition.

We are given a dataset consisting of N points X∈RN×D = [x1,x2, . . . ,xN ]
ᵀ where each

data-point point xi ∈ RD is a D-dimensional vector of real-valued features. The ob-

jective is to construct K hash functions
{

hk : RD→{0,1}
}K

k=1 the output of which

can be concatenated as [h1(xi),h2(xi), . . . ,hK(xi)] to yield a binary embedding func-

tion
{

gl : RD→{0,1}K
}

that maps each data-point xi to a K-bit binary hashcode

bi ∈ {0,1}K . For the embedding functions to be useful for nearest neighbour search

we will require the bits to be selected in such a way that similar points xi,x j will have

similar hashcodes bi,b j, as measured by an appropriate distance function in the hash-

code space such as the Hamming distance. I dedicate the remainder of this chapter to

describing how similarity preserving hash functions are constructed by relevant mod-

els from the literature. A birds-eye-view of the structure of this chapter is shown in

Figure 2.1.

While the hashing models discussed in this chapter are evaluated solely on image

datasets, they are by no means restricted to this particular data-type. A powerful prop-

erty of the discussed hashing models is their applicability to data whose instances can

be represented as vectors of a certain dimensionality, and this includes text and audio

data. We may find, however, that the relative performance of the models changes de-

pending on the data-type of interest. For example, high dimensional and sparse textual

vectors are expected to cause scaling issues for the eigendecomposition-based models

described in this chapter, which work particularly well on the low-dimensional, dense

feature vectors found in the field of Computer Vision. An investigation into how the

described models perform on datasets of different types (text, audio, vision) would be

an interesting avenue for future work.

2.3 Approximate Nearest Neighbour (ANN) Search

In this section I first formally define the problem of nearest neighbour (NN) search

which I informally introduced in Chapter 1. I will then examine the relaxed version of

NN search known as approximate NN search, the field upon which this thesis builds,

and describe how it differs from alternative algorithms for solving the NN search prob-

lem.
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Hashing-based
ANN search

Data-Independent Data-Dependent

LSH
(Section 2.4)

SKLSH
(Section 2.6.2.1)

Unsupervised

Cross-Modal

Supervised

Unimodal

SH
(Section 2.6.3.2)

PCAH
(Section 2.6.3.1)

ITQ
(Section 2.6.3.3)

Projection Quantisation

SBQ
(Section 2.5.1)

DBQ
(Section 2.5.3)

HQ
(Section 2.5.2)

MHQ
(Section 2.5.4)

KSH
(Section 2.6.4.3)

BRE
(Section 2.6.4.2)

STH
(Section 2.6.4.4)

ITQ+CCA
(Section 2.6.4.1)

CVH
(Section 2.6.5.1)

PDH
(Section 2.6.5.4)

CRH
(Section 2.6.5.2)

CMSSH
(Section 2.6.5.3

IMH
(Section 2.6.5.5)

AGH
(Section 2.6.3.4)

Figure 2.1: Overview of one possible categorisation of the field of hashing-based ANN

search. The main categories are shown in the grey boxes while the actual models them-

selves are highlighted in white alongside their relevant section number in this chapter.
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Nearest neighbour search can be defined as the problem of retrieving the closest

data-point NN(q) to a query q ∈ RD in a database of N data-points [x1,x2, . . . ,xN ]
ᵀ

where xi ∈ RD. The similarity between data-points is defined by a distance function

of interest
{

d(., .) : RD×RD→ [0,1]
}

. This variant of the problem is also known as

1-NN search and is specified mathematically in Equation 2.1

NN(q) = argminxi∈Xd(xi,q) (2.1)

It is straightforward to generalise this problem definition to return the closest K

neighbours to the query. This variant is popularly referred to as k-NN search and is a

fundamental component in a wide range of different machine learning methods includ-

ing non-parametric kernel density estimation (Bishop (2006), Ulz and Moran (2013),

Moran and Lavrenko (2014)). The distance function d(., .) between the data-points is

typically computed using a generic distance metric such as the lp-norm (Equation 2.2)

dpnorm(xi,x j) = ‖xi−x j‖ρ

=

( D

∑
k=1
|xik− x jk|ρ

) 1
ρ (2.2)

The parameter ρ ∈ R+. Setting ρ = 1 yields the Manhattan distance and ρ = 2 gives

the Euclidean distance while ρ < 1 introduces the Minkowski family of fractional dis-

tances. The cosine distance presented in Equation 2.3 is another popular distance met-

ric for NN search that has proven particularly effective for document retrieval (Man-

ning et al. (2008), Ravichandran et al. (2005))

dcosine(xi,x j) = 1− ∑
D
k=1 xikx jk√

∑
D
k=1 x2

ik

√
∑

D
k=1 x2

jk

(2.3)

We will also come across the Hamming distance extensively in this thesis as it is

the de-facto metric for comparing binary strings (Equation 2.4)

dhamming(bi,b j) =
D

∑
k=1

δ[bik 6= b jk] (2.4)

The function δ(.) = 1 if its argument is true, and 0 otherwise. The Hamming distance

therefore counts the number of corresponding dimensions (bits) that are not equal in

the two hashcodes.
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These generic distance metrics do not adapt to the distribution of the data, mea-

suring the distances between data-points in the same way regardless of the specifics of

the dataset. In applying both metrics in practice we implicitly hope that the resulting

distances correlate well with the specific notion of similarity required for the domain.

For example, in the field of image annotation that the Euclidean distance between the

feature representation of two images can tease apart an image of a cat from that of a

dog. In many cases this is an unrealistic assumption that leads to low retrieval effec-

tiveness (Kulis (2013); Moran and Lavrenko (2014)). Distance metric learning is an

active research field dedicated to learning distance metrics tuned to a specific dataset.

These methods typically learn a scaling and a rotation of the data so that the Euclidean

distance in the transformed space correlates better with, for example, class-based su-

pervision. Perhaps unsurprisingly learnt metrics have been shown to greatly improve

the quality of NN retrieval over and above their non data-adaptive counterparts such

as the lρ-norm (Kulis (2013)). I pick up this thread again in Section 2.6 where I re-

veal how this important idea of data-dependent distance functions has inspired recent

developments in the field of hashing-based ANN search.

To search for NNs to a query we need to construct a data-structure or algorithm

that takes our selected notion of distance and retrieves data-points that are close to the

query under that specific distance metric. Brute force search is a straightforward algo-

rithm for solving the nearest neighbour search problem with any desired distance met-

ric. In brute-force search the distance to every data-point in the database is computed

and the data-point(s) with the smallest distance to the query returned as the nearest

neighbour(s). The advantages of brute force search are its simplicity of implementa-

tion and its guarantee that the closest nearest neighbours will eventually be retrieved.

However, exhaustively comparing the query to every data-point in the database gives

a linear O(ND) time complexity which quickly makes brute force search intractable

for nearest neighbour search across datasets with many data-points (N) and a moderate

to high dimensionality (D). In this situation a more informed approach to the nearest

neighbour search problem is required.

The generality and importance of nearest neighbour search, described in detail in

the motivation for this thesis in Chapter 1, ensures that the problem remains an ac-

tive research area within many scientific disciplines including Information Retrieval

(IR) and Computer Vision. Efficient multidimensional indexing data-structures for

NN search have been proposed for data-points of low-dimensionality (usually D≤ 10),

with some of the more well known examples of this kind being the KD-tree (Bentley
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cR

x

R

Figure 2.2: The (c,R)-approximate NN problem: in many applications it is acceptable

to return a data-point (indicated with the circles) within a distance cR of the query point

x, where R is the distance to the exact NN and the approximation factor c > 1.

(1975)), quad-tree (Finkel and Bentley (1974)), X-tree (Berchtold et al. (1997)) and

SR-tree (Katayama and Satoh (1997)). Unfortunately it has been shown that methods

relying on a space partitioning or clustering of the input feature space can do no better

than brute-force search in high dimensions (Weber et al. (1998)). This result severely

limits the applicability of these algorithms to image and document collections where

it is not uncommon to find feature representations with hundreds, thousands or indeed

millions of dimensions. The impossibility of retrieving exact nearest neighbours in

sub-linear time in high dimensional spaces is one particular incarnation of the well-

known “curse of dimensionality” (Minsky and Papert (1969)).

Algorithms for approximate nearest neighbour search circumvent the curse of di-

mensionality by relaxing the need for an optimal (exact) solution to the problem, in

return for a substantially improved bound on the query time. In many practical sce-

narios, for example detecting a large number of object classes (Dean et al. (2013)) or

matching variable sized sets of features (Grauman and Darrell (2007)), retrieving sub-

optimal nearest neighbours is an entirely acceptable compromise for a greatly reduced

query time. In the theoretical computer science literature the problem is commonly

referred to as the (c,R)-approximate NN decision problem. In this problem definition,

we are happy to accept a nearest neighbour within distance cR of the query, where c is

an approximation factor (c > 1) and R is the distance to the exact NN (Figure 2.2). The

(c,R)-approximate NN decision problem is formalised in Andoni and Indyk (2008);
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Petrovic (2012) and defined in Definition 2.3.1:

Definition 2.3.1. Randomised c-approximate R-near neighbour problem: given a set

of N data-points in a D dimensional space, return each cR-nearest neighbour of the

query data-point q with probability 1-δ, where δ > 0,R > 0.

The approximation factor c effectively determines the degree of sub-optimality in

the returned nearest neighbours that we are willing to tolerate. The greater the value

of c the more distant the returned nearest neighbour might be from the optimal nearest

neighbour, with the advantage of a reduction in the query time. This clear trade-off

between effectiveness and efficiency lies at the heart of effective algorithms for solving

the (c,R)-approximate nearest neighbour problem.

The R-near neighbour reporting problem (Andoni and Indyk (2008); Petrovic (2012))

is similar but without the approximation factor c (Definition 2.3.2)

Definition 2.3.2. Randomised R-near neighbour problem: given a set of N data-points

in a D dimensional space, return each R-nearest neighbour of the query data-point q
with probability 1-δ, where δ > 0,R > 0

In Section 2.4, I will introduce Locality Sensitive Hashing (LSH), a family of algo-

rithms that provide a concrete method for solving these approximate nearest neighbour

search decision problems in constant time per query.

2.4 Locality Sensitive Hashing (LSH)

The objective for any successful model for hashing-based ANN search is to pre-process

the database X ∈ RN×D so that at query-time nearest neighbours can be found more

efficiently than a simple brute force search over the entire database. In this section I

introduce the core ideas behind Locality Sensitive Hashing (LSH) (Indyk and Motwani

(1998)), one of the most influential algorithms for ANN search and the first to provide

a sub-linear time solution to the randomised c-approximate R-near neighbour problem.

LSH has found wide-application in vision problems, from recognising 100,000 object

classes on a single machine (Dean et al. (2013)), to pose estimation (Shakhnarovich

et al. (2003)), bag-of-words indexing (Chum et al. (2008)) and shape matching (Grau-

man and Darrell (2004)). The hashing models I introduce later in this literature review

(Sections 2.5-2.6) can all be thought of as extensions of LSH that try and overcome cer-

tain disadvantages with the original algorithm. Given the central importance of LSH, I
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therefore spend a considerable proportion of this review in discussing the algorithm in

detail. I will begin by giving a general overview of LSH, independent of the similarity

metric of interest. In Section 2.4.1 I will then discuss a concrete instantiation of LSH

for the inner product similarity that will be of central importance in this thesis.

The key idea behind LSH is to pre-process the database by assigning hashcodes to

each data-point in such a way that data-points that are closer in RD under some distance

metric
{

d(., .) : RD×RD→ [0,1]
}

have a higher probability of colliding in the same

hashtable bucket than data-points that are much further apart in RD. LSH therefore

transforms nearest neighbour search into the process of examining the contents of a

small set of hashtable buckets, which is likely to be many times more efficient than

exhaustive brute force search over every data-point. The question then arises as to

how LSH generates hashcodes (i.e. the indices into the hashtable buckets) which are

the same for data-points that are “close” in the original feature-space. To achieve this

property, LSH uses what is known as locality sensitive hash functions
{

hk : RD→U
}

that map RD to some universe U (for example, binary bits or positive integers). The

locality sensitive hash functions are drawn uniformly at random from a hash function

family H (Definition 2.4.1)

Definition 2.4.1. Locality sensitive hash function family: a hash function family H is

deemed (R,cR,P1,P2) sensitive if for any two data-points p, q ∈ RD:

i f d(p,q)≤ R then PrH (h(p) = h(q))≥ P1

i f d(p,q)≥ cR then PrH (h(p) = h(q))≤ P2

where PrH (h(p) = h(q)) refers to the probability that two data-points hash to the same

value given a hash function h(.) chosen uniformly at random from H . If a locality

sensitive hash function family is to be useful for nearest neighbour search then we

require P1 > P2 and c > 1. In other words there should be a high probability P1 of two

data-points p ∈ RD,q ∈ RD close by to each other (i.e. d(p,q) ≤ R) in RD colliding

in the same hashtable bucket. Conversely there should be a low probability P2 of

more distant data-points (i.e. d(p,q) ≥ cR) colliding in the same hashtable bucket.

In this way the output of a hash function h(.) chosen uniformly at random from H is

intimately tied to the spatial arrangement of the data-points in X as measured under

a distance metric of interest
{

d(., .) : RD×RD→ [0,1]
}

. Ideally we would like that

P1 = 1 and P2 = 0 so that all data-points that are within d(p,q)≤ R of the query map

to the same hashtable bucket and all data-points with distance d(p,q) ≥ cR map to

a different hashtable bucket. Note, the case R < d(p,q) < cR remains unaddressed,
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but nevertheless R and cR can be made close at the expense of making P1 and P2

undesirably close (Rajaraman and Ullman (2011)).

Fortunately it is possible to construct a wide variety of useful hash function families

that have the property that P1 >P2 and c> 1. For example, locality sensitive hash func-

tion families have so far been introduced for many distance functions of prime interest

such as the Lp distance in RD for p ∈ [0,2) (Datar et al. (2004)), cosine distance (inner

product similarity) (Charikar (2002)), Jaccard distance (Broder (1997)) and L2-norm

on the unit hypersphere (Terasawa and Tanaka (2007)). Choosing the locality sensitive

hash function family H is an important decision that needs to be considered when im-

plementing an LSH system in practice. In a similar way that selecting an appropriate

distance function for brute force search is application dependent, so too is choosing a

locality sensitive hash function family. For example, the hash function family for the

inner product similarity, which draws its hash functions uniformly from a unit sphere,

has proven to be successful for detecting new events in high-volume document streams

(Petrovic (2012), Osborne et al. (2014)). I will expand on this particular hash function

family in more detail in Section 2.4.1. The LSH hash function family for the Eu-

clidean distance (Datar et al. (2004)), which randomly samples hash functions from a

D dimensional zero mean unit variance Gaussian distribution, has also found wide ap-

plicability in applications such as pose estimation (Shakhnarovich et al. (2006); Matei

et al. (2006)). This hash function family relies on the Johnson-Lindenstrauss lemma

(Johnson and Lindenstrauss (1984)) as a guarantee that there will be limited distortion

to the pairwise distances in the lower-dimensional embedding space.

The usefulness of any locality sensitive hash function family for nearest neighbour

search is dependent on the gap between P1 and P2 which dictates the collision probabil-

ities between points in the range [0,R] in which the R-near neighbours are to be found

and (cR,∞). If the gap between P1 and P2 is small then a query will have a similar

probability of mapping to the hashtable bucket of a distant data-point as it will be to a

close-by data-point. Without a sufficient difference between P1 and P2 the quality of

nearest neighbour search under LSH will be poor with a high number of false positives

and false negatives. The gap between P1 and P2 can be amplified by concatenating

together K randomly selected hash functions to create an embedding function into a K

dimensional space. This multidimensional embedding function is given by Equation

2.5

gl(q) = [h1(q),h2(q), . . . ,hK(q)] (2.5)
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where gl(.) is drawn uniformly at random from function family G =
{
RD→UK} and

hk ∈ H . This concatenation of K hash functions increases the gap between P1 and

P2, amplifying the difference between the probabilities of collisions between nearby

and far data-points. For an embedding function gl(.) the probability P(gl(q) = gl(p))
that the hashcodes for any two distant data-points p ∈ RD,q ∈ RD with d(p,q) ≥ cR

will match is given by P
′
2 = PK

2 . This reduction in the number of false positives with

increasing K is the underlying motivation for using multiple bits in a hashcode: as

K increases there is a gradually lower probability that distant data-points will collide

in the same hashtable bucket as the query q. However, increasing K also reduces

the probability of collision between nearby data-points (by P
′
1 = PK

1 ), and so while the

precision increases through elimination of false positives we will also suffer a decrease

in recall due to the introduction of false negatives. For a judicious choice of K, if

P1 > P2, it is possible to keep probability P
′
1 bounded significantly away from zero,

while moving probability P
′
2 close to zero (Rajaraman and Ullman (2011)).

In practice for a large enough hashcode length K, we might find that very few close

by data-points (d(p,q) < R) collide in the same hashtable bucket as no data-points

are likely to share an identical hashcode. The number of buckets in a single hashtable

grows at an exponential rate (2K) as the hashcode length is increased and so many of

these buckets will be empty for a large enough setting of K. The other LSH parameter

is the number L of embedding functions sampled from G , with each embedding func-

tion indexing into one of L independent hashtables. The value of L can be increased to

counteract the lower level of recall that arises from a longer hashcode length K. The

probability that two hashcodes will collide in the same hashtable bucket for at least

one hashtable is then given by the expression P
′′
1 = (1− (1−PK

1 )L). Even though us-

ing multiple hashtables will increase probabilities P
′′
1 and P

′′
2 , it is possible to set L so

as to increase probability P
′′
1 towards one, while also keeping P

′′
2 bounded significantly

away from one (Rajaraman and Ullman (2011)). Therefore, the parameters K and L

can be set in combination so as to cause probability P
′′
1 to be close to one, while mov-

ing P
′′
2 close to zero, which is the property we seek for an ideal locality sensitive hash

function (an illustration of this effect for various settings of K and L is shown in Fig-

ures 2.3-2.4). Of course, the higher the values of K and L the greater the computation

time required for the actual hashing.

The setting of L and K permits the practitioner trade-off of the precision and re-

call achieved while choosing an appropriate overall computational cost. One possible

strategy for setting L and K is to use the probabilistic bounds on the failure probability
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Algorithm 1: LSH PRE-PROCESSING STEP (PETROVIC (2012))
Input: Data-points X ∈ RN×D, L embedding functions [g1(.), . . . ,gL(.)] with

gl(.) = {hl1(.), . . . ,hlK(.)}, hlk(.) selected uniformly from family H
Output: Data-points indexed into the buckets of L hashtables H

1 for i← 1 to L do
2 for j← 1 to |X| do
3 Insert x j into bucket H[i][gi(x j)]

4 end

5 end
6 return H

offered by LSH. The setting of L and K can be found by firstly deciding on an accept-

able probability δ < (1−PK
1 )L of LSH failing to find an R-nearest neighbour with a

specified similarity (P1) to the query. The setting of L guaranteeing the failure proba-

bility δ for a given hashcode length K is then given by L≥ dlog(δ)/log(1−PK
1 )e. The

E2LSH1 package recommends choosing the hashcode length K to minimize the mean

query time for all data-points a dataset. Some LSH implementations attempt to elimi-

nate the need to choose these parameters altogether, see for example LSH-forest (Bawa

et al. (2005)). For the practitioner, Petrovic (2012) provide an enlightening discussion

on how the best fitting L and K parameters were chosen for an LSH-based event detec-

tion system. This system was successfully used for real-time detection, tracking, and

monitoring of automatically discovered events in social media streams (Osborne et al.

(2014)).

Having chosen the desired hash function family H and the setting of K and L

there are two final steps to using LSH for nearest neighbour search: pre-processing, in

which the database points are hashed using the L multidimensional embedding func-

tions
{

gl : RD→{0,1}
}L

l=1 into the buckets of L hashtables gl(p) for l = {1 . . .L};
and querying, where the query is also hashed using the same hash functions and the

nearest neighbours retrieved from the colliding hashtable buckets {g1(q), . . . ,gl(q)}.
Typically, the distance (e.g. Euclidean or cosine) from the query to each of the data-

points in this candidate list of nearest neighbours is then computed and any data-points

> R discarded. The pre-processing step is presented in Algorithm 1 while the query-

ing process is presented in Algorithm 2. The presentation of the pre-processing and

1http://www.mit.edu/˜andoni/LSH/

http://www.mit.edu/~andoni/LSH/
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Algorithm 2: LSH QUERYING STEP (PETROVIC (2012))
Input: Query q ∈ RD, Database X ∈ RN×D, L functions [g1(.), . . . ,gL(.)] with

gl = {hl1(.), . . . ,hlK(.)} and hk selected uniformly at random from a

hash function family H , hashtables H

Output: The set S of R (strategy 2) nearest neighbours of q
1 for i← 1 to L do
2 for j← 1 to |H[i][gi(q)]| do
3 Retrieve next data-point x j from bucket H[i][gi(q)]

4 if (d(x j,q)< R) then // Query strategy 2

5 Put x j into retrieved set S

6 end

7 end

8 end
9 return S

querying algorithms has been inspired by a similar specification in Petrovic (2012).

There are two LSH querying strategies and both are directly related to the two vari-

ants of the approximate nearest neighbour decision problem presented in Definitions

2.3.1-2.3.2. The strategy presented in Algorithm 2 solves the R-near neighbour report-

ing problem (Definition 2.3.2) as all data-points in the colliding hashtable buckets are

examined. In the unlikely worst case scenario this latter strategy may cause the search

to examine every data-point in the database. The randomised c-approximate R-near

neighbour problem (Definition 2.3.1) is solved by stopping the search after the first

L
′
= 3L data-points have been retrieved. This strategy comes with an O(L) bound on

the query time.

2.4.1 LSH with Sign Random Projections

In this dissertation I will be primarily interested in the locality sensitive hash function

family for the inner product similarity which traditionally has been used as a baseline

for comparison by existing research in the learning to hash literature. The inner product

similarity is defined in Equation 2.6.
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d(p,q) =
D

∑
k=1

pkqk

= pT q

(2.6)

Equation 2.6 can also be interpreted as the cosine similarity between two L2 nor-

malised vectors mapped on the unit sphere. The cosine similarity measures the close-

ness between two data-points based on the angle (θ) between their respective vectorial

representations in the D-dimensional space, which could be a GIST descriptor (Oliva

and Torralba (2001)) for an image or a TF-IDF vector for a document. As the angle

between the two vectors widens their cosine similarity decreases, and vice-versa. The

locality sensitive hash function family for the cosine similarity Hcosine is formulated by

intersecting the space with K hyperplanes drawn randomly from a multidimensional

Gaussian distribution with mean zero and unit variance. Depending on what side of a

hyperplane a data-point falls, its hashcode is appended with either a ‘0’ or a ‘1’. The

intuition is as follows: the greater the angle between a query q ∈ RD and a database

point p ∈ RD the more probable it is that the space between the vectors will be par-

titioned by a randomly drawn hyperplane. The greater the angle, the more often the

intervening space will be partitioned by random hyperplanes and the lower the number

of bits the hashcodes will share in common. We have achieved the desired property:

the output of a hash function (randomly drawn hyperplane) is less likely to match as

the angle between two data-points is increased.

More formally, a randomly drawn hash function hk from Hcosine has the specifica-

tion given in Equation 2.7

hk(q) =
1
2
(1+ sgn(wᵀ

k q))

= qk(pk(q))
(2.7)

where sgn is the sign function adjusted so that sgn(0) = −1, wk ∈ RD denotes the

normal vector of hyperplane hk. I denote as
{

pk : RD→ R
}

the projection function

(a dot product in this case) that maps a data-point onto a randomly chosen dimension.

Here
{

qk : R→{0,1}B
}

denotes the quantisation function (thresholding at zero with

the sign function in this case) that converts the projection of a data-point into one

or more binary bits. Equation 2.7 is the mathematical procedure for determining the

position of a data-point with respect to a separating hyperplane, with a ‘0’ or a ‘1’

output depending on the side. With the hash function as specified in Equation 2.7,

Goemans and Williamson (1995) showed that the probability of a collision is given as
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Figure 2.3: Visualising the probability of two hashcodes g(p),g(q) matching against

the length of the hashcode key (K = 1,2,10,20). The hash function family is Hcosine.

As the hashcode length becomes longer the two data-points must be close together (in

terms of angle) in order for their collision probability to be high. This is intuitive because

if we draw more hyperplanes (bits) there is a greater chance of the two data-points

falling on different sides of at least one of the hyperplanes, particularly if the data-points

are spaced further apart. This figure is adapted from a similar chart in Petrovic (2012).

in Equation 2.8.

PrHcosine
(h(p) = h(q)) = 1− θ(p,q)

π
(2.8)

Equation 2.8 operationalises our earlier intuition of there being a lower collision

probability with a greater angle θ (in radians) when applying a hash function of the

form given in Equation 2.7. Hcosine is therefore a (R,cR,1−R/π,1− cR/π)-sensitive

hash function family, where the angular distance R is measured in radians. The ampli-

fication strategy I discussed in Section 2.4 for increasing the P1,P2 gap works equally

as well for Hcosine. As before, choosing the length of K with an appropriate setting

of the number of hashtables L is crucial for retrieval effectiveness and efficiency in an

end-application. I illustrate the locality sensitive nature of Hcosine in Figures 2.3-2.4.

In these figures I change the value of K and L and observe the effect on the probability

of a collision occurring in the hashtables.
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Figure 2.4: Probability of collision resulting from varying the number of hashtables (L =

1,2,10,20) for fixed hashcode length K = 5. The hash function family is Hcosine. We

can see that as the number of hashtables increase there is a higher probability of two

data-points being close by colliding in at least one of the hashtable buckets, and a

very low probability of more distant data-points colliding. This is expected as with more

hashtables we are more likely to find a situation where none of the randomly generated

hyperplanes separate the two data-points. This figure is adapted from a similar chart in

Petrovic (2012).

The query time complexity is also dependent on L and K. For a single query

data-point the retrieval cost can be characterised by O(KDL)+O(1)+O(NDL
2K ). This

is made up of the hashing time (time spent generating the hashcodes) O(KDL), the

lookup time (O(1) for a good hashtable implementation) and the candidate test time

(O(NDL
2K )), which is the time taken to exhaustively compute the distance from the query

to the colliding data-points and assuming a uniform distribution of data-points to buck-

ets. As K is increased the hashing time will increase but the candidate test time will fall

as the hash functions become more selective. Increasing the number of hashtables will

increase both the hashing time and candidate test time with the benefit of increasing the

probability that close-by data-points will collide in at least one bucket of a hashtable.

Equation 2.7 provides the foundation upon which the rest of this review and indeed

thesis is formed. I propose novel formulations for defining the projection function
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{
pk : RD→ R

}
and the quantisation function

{
qk : R→{0,1}B

}
so that retrieval ef-

fectiveness is maximised, while also maintaining scalability of the algorithms to large

datasets. More specifically I will firstly challenge the notion that a sign function is an

optimal quantisation strategy for converting the real-valued projection in Equation 2.7

to binary (Section 2.5 and Chapters 4-5) and secondly, that randomly sampled hyper-

planes produce optimal hashcodes (Section 2.6 and Chapter 6). On the latter point, it is

well known that LSH hyperplanes tend to lack discriminative power with many hyper-

planes (bits) and many hashtables being required for an adequate level of precision and

recall (Wang et al. (2012)). This inefficiency is due to their data-independent nature

where the hashing hyperplanes are generated without regard to the data distribution.

This issue has recently stimulated research into hashing methods that learn hash func-

tions adapted to the distribution of the data. I discuss state-of-the-art data-driven hash

functions in Sections 2.5-2.6.

2.5 Quantisation for Nearest Neighbour Search

In this section I review previous related research in the field of binary quantisation

for hashing-based ANN search. We saw in Section 2.4.1 that one of the two crucial

steps in generating LSH-based binary hashcodes involves converting real-valued pro-

jections into binary bits. In this section I study in depth recently proposed algorithms

for reducing the information loss resulting from the discretisation of real-numbers into

binary, and specifically methods that attempt to do better than simply taking the sign

function in Equation 2.7. I will attempt to put on a firm grounding exactly what I mean

by better later in this section. Generally speaking, quantisation refers to the process

of reducing the cardinality of a representation (such as numbers on the real-line) to a

finite and discrete set of symbols (e.g. binary bits). Quantisation has been extensively

studied particularly within the field of information theory (Gray and Neuhoff (2006))

and has also found wide engineering application given the impossibility of storing and

manipulating numeric values to infinite precision. This review will necessarily only

focus on quantisation methods that have been specifically used in hashing-based ANN

search methods.

Two main categories of quantisation have been proposed for nearest neighbour

search: scalar and vector quantisation, which are differentiated by whether the input

and output of the quantisation is a scalar or a vector quantity. Scalar quantisation is

frequently applied to quantise the real-values (projections) resulting from the dot prod-
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(a) Vector Quantisation (b) Scalar Quantisation

Figure 2.5: In the context of nearest neighbour search two variations on quantisation

are typically employed: vector quantisation (Figure (a)) partitions the feature space into

Voronoi cells (Jegou et al. (2011)). Centroids are marked with a white cross while data-

points are shown as black dots. The distance between query and database points is

computed by determining the distance to their closest centroids. In contrast, scalar

quantisation (Figure (b)) is frequently used to binarise a real-valued projection result-

ing from a dot product of a data-point with a hyperplane normal vector. The space is

partitioned with multiple such hyperplanes and each usually contribute 1-bit to the final

hashcode. The hashcode is effectively the index of the polytope-shaped region con-

taining the associated data-point. The data-points appearing in this example are a 2D

PCA projection of the CIFAR-10 image dataset.

uct of the feature vector of each data-point onto the normal vectors to a set of random

hyperplanes partitioning the feature space (Figure 2.5). As we will discover in Section

2.5.1, each dot product yields a scalar value which is then subsequently quantised into

binary (0/1) by thresholding. In contrast, for vector quantisation, the feature represen-

tation of a data-point is associated with its nearest centroid, out of a set of centroids

discovered by the k-means algorithm (Lloyd (1982)). In this way each input vec-

tor (data-point) is represented by a much smaller set of codebook vectors (centroids).

K-means divides the space into Voronoi regions forming a more flexible data-driven

partitioning. I illustrate the partitions formed by vector quantisation and a hyperplane

based scalar quantisation in Figure 2.5. I will not cover vector quantisation any further

in this thesis, but I will mention in passing that it has been found to be more effective

for nearest neighbour search in Computer Vision tasks due to lower reconstruction er-

ror (Jegou et al. (2011)). The downside is the need to store a lookup table at test time to
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Figure 2.6: Single bit quantisation (SBQ) uses one threshold t1 ∈ R to binarise a pro-

jected dimension: projected values (indicated by the coloured shapes) lower than the

threshold (on the left) are assigned a ‘0’ bit, while projected values greater than the

threshold (on the right) are assigned a ‘1’ bit.

read off inter-cluster Euclidean distances using the centroid indices2. This computation

has been found to be 10-20 times slower than the Hamming distance computation be-

tween the binary hashcodes on standard datasets (He et al. (2013)). Scalar quantisation

needs no such decoding step as the distances are computed directly from the hash-

codes, an advantage that has proved beneficial in applications such as mobile product

search (Feng (2012)). Only very recently have researchers attempted to combine the

strengths of both approaches in a unified quantisation algorithm: the reader is encour-

aged to consult He et al. (2013) and references therein for more detail on interesting

work in this direction.

In the context of hashing-based ANN search a scalar quantiser
{

qk : R→{0,1}B
}

maps a real-valued projection yi ∈ R to a single (Section 2.5.1) or multi-bit (Sections

2.5.3-2.5.4) binary codeword
{

ci = {0,1}B |ci ∈ C , i ∈ {1,2, . . . ,T +1}
}

with T de-

noting the number of quantisation thresholds, B denoting the number of bits per pro-

jected dimension and C is the binary codebook. In this dissertation I follow Kong et al.

(2012) by defining a projected dimension yk ∈ RNtrd as the set of real-valued projec-

tions
{

yk
i ∈ R

}Ntrd
i=1 of all data-points [x1,x2 . . .xNtrd ] for a given hyperplane hk, where

a projection yk
i ∈ R is obtained by a dot product yk

i = wᵀ
k xi. The quantisation func-

tion qk binarises each projected dimension yk ∈ RNtrd independently by positioning

one or more thresholds at selected points along the dimension. Projected values falling

into a given thresholded region are assigned the codeword of that region. A simple

illustration of this process is shown in Figure 2.6 where the projected dimension is

shown as a line with a sampling of data-points (indicated by the coloured shapes) su-

perimposed. In this toy example the quantiser uses a single threshold to partition the

2Another advantage of partitioning the space with hyperplanes is the exponential number (2K) re-
gions formed using just K-hyperplanes. Vector quantisation would require 2K centroids for a similar
partition granularity. Jegou et al. (2011) show how 2K centroids can be learnt efficiently for large K
using product quantisation.
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Method Encoding Optimisation Thresholds (T) Complexity Section

SBQ 0/1 Mean thresholding 1 O(1) 2.5.1

HQ 00/01/10/11 Spectral partitioning 1 and 2 O(CN+
trd) 2.5.2

DBQ 00/10/11 Squared error 2 O(Ntrd logNtrd) 2.5.3

MHQ NBC 1D K-means 3+ O(2BNtrd) 2.5.4

Table 2.1: Existing single (SBQ) and multi-threshold (HQ, DBQ, MHQ) quantisation

schemes categorised along the three main dimensions of variability. NBC stands for

Natural Binary Encoding and is explained in Section 2.5.4. C is the number of an-

chor points, Ntrd is the number of training data-points, N+
trd is the number of training

data-points with positive projected value for the given projected dimension and B is the

number of bits per projected dimension. Time complexity is for positioning thresholds

along a single projected dimension.

projected dimension into two disjoint regions. The projections falling in the region be-

low the threshold are given the codeword ‘0’ while the projections falling in the region

above the threshold are assigned the codeword ‘1’. The codebook for this example is

{ci = {0,1}|ci ∈ C , i ∈ {1,2}}. In this way, quantisation transforms projected values

that live on the real-line into a discrete set of codewords from the specified codebook

C . More formally I denote as tk = [t1, t2, . . . , tT ] the set of threshold positions along

a single projected dimension yk ∈ RNtrd where ti ∈ R with t1 ≤ t2 . . . ≤ tT . The two

extremities of a projected dimension are denoted as t0 = −∞ and tT+1 = +∞. The

thresholds {ti ∈ R}T
i=1 partition a given projected dimension into T +1 disjoint regions

ri =
{

y j|ti−1 < y j ≤ ti,y j ∈ yk
}

where i ∈ {1 . . .T +1}. Most existing scalar quantisa-

tion schemes use T = 2B−1 thresholds for a budget of B bits per projected dimension.

Each of the resulting T + 1 thresholded regions
{

ri ⊂ yk}T+1
i=1 are associated with a

unique codeword ci ∈ C .

The retrieval effectiveness resulting from quantisation is greatly affected by the

selected codebook and the positioning of the quantisation thresholds (Moran et al.

(2013a); Kong et al. (2012); Kong and Li (2012a)). The encoding scheme must ensure

that the relative distances between the data-points in the input space are maintained

in the resulting binary hashcodes. For example, if two data-points are distant in the

original feature space then their assigned codewords should also be distant in Ham-

ming space, and vice-versa for close data-points. Ideally the encoding scheme for the

thresholded regions should impart a smooth, gradual increase in Hamming distance as
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the distance between the data-points in the original feature space increases. Correct

positioning of the thresholds is also important as a threshold dividing an area dense

in true nearest neighbours will result in related data-points falling into different re-

gions and being assigned different codewords, increasing the Hamming distance of

their resulting hashcodes. If the threshold positions and/or the encoding scheme are

sub-optimal then the related data-points will be assigned hashcodes with large Ham-

ming distance severely limiting the effectiveness of any hashing algorithm using that

quantisation scheme. The state-of-the-art quantisation algorithms I review in this sec-

tion all propose an encoding scheme and threshold optimisation algorithm that seek

to faithfully preserve the relative distances between data-points in their corresponding

binary hashcodes.

The previous paragraph hints at three key properties that can be used to distin-

guish and categorise existing methods of scalar quantisation3: the encoding scheme

used to assign symbols to each thresholded region, the manner in which the threshold

positions are determined, that is, whether a learning scheme is employed to optimise

the positioning, and the number of thresholds allocated per dimension. In Table 2.1 I

provide an overview of existing quantisation methods as categorised along these three

dimensions of variability. In the following sections I describe these existing quantisa-

tion schemes in detail. Specifically, in Section 2.5.1 I introduce the traditional method

of Single Bit Quantisation (SBQ) and in Sections 2.5.2-2.5.4 I describe the more re-

cent multi-threshold quantisation schemes: Hierarchical Quantisation (HQ), Double

Bit Quantisation (DBQ) (Section 2.5.3) and Manhattan Hashing Quantisation (MHQ)

(Section 2.5.4).

2.5.1 Single Bit Quantisation (SBQ)

Single Bit Quantisation (SBQ) is the method of binarisation employed in the vast ma-

jority of existing hashing methods. A single threshold tk partitions a projected di-

mension yk into two regions, with a ‘0’ bit assigned to projected values lower than

the threshold and a ‘1’ bit assigned to projected values equal to or greater than the

threshold. More formally given a set of k hyperplane normal vectors [w1. . .wK], the kth

hashcode bit for a data-point xi is generated by SBQ as given in Equation 2.9.

3I will use the term quantisation to refer to scalar quantisation throughout the remainder of this
thesis.
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Figure 2.7: Single Bit Quantisation (SBQ) uses one threshold t1 to binarise a projected

dimension: projected values (indicated by the coloured shapes) lower than the thresh-

old (on the left) are assigned a 0 bit, while projected values greater than the threshold

(on the right) are assigned a 1 bit.

hk(xi) =
1
2
(1+ sgn(wᵀ

k xi + tk)) (2.9)

In this quantisation scheme each hyperplane contributes one bit towards the hash-

code for a data-point. The data is typically zero-centred and the projected dimensions

are thresholded at the mean (tk = 1
Ntrd

∑
Ntrd
i=1 wᵀ

k xi). For zero centered data this equates

to the threshold being placed directly at zero (tk = 0). No learning mechanism is used

to optimise the placement of the threshold in SBQ, although in some cases it might

be placed at the median of the data distribution rather than at the mean. Given the ab-

sence of a threshold optimisation step SBQ is a computationally inexpensive operation

requiring O(1) time4 for threshold learning and O(1) time for encoding a novel query

data-point. SBQ is further illustrated with a toy example in Figure 2.7.

The multi-threshold quantisation algorithms I describe in Section 2.5.2-2.5.4 all

seek to overcome a fundamental limitation of SBQ which arises from the use of a single

threshold for binarisation. In some cases SBQ may assign different bits to data-points

that are located close together along a projected dimension, while data-points that are

located much further apart can be assigned the same bits (Kong et al. (2012); Kong

and Li (2012a); Moran et al. (2013a,b)). This is contrary to the fundamental objec-

tive of hashing in which close-by data-points should be assigned identical bits. Given

this, it should be expected that this limitation of SBQ can lead to reduced retrieval

effectiveness. I experimentally confirm that this is the case in Chapter 4. This prob-

lem with SBQ is easily illustrated by considering a hypothetical true nearest neighbour

data-point pair in Figure 2.8. In this diagram the data-points a and b indicated by the

yellow stars are very close to the threshold but lie on opposite sides. Even though both

are close in the projected space they are assigned opposite bits, increasing the Ham-

4This increases to O(Ntrd) time for threshold learning if the median is used as the threshold.
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Figure 2.8: The problem with Single Bit Quantisation (SBQ): true nearest neighbours

such points a,b are assigned different bits despite being close together along the pro-

jected dimension. Conversely points b,c located above the threshold, which are non-

nearest neighbours, are assigned the same bit (1), even though they are more distantly

spaced along the projected dimension.

ming distance of their hashcodes. The hash function, by placing the projections of the

pair a,b nearby along the projected dimension, has indicated that the corresponding

data-points were close together (as deemed by our distance metric of interest) in the

original feature space5. Despite this, SBQ assigns both opposite bits, effectively de-

stroying the neighbourhood structure encoded in the projections. The opposite is true

for the data-points b,c indicated by the yellow star and red circle located above the

threshold. These non-nearest neighbours are far apart along the projected dimension,

indicating that the hash function determined they were more distant in the original

feature space. Nevertheless, SBQ has assigned the same bit to both data-points b,c

ensuring their resulting hashcodes are closer together in terms of Hamming distance.

Unfortunately, this issue is likely to surface often in practice given that vanilla SBQ

places a threshold directly at zero and the highest point density along a projected di-

mension also usually happens to be in the region around zero. This pattern is true for

many projection functions commonly employed in practice (Figure 2.9). Partitioning a

projected dimension into multiple regions, and assigning each region a multi-bit encod-

ing is an effective means of overcoming this issue with SBQ. The modus-operandi of

all multi-threshold quantisation schemes, including my novel contributions presented

in Chapter 4 and Chapter 5, is maximal preservation of the neighbourhood structure

encoded in the projected dimension through a multi-bit codebook and a threshold opti-

misation algorithm. I will now discuss one of the first proposed multi-threshold quan-

tisation schemes in Section 2.5.2.
5We are of course relying here on the hash function placing data-points that are close-by in the

original feature space close by along the projected dimension. Randomised LSH projection functions
guarantee this in expectation while other projection functions seek to explicitly learn the hyperplanes
so that related data-points are encouraged to have similar projections. I cover the latter data-dependent
methods in Section 2.6.
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(b) Principal Component Analysis (PCA)

Figure 2.9: Distribution of projected values for two randomly chosen LSH (Figure (a))

and PCA (Figure (b)) projected dimensions on the LabelMe 22k image dataset (Torralba

et al. (2008)). The images in this dataset are encoded as GIST features (Oliva and

Torralba (2001)). The region of highest projected value density is typically around zero,

as is clearly the case for these two dimensions. The Double Bit Quantisation algorithm

(DBQ) Kong and Li (2012a) explicitly avoids placing a threshold close to zero as, given

the high density of points in that region, this is likely to separate many true nearest

neighbours. DBQ is described in Section 2.5.3.

2.5.2 Hierarchical Quantisation (HQ)

Liu et al. (2011) were the first to introduce the concept of multi-threshold quanti-

sation for hashing in which a single hyperplane contributes multiple bits to the hash-

code. Their quantisation algorithm, dubbed Hierarchical Quantisation (HQ), was intro-

duced as a means of quantising projections resulting from their Anchor Graph Hashing

(AGH) model. It uses only bK/2c of the available hyperplanes, assigning two bits per

hyperplane. I describe the projection learning component of AGH in detail in Section

2.6.3.4, while in this section I focus solely on the quantisation algorithm assuming that

we have already obtained the desired projected dimensions
{

yk ∈ RNtrd
}K

k=1. HQ con-

sists of two steps performed in a sequence: in the first step traditional SBQ is applied

(Section 2.5.1), thresholding a given projected dimension yk at zero (t1 = 0). Step one

produces the first bit of the double-bit encoding for a hyperplane. In the second step

the projected dimension is quantised again, this time using two new thresholds (t2, t3)

that further partition the two regions formed by SBQ at the first step.

The two thresholds (t2, t3) are jointly optimised so as to minimise the number of
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related data-points falling on opposite sides of the dividing threshold resulting from

applying SBQ in the first step. Both quantisation steps are illustrated in Figure 2.10.

Liu et al. (2011) formulate the threshold optimisation as a graph partitioning problem

on the graph Laplacian L = I− Ŝ of the low-rank approximate adjacency matrix Ŝ6.

The neighbourhood structure is encoded by Ŝ, where Ŝi j > 0 indicates that i and j are

neighbours, and Ŝi j = 0 indicates they are not. Ŝ is approximate in the sense that it

is not constructed by computing the N2
trd distances between the Ntrd data-points, but

rather is constructed from an anchor graph Z, a sparse matrix that holds the similari-

ties between the Ntrd data-points and a small set of C anchor points where C� Ntrd

(Equation 2.10):

Zi j =


exp(−d2(x j,ci)/γ)

∑
i′∈〈 j〉

exp(−d2(x j,ci′ ))/γ)
if i ∈ 〈 j〉

0 otherwise

(2.10)

where γ is the kernel bandwidth,
{

d(., .) : RD×RD→ [0,1]
}

is any distance function

of interest such as the L2-norm and 〈 j〉 ∈ {1 . . .R} are the indices of the R�C nearest

anchors to x j under distance metric d(., .). The C anchor points
{

ci ∈ RD}C
i=1 can be

found by running the k-means algorithm over data-points in a training dataset. Us-

ing the anchor graph, the adjacency matrix Ŝ can be computed as Ŝ = ZΛ−1Zᵀ where

Λkk = ∑
Ntrd
i=1 Zik. This latter expression approximates the affinity between data-points

xi,x j as the inner product between their individual affinities to the C centroids. Com-

pared to the full adjacency matrix, Ŝ is sparse and low-rank which brings computa-

tional advantages when extracting the required graph Laplacian eigenvectors (Section

2.6.3.4). Liu et al. (2011) construct an eigenvalue problem involving Z to solve for

the K graph Laplacian eigenvectors yk of the approximate adjacency matrix Ŝ. In the

context of AGH these eigenvectors are the projected dimensions that are thresholded

to yield the hashcodes of the training data-points (Equation 2.11).

hk(xi) =


1
2(1+ sgn(wᵀ

k xi− t2)), if wᵀ
k xi ≥ 0

1
2(1+ sgn(−wᵀ

k xi + t3)), if wᵀ
k xi < 0

(2.11)

Binarising a graph Laplacian eigenvector has the effect of partitioning the graph

6The rank of a matrix is the number of linearly independent rows or columns.
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Figure 2.10: Illustration of the Hierarchical Quantisation (HQ) algorithm of Liu et al.

(2011). I use the data-points a (yellow star) and b (red circle) as examples. The quanti-

sation proceeds in two steps: in the first step SBQ thresholds the projected dimension

into two regions generating the first bit of the two bit encoding for the data-points. For

data-point a this is ‘0’ and for data-point b this is ‘1’. In the second step the regions

formed by SBQ are further partitioned with t2, t3 using a dynamic threshold optimisa-

tion algorithm. Data-point a is assigned ‘0’ again and b is now assigned ‘0’, yielding

hashcodes ‘00’ and ‘10’, respectively. Nearby data-points falling on opposite sides of

the SBQ threshold in Step 1 are therefore more likely to have the same bit assigned in

Step 2, which is the case for our two example data-points. This is the central tenet of

the HQ algorithm.

encoded by Ŝ into two groups, with each of the K eigenvectors forming a different

bi-partitioning of the graph (Shi and Malik (2000)). In the context of hashing-based

approximate nearest neighbour search, the hope is that many of these graph cuts will

result in true nearest neighbours being within the same partition. The eigenvectors

with the highest eigenvalues are generally unreliable and do not produce an effective

partitioning of the graph (Shi and Malik (2000)). This observation motivates the cre-

ation of the two-step quantisation algorithm of Liu et al. (2011) in which the lowest

eigenvectors are responsible for generating most of the hashcode bits. If we denote

yk+ as the positive projected values of projected dimension
{

yk+ ∈ RNtrd |yk
i ≥ t1

}
, and{

yk− ∈ RNtrd |yk
i < t1

}
the negative projected values, the objective of the second level

threshold optimisation is to minimise Equation 2.12
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argmint2,t3 fᵀLf

where f =

[
y+− t211

−y−+ t312

]
subject to 1ᵀf = 0

(2.12)

Intuitively the objective function is attempting to position thresholds t2, t3 so that

two conditions are met. Firstly, connected nodes in Ŝ, that is true nearest neighbours,

stay as close as possible along the projected dimension (as fᵀLf=∑i j Ŝi j( fi− f j)
2), and

secondly, there is an equal number of opposing bits (‘0’ and ‘1’s) when the projected

dimension is binarised with thresholds t2, t3. This latter balance constraint (1ᵀf = 0)

has previously been shown to maximise the information captured by the bits (Weiss

et al. (2008)). Liu et al. (2011) demonstrate that by setting to zero the derivatives of

Equation 2.12, the two thresholds t2, t3 minimising Equation 2.12 can be computed in

closed form.

While Liu et al. (2011) find their multi-threshold quantisation algorithm more ef-

fective than SBQ it suffers from lack of generality to other projection functions, being

entirely tied to the quantisation of graph Laplacian eigenvectors. The computational

complexity of solving for t2, t3 is approximately O(CN+
trd) (Liu et al. (2011)), where

N+
trd denotes the number of positive projected values constituting yk+. Given the learnt

thresholds the time taken to generate a bit for a novel query point is O(1). HQ effec-

tively front loads the available bit budget onto the lowest graph Laplacian eigenvectors.

Liu et al. (2011) demonstrate that only using half the number of eigenvectors and as-

signing each with two bits yields higher retrieval effectiveness than using all available

eigenvectors and assigning each a single bit. Typically, the intrinsic dimension of many

datasets of interest is low and so the lower graph Laplacian eigenvectors (those with

the smallest eigenvalues) are likely to capture most of the neighbourhood structure,

with the higher eigenvectors being more informative of the input space. This insight is

the seed that sparked the recent interest in multi-threshold quantisation algorithms for

ANN search and is the inspiration behind our novel contributions in Chapter 5. I will

examine subsequent research contributions in this area in chronological order continu-

ing next to the Double Bit Quantisation (DBQ) algorithm of Kong and Li (2012a).
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2.5.3 Double Bit Quantisation (DBQ)

Double-Bit Quantisation (DBQ) (Kong and Li (2012a)) allocates two thresholds per

projected dimension and assigns two bits to the three resulting thresholded regions.

Unlike HQ (Section 2.5.2) it has the useful advantage of not being tied to any spe-

cific projection function. For a K-bit hashcode DBQ therefore only uses bK/2c of the

number of hyperplanes as SBQ. DBQ uses the binary encoding scheme illustrated in

Figure 2.11 which ensures that any two adjacent regions only differ by unit Hamming

distance. This property is crucial if the relative distances between the data-points are

to be maintained in the underlying binary encoding, a key requirement for maximising

retrieval effectiveness. DBQ also proposes a novel adaptive thresholding algorithm

for finding an optimal setting of the quantisation thresholds t1, t2. Given a particu-

lar instantiation of the quantisation thresholds t1, t2, three sets r1, r2, r3 are defined

each containing the projected values falling within the corresponding region, that is:

r1 = {yi|yi ≤ t1,yi ∈ yk}, r2 = {yi|t1 < yi ≤ t2,yi ∈ yk}, r3 = {yi|t2 < yi,yi ∈ yk}. The

objective function Jdbq of DBQ is to minimise the sum of squared Euclidean distances

of the projected values falling within the three thresholded regions (Equation 2.13)

Jdbq(r1,r2,r3) = ∑
yi∈r1

(yi−µ1)
2 + ∑

y j∈r2

(y j−µ2)
2 + ∑

yl∈r3

(yl−µ3)
2 (2.13)

where µi denotes the mean of the projected values in region ri. As the area of highest

point density along a projected dimension is in the region of zero (Figure 2.9), DBQ

avoids placing a threshold at zero by setting µ2 = 0 enforcing the property that t1 < 0

and t2 > 0. Given this Jdbq can then be simplified as in Equation 2.16 (Kong and Li

(2012a))

Jdbq(r1,r2,r3) = ∑
yi∈yk

y2
i −2 ∑

yi∈r1

yµ1 + ∑
yi∈r1

µ2
1−2 ∑

yl∈r3

yµ3 + ∑
yl∈r3

µ2
3, (2.14)

= ∑
yi∈yk

y2
i −|r1|µ2

1−|r3|µ2
3, (2.15)

= ∑
yi∈yk

y2
i −

(∑yi∈r1 yi)
2

|r1|
−

(∑yi∈r3 yi)
2

|r3|
(2.16)

where |ri| is the number of projected values (data-points) in region ri. Given that

∑yi∈yk
y2

i is a constant minimising Jdbq is equivalent to maximising J ′dbq (Equation

2.17).



42 Chapter 2. Background

  
y12 thresholds/dimension

t 2

01 00 10

t1

Figure 2.11: Double Bit Quantisation allocates two thresholds t1, t2 to binarise a pro-

jected dimension. The resulting three thresholded regions are assigned the two-bit

encoding shown. This encoding ensures that adjacent regions are only separated by a

Hamming distance of 1.

J
′
dbq(r1,r3) =

(∑yi∈r1 yi)
2

|r1|
+

(∑y j∈r3 y j)
2

|r3|
(2.17)

The objective function J ′dbq is maximised by the adaptive thresholding strategy pre-

sented in Algorithm 3. Algorithm 3 initialises the thresholds t1, t2 to values close to

zero, and then gradually moves both thresholds apart: t1 is moved towards negative

infinity (−∞) while t2 is moved towards positive infinity (+∞). The objective function

J ′dbq is evaluated at every projected value along the projected dimension. In tandem

to this the algorithm attempts to maintain the invariant that the mean of region r2 is

zero i.e. µ2 = 0 (Line 9), which ensures that neither threshold partitions the densest re-

gion of the projected dimension located around zero. The thresholds are moved while

maintaining this property by gradually shifting data-points from regions r1 and r3 into

r2 (Lines 8-13): if the sum of projected values in r2 is below zero then a positive pro-

jected value from r3 is moved into r1 to increase the sum towards zero, and vice-versa.

The objective function J ′dbq is then computed (Line 15) on the new regions r1,r2,r3.

If there is an increase in J ′dbq the thresholds t1, t2 are updated to be the largest pro-

jected values in r1 and r2, which now define the new boundaries between the regions.

The algorithm terminates when all data-points have been moved into region r2. Note

that as all data-points along the projected dimension are exhaustively examined DBQ

guarantees to find t1, t2 that lead to the global maximum of J ′dbq.

The implicit assumption made by DBQ is that the hash functions will minimise the

squared Euclidean distance between true nearest neighbours in the low-dimensional

projected space, which equates to the projected values of any two true nearest neigh-

bours having low squared Euclidean distance along a given projected dimension. If

this assumption is correct then a clustering of the one-dimensional projected dimen-

sion based on a squared error criterion will result in more true nearest neighbours being
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Algorithm 3: DOUBLE BIT QUANTISATION (KONG AND LI (2012A))
Input: Projected values yk ∈ RN resulting from projection onto normal vector

wk ∈ RD of hyperplane hk ∈ RD

Output: Optimised thresholds t1 ∈ R, t2 ∈ R
1 r1←

{
yi|yi ≤ 0,yi ∈ yk}

2 r2← /0

3 r3←
{

yi|yi > 0,yi ∈ yk}
4 Sort (ascending) projected-values in r1

5 Sort (ascending) projected-values in r3

6 Jmax← 0

7 i← 1

8 while r1 6= /0 or r3 6= /0 do
9 if (sum(r2) ≤ 0) then

10 r2← r2∪min(r3) // Remove minimum value in r3

11 else
12 r2← r2∪max(r1) // Remove maximum value in r1

13 end
14 i← i+1

15 J← J ′dbq(r1,r3) // Equation 2.17

16 if (J > Jmax) then
17 t1← max(r1)

18 t2← max(r2)

19 Jmax← J

20 end

21 end
22 return t1, t2

assigned similar hashcodes (given that they will end up in the same thresholded region)

versus an entirely random threshold setting. While Kong and Li (2012a) demonstrate

that this is a reasonable assumption in practice, I will show in Chapter 4 that it is far

from optimal and significantly improved retrieval effectiveness can be attained with a

semi-supervised objective that does not entirely rely on the quality of the hash func-

tion that produces the projections. The threshold learning time complexity of DBQ is

O(Ntrd logNtrd) which arises from the pre-processing step that sorts the projected val-
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ues in regions r1 and r3 (Lines 4 and 5). DBQ has O(1) time complexity when using

the learnt thresholds to generate a bit for a novel query data-point.

2.5.4 Manhattan Hashing Quantisation (MHQ)

A primary disadvantage of both HQ and DBQ are their arbitrary restriction to two

bits per projected dimension. Kong et al. (2012) explored the effect of introducing

more bits per projected dimension in their Manhattan Hashing Quantisation (MHQ)

model, which until the multi-threshold quantisation algorithms I present in Chapters

4-5, constituted the state-of-the-art in the field. MHQ permits an arbitrary allocation of

bits, where for B bits per projected dimension 2B−1 thresholds are used to partition the

dimension into disjoint regions. To generate a hashcode of length K MHQ uses bK/Bc
hyperplanes. In a similar manner to DBQ, MHQ introduces a new encoding scheme

and threshold optimisation algorithm, both designed to increase the preservation of the

relative distance between the data points in the resulting hashcodes. I describe both

contributions in this section.

The binary encoding scheme advocated by MHQ is illustrated in Figure 2.12. Each

region is encoded using natural binary encoding (NBC). The NBC codebook for each

region is simply obtained by proceeding from left-to-right along the projected dimen-

sion starting with the region closest to t0 =−∞ and converting the integer index starting

at zero (and incremented by one for each region) to its corresponding NBC. For exam-

ple, in Figure 2.12 to obtain the NBC for the third region from the left for the bottom

most projected dimension we convert the integer ‘2’ to ‘010’. Under the constraint of

Hamming distance it is clear that the NBC encoding scheme does not preserve the rel-

ative distance between the data-points. This is easily seen if we examine the encoding

for the eight regions induced by setting seven thresholds along a projected dimension

(Figure 2.12). The encoding for the fourth region from the left is 011, while the encod-

ing for the adjacent region to the right is 100. The Hamming distance between these

two regions is 3 despite both being adjacent, while the Hamming distance between re-

gion eight (111) - which is much further along the projected dimension - is only one. In

effect this means that any data-points which are projected far apart along the projected

dimension - and which are presumably far apart in the original feature space - will be

much closer together in the Hamming space, than data-points that were projected close

by along the projected dimension. Hashcodes generated with this encoding and com-

pared using Hamming distance will yield poor quality hashcodes and low retrieval ef-
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Figure 2.12: Manhattan Hashing Quantisation (MHQ) assigns T = 2B− 1 thresholds

per dimension, where B is the number of bits allocated per dimension. The encoding

scheme for the thresholded regions is natural binary code (NBC). Each region from the

left to the right is assigned an integer starting at 0 (on the left) and ending at 2B− 1

for the far right region. This integer index is converted to its equivalent NBC giving the

codeword for that region.

fectiveness. To mitigate this issue Kong et al. (2012) propose taking the Manhattan dis-

tance between the integer index corresponding to a given NBC codeword, rather than

the Hamming distance between the corresponding NBC codewords7. To illustrate how

this method works I will consider the example given by Kong et al. (2012). Imagine

we have generated the hashcode 000100 for data-point 1 and the hashcode 110000 for

data-point 2. If B = 2, the Manhattan distance
{

dMHQ(., .) : {0,1}K×{0,1}K → Z+

}
between the codewords is computed as in Equation 2.18

dMHQ(000100,110000) = dM(00,11)+dM(01,00)+dM(00,00) (2.18)

= 3+1+0

= 4

7I note in passing that binary reflected Gray coding would not be suitable as a binary codebook for
nearest neighbour search. Gray coding has the special property that adjacent codewords differ by unit
Hamming distance which has proved beneficial for enabling error correction in digital communication
over analog channels (Gray (1953)). Gray coding is unsuitable for nearest neighbour search, however,
due to the fact that codewords for data-points located much further apart can also have unit Hamming
distance therefore breaking the neighbourhood structure.
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If the number of bits per dimension B= 3 then the computation proceeds as in Equation

2.19.

dMHQ(000100,110000) = dM(000,110)+dM(100,000) (2.19)

= 6+4

= 10

Computing the Manhattan distance between the integer indices of each region leads

to remarkable increases in retrieval effectiveness as demonstrated in Kong et al. (2012).

This is primarily due to the perfect preservation of the relative distance between the

data-points: the codeword for each adjacent thresholded region is a unit Manhattan

distance apart and there is a smooth increase in the Manhattan distance between any

two regions the further apart they are along the projected dimension. Furthermore, this

encoding scheme generalises easily to any desired number of thresholds because we

are simply taking the integer index of each region. The obvious downside to comput-

ing the Manhattan distance between the integer indices of the thresholded regions is

the slower distance computation versus computing the Hamming distance. On most

modern processors the Hamming distance can be efficiently computed using a bitwise

XOR between the hashcodes followed by a native POPCOUNT instruction which counts

the number of bits set to one. It is not clear in Kong et al. (2012) whether or not

the Manhattan distance will become a bottleneck on large datasets of millions of data

points and dimensions. Some authors have recently offered evidence that this may

indeed be the case (Wang et al. (2015)) by showing that the Manhattan distance re-

quires substantially more atomic operations on the CPU than the Hamming distance.

In Chapter 4, I mitigate this concern by introducing a more general quantisation model

that is effective with a binary encoding scheme under the Hamming distance metric in

addition to the more recently proposed MHQ NBC encoding scheme coupled with the

Manhattan distance metric.

The MHQ threshold optimisation algorithm is straightforward: k-means (Lloyd

(1982)) with 2B centroids {ci ∈ R}2B

i=1 is used to cluster the projected dimension. The

corresponding 2B−1 thresholds {ti ∈ R}2B−1
i=1 are computed from the centroids by tak-

ing the midpoint between adjacent centroids (Equation 2.20).

ti =
(ci + ci+1)

2
(2.20)
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MHQ requires O(2BNtrd) time for threshold learning along a single projected di-

mension and O(1) time to generate a bit for a novel query point with the learnt thresh-

olds.

2.5.5 A Link to the Discretisation of Continuous Attributes

It is interesting to consider briefly how this research area relates to the well-studied area

of discretisation of continuous attributes in the field of machine learning (Dougherty

et al. (1995), Garcia et al. (2013)). Several well-known machine learning models such

as Naı̈ve Bayes (Bishop (2006); Yang and Webb (2009)) often have continuous at-

tributes transformed into nominal attributes by discretisation prior to learning. The

mechanism by which this continuous to discrete transformation is performed shares

many similarities to the quantisation process in the field of multi-threshold quantisa-

tion for hashing. More specifically the attributes (dimensions) are partitioned with a

set of cut-points (thresholds) forming a non-overlapping division of the continuous do-

main. In a similar manner to the quantisation algorithms I discussed in this section the

real-valued numbers within each thresholded region are assigned the corresponding

discrete symbol representing that region. These discrete symbols must be binary for

the quantisation algorithms studied in this section but need not be for the discretisation

algorithms found in machine learning. The discretisation literature is broad and varied

and proposes a wealth of algorithms for learning the cut-points, ranging from unsu-

pervised (simply place the cut-points at equal intervals) through to supervised (Fayyad

and Irani (1993)) and multivariate (each attribute is discretised jointly) (Mehta et al.

(2005), Kerber (1992)). Given the maturity of the discretisation research field I be-

lieve that there is significant potential for these already established ideas to inform the

design of future scalar quantisation algorithms for hashing.

2.5.6 A Brief Summary

In this section I introduced four recently proposed algorithms for scalar quantisation in

the context of hashing-based ANN search. Each method takes a series of real-valued

projections and outputs binary bits which are concatenated to form the hashcodes for

the data-points. Each algorithm is similar in the sense that one or more thresholds are

used to perform the binarisation: if a value is above or below a threshold it is assigned

a codeword (single bit or multiple bits) of the associated region so formed. Single Bit

Quantisation (SBQ) is the standard method of quantisation used by most previous hash-
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ing models (Section 2.5.1). SBQ positions a single threshold, typically at zero along

a projected dimension. SBQ has the advantages of being simple and computationally

efficient, but as I argued, it can lead to high quantisation errors (related data-points be-

ing assigned different bits). The multi-threshold quantisation algorithms, Hierarchical

Quantisation (HQ) (Section 2.5.2), Manhattan Hashing Quantisation (MHQ) (Section

2.5.4) and Double Bit Quantisation (DBQ) (Section 2.5.3) all seek to address this issue

with SBQ using novel encoding schemes and threshold optimisation algorithms. The

manner in which the thresholds are optimised varied widely with each algorithm: HQ

relies on a spectral graph partitioning objective, while MHQ and DBQ optimise objec-

tions related to squared error and variance minimisation. The encoding schemes also

differ significantly between the three multi-threshold algorithms, but all are designed

so that the relative distance between the data-points is maximally preserved in the re-

sulting hashcodes. I now turn our attention to a family of methods in Section 2.6 that

are able to generate the projections that we have just quantised.

2.6 Projection for Nearest Neighbour Search

In Section 2.4.1, I identified two main steps - projection and quantisation - that are

used to generate similarity preserving hashcodes in the context of Locality Sensitive

Hashing (LSH). I discussed how both steps taken together and performed in a sequence

effectively check which sides of a set of hyperplanes a data-point falls, appending a ‘1’

to the hashcode if a point falls on one side of a given hyperplane and a ‘0’ otherwise. In

Section 2.5 I reviewed prior art that focused solely on improving the quantisation step.

The quantisation algorithms I examined attempt to better preserve the neighbourhood

structure between the data-points during binarisation, improving upon simply taking

the sign of the projections in Equation 2.21

hk(xi) =
1
2
(1+ sgn(wᵀ

k xi + tk)) (2.21)

where wk ∈RD is the hyperplane normal vector and tk ∈R is the quantisation threshold.

Equation 2.21 is the popular linear hash function adopted in most hashing research. I

discussed in Section 2.5 that, apart from Anchor Graph Hashing (Liu et al. (2011)),

most quantisation models operate independently of the projection stage and assume

that the projections to be binarised have already been generated by an existing projec-

tion method. In this section I review the equally important step of projection and focus
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Figure 2.13: Illustration of the projection operation. Methods for projection partition

the feature space with a set of hyperplanes. In Figure (a) I show a partitioning of a

two dimensional feature space induced by two hyperplanes h1 and h2. To determine

the bucket index or hashcode of a data-point it is necessary to project the data-points

onto the normal vectors (w1, w2) followed by binary quantisation. In Figure (b) I show

geometrically the result of projection onto normal vector w2. The resulting projections

form projected dimension y2 ∈ RNtrd . Section 2.6 examines existing work that seek to

position the hyperplanes so that many true nearest neighbours end up close to each

other along the resulting projected dimensions.

on algorithms that seek to generate the projections in a way that preserves the rela-

tive distances between the data-points along the resulting projected dimensions. In the

case of the linear hash function this is equivalent to positioning a set of K hyperplanes

throughout the input feature space in such a way that similar data-points are likely

to fall within the same polytope-shaped region. These regions constitute the hashtable

buckets for indexing and retrieval. To generate a projected dimension yk ∈RNtrd from a

hyperplane hk ∈RD the data-points
{

xi ∈ RD}Ntrd
i=1 are projected onto the normal vector

wk ∈ RD using a dot product operation wᵀ
k xi. In Figure 2.13, I show geometrically the

effect of the dot product and how a projected dimension is formed using this operation.

In Section 2.4, I introduced Locality Sensitive Hashing (LSH) a seminal early

method for solving the ANN search decision problems given in Definitions 2.3.1-2.3.2.

As I discussed in Section 2.4.1, LSH for the inner product similarity samples hyper-

planes uniformly from the unit sphere, relying on an asymptotic guarantee that as the

number of hyperplanes increases the Hamming distance between the hashcodes will
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reflect the cosine similarity between any two data-points8. Nevertheless, as I pointed

out in Section 2.4, randomly sampled LSH hyperplanes tend to lack discrimination

and run a high risk of partitioning regions of the input feature space dense in related

data-points. In practice this means that many hyperplanes (bits) and many hash tables

are required for adequate retrieval effectiveness. Unfortunately, longer hashcodes and

more hashtables require a greater main memory allocation for the LSH deployment.

Recently researchers have turned to the question of how best to generate more com-

pact and discriminative hashcodes by learning hyperplanes adapted to the distribution

of the data (Liu et al. (2011, 2012); Weiss et al. (2008); Gong and Lazebnik (2011);

Raginsky and Lazebnik (2009); Kulis and Darrell (2009); Zhang et al. (2010b)). It is

these methods that form the focus in this part of the literature review.

Existing work on projection methods for hashing-based ANN can usefully be di-

vided into three sub-fields based on the degree to which the distribution of the data in-

forms the construction of the hashing hyperplanes: data-independent (Section 2.6.2),

data-dependent but unsupervised (Section 2.6.3) and data-dependent and supervised

(Sections 2.6.4-2.6.5). The projection methods I examine in this section are categorised

in Table 2.2. I segment the field into these three areas and review related work under

each category in Sections 2.6.2-2.6.5. The review will take us on a journey across a

wide array of truly diverse techniques for generating hash functions, from random pro-

jections, kernel functions, spectral methods to boosting. I attempt to be as thorough

as possible in our coverage of existing related work. Nevertheless, the literature on

projection is truly vast due to its popularity as a research topic and therefore it will be

impossible to provide an exhaustive coverage here due to space constraints. Instead

I focus in detail on the more well-known models across each category whose authors

have made the codebase freely available to the research community. Both of these

points ensure that any claims I make in this thesis are both meaningful (e.g. stemming

from results collected on the same experimental framework and on the same dataset

splits) and based upon results from competitive baselines. I point the interested reader

to two recently published review articles of Wang et al. (2014) and Grauman and Fer-

gus (2013) for an additional overview of this part of the field. Note further that all

of the hashing models I review restrict themselves to search over a single hash ta-

ble (L = 1) as is the tradition in the literature. Methods that explicitly learn multiple

hashtables in a data-dependent manner are an interesting sub-field but are out of the
8Goemans and Williamson (1995) showed that the expected Hamming distance between two bit

vectors formed by hash functions sampled from Hcosine will approximate the angle between the vectorial
feature representation of the corresponding data-points in the input feature space.
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scope of this review. The reader is encouraged to see Xu et al. (2011) and Liu et al.

(2013) for research in this direction.

2.6.1 The Four Properties of an Effective Hashcode

Before I discuss individual models for projection, I will firstly examine several prop-

erties that contribute to making an effective hashcode for nearest neighbour search.

The seminal work on Spectral Hashing (SH) by Weiss et al. (2008) first codified four

properties of an effective hashcode (E1-E4):

• E1: The hashcode should have low Hamming distance to the hashcodes of similar

data-points.

• E2: The hashcode should be efficiently computable for a novel query data-point.

• E3: The bits of the hashcode should have equal probability of being 0 or 1.

• E4: The different bits of the hashcode should be pairwise independent.

While I have previously discussed the importance of the first property (E1) in the

context of LSH (Section 2.4) and binary quantisation (Section 2.5), I have so far not

discussed the remaining criteria (E2-E4). The second property (E2) is crucial for ap-

plying a hashing scheme in practice. Given a novel data-point we should be able to

rapidly compute its hashcode so that the overall query time is kept to a minimum.

This is known in the learning to hash literature as out-of-sample extension. LSH has

a straightforward and computationally efficient method for out-of-sample-extension:

simply multiply the query data-point by the matrix where each column constitutes the

normal vector of a randomly sampled hyperplane followed by sign thresholding (Sec-

tion 2.4). The last two properties target the efficiency E3 and compactness E4 of the

hashcode. Property E3 requires each hyperplane to generate a balanced partition of the

data by splitting the dataset into two partitions of equal size i.e. ∑
Ntrd
i=1 hk(xi) = 0. By

the principle of maximum entropy this will maximise the information captured by the

associated bit (Baluja and Covell (2008)). This constraint has the desirable effect of

mapping an equivalent number of data-points to each hashcode and therefore balancing

the occupancy of the hashtable buckets9. At query time we therefore avoid the degen-

erate case of having to examine an unnecessarily large number of nearest neighbours
9Wang et al. (2012) showed how the NP-hard property E3 could be relaxed (and therefore imple-

mented) by showing that it is equivalent to maximising the variance for the kth bit. Enforcing property
E3 might be sub-optimal, however, if it causes a cluster of related data-points to be partitioned into
separate buckets. Usually such a situation can be remedied by using multiple independent hashtables.
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in a given hashtable bucket. The fourth property E4 targets hashcode compactness

by eliminating any redundant bits that capture the same information on the input fea-

ture space. Ideally any hashing scheme should seek to minimise the number of bits

in the hashcode to conserve storage and computation time. The vast majority of the

data-dependent projection schemes introduced since the seminal work of Weiss et al.

(2008) attempt to learn hashing hyperplanes that generate hashcodes with as many

of these four properties as possible. I will study the extent to which these properties

can be simultaneously preserved during the optimisation of the hashing hyperplanes in

Sections 2.6.2-2.6.4.

2.6.2 Data-Independent Projection Methods

Aside from Locality Sensitive Hashing (LSH) which I reviewed in detail in Section

2.4, I will discuss one other data-independent hashing method in this thesis, Local-

ity Sensitive Hashing from Shift Invariant Kernels (SKLSH) (Raginsky and Lazebnik

(2009)) that extends LSH to the preservation of kernel similarity (Section 2.6.2.1).

2.6.2.1 Locality Senstive Hashing from Shift Invariant Kernels (SKLSH)

Locality Sensitive Hashing from Shift Invariant Kernels (SKLSH) extends LSH to

the preservation of similarity between data-points as defined by an appropriate ker-

nel function
{

κ : RD×RD→ R
}

such as the Gaussian kernel κ(xi,x j) = exp(−γ‖xi−
x j‖2/2) or the Laplacian Kernel κ(xi,x j) = exp(−γ‖xi − x j‖1/2) where γ ∈ R is

the kernel bandwidth parameter. In essence the method is similar to LSH but with

a different definition of the hash function family H due to the different similarity

preservation required. The crux of this hashing model is to construct an embedding{
g : RD→{0,1}K

}
such that if two data-points are similar as defined by the ker-

nel function i.e. κ(xi,x j) ≈ 1 then there will be a high degree of overlap between

their hashcodes i.e. dhamming(g(xi),g(x j)) ≈ 0, and vice-versa for the situation when

κ(xi,x j)≈ 0. To construct a mapping with this property Raginsky and Lazebnik (2009)

formulate a low-dimensional projection function given by ΨK : RD→ RK . This pro-

jection uses the random Fourier features of Rahimi and Recht (2007) that provide a

guarantee that the inner product between the two transformed data-points approxi-

mates the output of a shift invariant kernel10 Ψk(xi) ·Ψk(x j)≈ κ̂(xi−x j). The random

Fourier features mapping is given in Equation 2.22

10A shift invariant kernel is defined as: κ(xi,x j) = κ̂(xi−x j).
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Ψk(xi) =
√

2cos(wᵀ
k xi + tk) (2.22)

where for the Gaussian kernel wk ∼ N (0,γID×D) and tk ∼Uni f [0,2π]. The contribu-

tion of Raginsky and Lazebnik (2009) is to use this embedding as the centerpiece of a

novel hash function (Equation 2.23)

hk(xi) =
1
2
[1+ sgn(cos(wᵀ

k xi + tk)+ tk′ )] (2.23)

where sgn denotes the sign function adjusted so that sgn(0)=−1 and tk′ ∼Uni f [−1,1].

Raginsky and Lazebnik (2009) provide a proof that hashing the data-points with K

randomly sampled hash functions will yield a binary embedding whose Hamming dis-

tance approximates the desired shift invariant kernel similarity. As the hyperplanes

are sampled randomly the training time complexity of this algorithm is a low O(DK).

SKLSH satisfies property E2 of an effective hashcode, namely efficient computation

of hashcodes.

2.6.3 Data-Dependent (Unsupervised) Projection Methods

In this section I will provide a critical appraisal of relevant related work that learns

the hashing hyperplanes in a data-dependent manner but without the need for super-

visory information in the form of user provided pairwise constraints on data-point

similarity or class labels. All of the unsupervised data-dependent hashing models I

review in this section learn the hashing hyperplanes by formulating a trace minimi-

sation/maximisation problem which is solved in closed form as an eigenvalue prob-

lem or using singular value decomposition (SVD). These hashing methods rely di-

rectly on well established methods of linear and non-linear dimensionality reduc-

tion, specifically Principal Components Analysis (PCA) and Laplacian Eigenmaps

(LapEig). Given the widespread use of matrix factorisation in the learning to hash

literature, including many methods I do not review here, I give a brief introduction

to this important solution strategy before I review the individual hashing algorithms

themselves in Section 2.6.3.1-2.6.3.411.

There are effectively two main strategies for performing a dimensionality reduction

on a dataset X ∈ RN×D to obtain a new dataset Y ∈ RN×K where K � D. The first

method involves finding an explicit linear transformation of the data characterised by

11For more detail on trace optimisation and eigenproblems for dimensionality reduction the reader is
pointed to the excellent article of Kokiopoulou et al. (2011).
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a projection matrix W ∈RD×K into the lower dimensional space (Y = XW). PCA is a

well-known member of this projective category. The second method computes a non-

linear low-dimensional embedding Y ∈RN×K directly, without first finding an explicit

mapping function. These latter methods, of which LapEig is a prime example, typically

impose neighbourhood constraints such that close by data-points in the original space

are close-by in the reduced space. Despite these differences, both categories can be

neatly unified by a standard trace maximisation objective function (Equation 2.24)

argmaxV∈RN×K tr(VᵀAV)

subject to Vᵀ1 = 0

VᵀBV = IK×K

(2.24)

where A is a symmetric matrix, B is positive definite matrix, V is an orthonormal12 ma-

trix and tr(A) = ∑i Aii. The exact specification of these matrices is projection function

dependent. I will concretely define A, B, V including their dimensionalities in Sections

2.6.3.1-2.6.3.4. But as a way of proving an immediate intuitive example, in the con-

text of Principal Component Analysis (PCA) we have A = XᵀX, V = W ∈ RD×K and

B = I ∈ RD×D. Therefore maximising the trace (Equation 2.24) in this case is equiv-

alent to finding the principal directions in the data that capture the maximum variance

in the input feature space.

The trace maximisation in Equation 2.24 can be solved as a general eigenvalue

problem Avi = λiBvi, where vi is the ith eigenvector with eigenvalue λi (Saad (2011),

Kokiopoulou et al. (2011)). This part of the learning to hash literature can now be

distilled to its essence: in order to learn a set of data-dependent hash functions we

shape our desired hashing optimisation problem into a form that resembles this tem-

plate (Equation 2.24) and then we can simply solve for the K eigenvectors of a standard

eigenvalue problem. This particular optimisation problem is easily solved using off the

shelf solvers such as eigs or svd in Matlab. The main work in deriving an unsuper-

vised data-dependent hash function can be summarised with the following standard

four-step procedure:

1. Manipulating the problem into a matrix trace minimisation/maximisation (Equa-

tion 2.24).
12An orthonormal matrix V is a square matrix with real values whose columns and rows are orthogo-

nal unit vectors. That is, V has the property VᵀV = VVᵀ = I, where I denotes the identity matrix.
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Figure 2.14: The data-dependent (unsupervised) hashing models are intimately related.

This diagram illustrates one interpretation of that relationship where PCA is very much

the centerpiece. The directed arcs are labelled with the operation necessary to trans-

form one model into another model pointed to by the arc. See Section 2.6.3 for a full

description of the four models.

2. Solving the optimisation objective as an eigenvalue problem or by performing a

SVD. The K eigenvectors or right-singular vectors are the normal vectors of the

hashing hyperplanes.

3. Dealing with the imbalanced variance resulting from the matrix factorisation.

4. Construct an out-of-sample extension in the case of a non-projective mapping.

We will see these four design principles in all four data-dependent hashing meth-

ods I review in this section. Specifically I will review PCA hashing (PCAH) (Section

2.6.3.1), Spectral Hashing (SH) (Section 2.6.3.2), Iterative Quantisation (ITQ) (Sec-

tion 2.6.3.3) and Anchor Graph Hashing (AGH) (Section 2.6.3.4). In three out of four

of the methods PCA extracts the directions of maximum variance which are then used

as the hashing hyperplanes (PCAH, SH, ITQ). The contributions of the majority of

these approaches lie in Step 3 where a sensible strategy is sought for minimising the

impact of the imbalanced variance across hyperplanes, a phenomenon that reduces the

quality of the hashcodes from lower principal components. The final method, AGH,

takes a different tact (Section 2.6.3.4) and computes an eigenfunction extension of

graph Laplacian eigenvectors, largely basing the hashcode learning on the Laplacian
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Eigenmap dimensionality reduction algorithm. The objective of all of the presented al-

gorithms is to learn K hash functions
{

hk : RD→{0,1}
}K

k=1 that can be concatenated

to generate hashcodes for unseen data-points.

I present a diagram summarising one interpretation of the relationship between

these hashing algorithms in Figure 2.14.

2.6.3.1 Principal Components Analysis Hashing (PCAH)

Principal components analysis (PCA) (Hotelling (1933)) has proven to be by far the

most popular low dimensional embedding for data-dependent hashing schemes, with

a large body of seminal works manipulating a PCA embedding to achieve superior

retrieval accuracy over unsupervised hashing schemes (Kong and Li (2012b); Gong

and Lazebnik (2011); Weiss et al. (2008); Wang et al. (2012)). I will therefore begin

the review by examining the most basic instantiation of a PCA-based hashing scheme:

namely computing the principal directions of the data and using the singular vectors

with the highest singular values directly as the hashing hyperplanes without any further

modification (Wang et al. (2010b)).

I assume without any loss of generality that the training data in X ∈ RNtrd×D has

been centred by subtracting off the mean i.e. ∑
Ntrd
i=1 xi = 0. The standard maximum

variance PCA objective can then be stated as in Equation 2.25

argmax{wk∈RD}K
k=1

1
Ntrd

∑
k

wᵀ
k XᵀXwk

=
1

Ntrd
tr(WᵀXᵀXW)

subject to WᵀW = I

(2.25)

where tr(A) = ∑i Aii denotes the matrix trace operator and W ∈ RD×K is the matrix

with columns wk. The constraint WᵀW = I requires the learnt hyperplanes to be pair-

wise orthogonal which can be thought of as a relaxed version of the pairwise indepen-

dence property for bits (property E4 in Section 2.6.1). Equation 2.25 is identical to

Equation 2.24 with A = XᵀX, V = W and B = I. Therefore the
{

wk ∈ RD}K
k=1 max-

imising Equation 2.25 are exactly the right singular vectors with the largest singular

values which can be obtained using SVD on X ∈ RNtrd×D in O(min(N2
trdD,NtrdD2))

operations. The PCA solution W ∈ RD×K , where each column constitutes a principal

component, can be interpreted as a rigid rotation of the feature space such that each

succeeding coordinate captures as much of the variance of the input data as possible.
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Figure 2.15: Plot displaying the PCA principal components w1 ∈ RD, w2 ∈ RD (shown

as perpendicular lines) for the data-points indicated by the black dots. Data has been

aligned to the principal axes. The two principal components point in the directions of

greatest variance of the data. These components are used as the vectors normal to the

hashing hyperplanes in the PCA hashing (PCAH) algorithm.

For a K-bit hashcode it is common to take the K right-singular vectors with the highest

singular values as the hashing hyperplanes while tk is set to zero given that the data is

mean-centered. The PCAH hash function is given in Equation 2.26.

hk(xi) =
1
2
(1+ sgn(wᵀ

k xi)) (2.26)

Using PCA to generate hash functions can be thought of as attaining properties

E2,E3,E4 of an effective hashcode as identified in Section 2.6.1.

While the use of PCA is popular within the learning to hash literature, I mention

here a number of disadvantages with using this matrix factorisation for generating

hashcodes. Firstly, SVD is computationally expensive making this approach generally

unattractive for databases with a large number of data-points and/or of a high dimen-

sionality. Secondly, the number of bits K can never be greater than the dimensionality

of the dataset D. In a practical hashing deployment, we first generate a very long hash-

code for a data-point and then divide the hashcode up into L segments each of which

provide the indices into the buckets of L hashtables. The fact that we must always have

K ≤D means that PCAH effectively places a restrictive upper bound on the number of

hashtables L and hashcode lengths K we can use with this method. Finally, the singular
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vectors with the lowest singular values are likely to be unreliable, capturing little vari-

ance in the feature space. Using these singular vectors as hyperplane normal vectors in

Equation 2.26 is likely to result in poor quality hashcodes that do not discriminate well

between data-points. This latter issue, which I term the imbalanced variance problem,

resulted in a flurry of additional research that specifically examined how best to ex-

tract the most information from the singular vectors with the highest singular values

(Sections 2.6.3.2, 2.6.3.4) or that transform the original data-space so that the learnt

hyperplanes capture an equal amount of the variance (Section 2.6.3.3).

2.6.3.2 Spectral Hashing (SH)

Spectral Hashing (Weiss et al. (2008)) (SH) was one of the earliest proposed schemes

for data-dependent hashing and can be seen as the spark that ignited interest in data-

dependent hashing within the field of Computer Vision. SH provides a standard frame-

work for graph-based hashing and is central to unsupervised and supervised hashing

models proposed later in the learning to hash literature. I therefore spend some time

in this section drilling into the fine details of the algorithm. As I discussed in Sec-

tion 2.6.1, SH placed the requirements of an “effective hashcode” on a firm theoretical

grounding by introducing four properties (E1,E2,E3,E4) that such hashcodes should

exhibit. In contrast to simply binarising the projections onto the first K principal com-

ponents as is done in PCAH (Section 2.6.3.1), a procedure which is unlikely to generate

hashcodes with the desired properties, SH examines the extent to which we can inte-

grate three of the properties E1,E3,E4 directly into the optimisation problem as the

objective function (E1) and constraints (E3, E4). The optimisation problem introduced

by SH is given in Equation 2.27

argminY∈RNtrd×K ∑
i j

Si j‖yi−y j‖2

= tr(Yᵀ(D−S)Y)

subject to Y ∈ {−1,1}Ntrd×K

Yᵀ1 = 0

YᵀY = NtrdIK×K

(2.27)

where Dii = ∑ j Si j is the diagonal degree matrix of the adjacency matrix S∈RNtrd×Ntrd .

Weiss et al. (2008) assume that the Euclidean distance between the input data-points is

to be preserved and therefore Si j = exp(−‖xi− x j‖2/γ2) is an appropriate similarity,
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where γ ∈ R is the kernel bandwidth parameter.

This objective function seeks to learn hashcodes
{

yi ∈ {−1,1}K
}Ntrd

i=1
where the

average Hamming distance between similar neighbours is minimised, while satisfying

bit balance and bit independence constraints. The constraint Yᵀ1 = 0 codifies property

E3 in requiring the bits to form a balanced partition of the feature space while constraint

YᵀY=NtrdIK×K seeks bits that are pairwise uncorrelated which approximates property

E4. Unfortunately this optimisation problem is NP-hard even for a single bit, which

can be proved with a reduction to the balanced graph partitioning problem which is

well known to be NP-hard13. In order to make the optimisation problem tractable

Weiss et al. (2008) use the spectral relaxation trick (Shi and Malik (2000)) removing

the integrality constraint and letting the projection matrix Y ∈ RNtrd×K consist of real

numbers (Equation 2.28).

argminY∈RNtrd×K tr(Yᵀ(D−S)Y)

subject to Y ∈ RNtrd×K

Yᵀ1 = 0

YᵀY = NtrdIK×K

(2.28)

Equation 2.28 is identical to Equation 2.24 with A = D−S and V = Y. The so-

lutions of Equation 2.28 are therefore the K eigenvectors with minimal eigenvalue of

the graph Laplacian D−S14. The rows of the spectral embedding matrix Y ∈ RNtrd×K

can be interpreted as the coordinates of each data-point in the low-dimensional embed-

ding. Solving Equation 2.28 ensures that data-points deemed close by the neighbour-

hood graph S ∈ {0,1}Ntrd×Ntrd are mapped nearby in the embedded space, preserving

the local distances. The time complexity of solving Equation 2.28 is approximately

O(N2
trdK). Unfortunately, the graph Laplacian eigenvectors obtained in this way will

only generate the hashcodes for the Ntrd training data-points leaving open the question

of out-of-sample extension. A common way of solving this problem in the context of

spectral methods is to compute the Nyström extension (Bengio et al. (2004); Williams

and Seeger (2001)). However without making a suitable approximation (see Section

2.6.3.4) this procedure is just as costly (O(NtrdK)) as performing a brute-force search

through the database making it unattractive for encoding unseen data-points at query

time. To circumvent this issue Weiss et al. (2008) make a simple approximation by

13The interested reader is pointed to Weiss et al. (2008) for a proof.
14The trivial eigenvector 1 with eigenvalue 0 is ignored.
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assuming the projected data is sampled from a multi-dimensional uniform distribution.

In doing so they show that an efficient out-of-sample extension can be obtained by

simply computing the one-dimensional Laplacian eigenfunctions given by Equation

2.29.

Ψk j(yk
i ) = sin(

π

2
+

f π

bk−ak
yk

i ) (2.29)

with eigenvalues given by Equation 2.30:

λk f = 1− e−
γ2
2 |

f π

bk−ak
|2 (2.30)

along the principal directions given by PCA, where f ∈ {1 . . .K} is the frequency,

ak,bk are parameters of a uniform distribution estimated for projected dimension k and

yk
i ∈R denotes the projection of data-point xi onto the kth principal direction. For ease

of exposition I split the SH algorithm into a training step in which the parameters of

the uniform distribution approximation {ak,bk}K
k=1 and the PCA principal directions{

wk ∈ RD}K
k=1 are estimated and an out-of-sample extension step in which the hash-

codes of novel data-points are generated. Both steps are summarised in A and B below:

(A) Hash function training:

1. Extract K eigenvectors
{

wk ∈ RD}K
k=1 by computing PCA on the training database

X ∈ RNtrd×D and stack as the columns of matrix W ∈ RD×K .

2. Project X ∈ RNtrd×D onto the principal directions
{

wk ∈ RD}K
k=1 by computing

Y = XW where Y ∈ RNtrd×K

3. Estimate a uniform distribution (ak,bk)
K
k=1 for each projected dimension by com-

puting the maximum bk and minimum ak extent of each dimension where ak =

min(yk), bk = max(yk)

4. For each projected dimension yk ∈ RNtrd compute K analytical eigenfunctions{
Ψk f

}K
f=1 and their associated eigenvalues

{
λk f ∈ R

}K
f=1 given by Equations

2.29-2.30.

5. Sort the K2 eigenvalues and select the K analytical eigenfunctions from
{

Ψ̄k j
}K

k, j=1

with the smallest overall eigenvalues. Denote these as
{

Ψ̄k
}K

k=1, their corre-

sponding normal vectors as
{

w̄k ∈ RD}K
k=1 and the parameters of the associated
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uniform distributions
{

āk, b̄k
}K

k=1. Retain all three sets for out-of-sample exten-

sion.

(B) Out-of-sample extension:

1. Compute the K-bit hashcode g(q) = [h1(q),h2(q), . . . ,hK(q)] for query q with

the K hash functions defined as in Equation 2.31 using
{

Ψ̄k, w̄k, āk, b̄k
}K

k=1 re-

tained in Step 5 of the pre-processing stage. Using Equation 2.29 in the hash

function can be thought of as a sinusoidal partitioning to be contrasted with the

cosine partitioning of the projected dimension of SKLSH (Section 2.6.2.1).

hk(q) =
1
2
(1+ sgn(Ψ̄k(w̄

ᵀ
k q)) (2.31)

The computational complexity of this algorithm is dominated by the O(min(N2
trdD,

NtrdD2)) operations required to perform PCA on the database. SH prefers to select

directions that have a large spread |bk − ak| and low spatial frequency f . For low-

dimensional data (D ≈ K) SH commonly chooses multiple sinusoidal eigenfunctions

with gradually higher frequencies for those eigenvectors that are pointing in the di-

rections of greatest variance. To see this, note that the greater the variance of a pro-

jected dimension yk the greater the range of |bk− ak| and the lower the value of the

corresponding eigenvalue given by Equation 2.30. In low-dimensional settings SH

therefore has the desirable property of assigning more bits to the directions of highest

variance in the input space, effectively up weighting the contribution of more infor-

mative hyperplanes in the Hamming distance computation. This somewhat overcomes

the issue of PCAH in which we are progressively forced to pick orthogonal directions

that capture less and less of the variance in the input space. Front loading the bits onto

the most informative hyperplanes is one way of overcoming the imbalanced variance

problem (Section 2.6.3.1) and usually leads to a higher retrieval effectiveness (Liu et al.

(2011); Moran et al. (2013b)). The effectiveness of this variable bit allocation across

hashing hyperplanes provides an inspiration for my novel variable threshold quantisa-

tion algorithm outlined in Chapter 5. In high dimensional settings (D� K) where the

top eigenvectors capture a similar degree of variance, SH degenerates into PCAH by

selecting each PCA hyperplane only once.

Despite the higher retrieval effectiveness versus LSH reported in Weiss et al. (2008)

the unrealistic assumption of a uniform distribution has proved to be a considerable
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limitation of this method. The Anchor Graph Hashing (AGH) algorithm of Liu et al.

(2011) seeks to overcome this issue by making a clever approximation that permits

an efficient application of the Nyström method for out-of-sample extension. I turn to

AGH in Section 2.6.3.4.

2.6.3.3 Iterative Quantisation (ITQ)

While Spectral Hashing (SH) implicitly allocates more bits to the hyperplanes that

capture a greater proportion of the variance in the input space in order to counteract

the imbalanced variance problem, Iterative Quantisation (ITQ) seeks to balance the

variance across PCA hyperplanes through a learnt rotation of the feature space. ITQ

introduces an iterative scheme reminiscent of the k-means algorithm to find a rotation

of the feature space R ∈ RK×K so that the resulting projections onto the principal

directions W ∈ RD×K will minimise the quantisation error specified in matricial form

in Equation 2.32

argminB∈RNtrd×K ,R∈RK×K ‖B−YR‖2
F

where B ∈ {−1,1}Ntrd×K

subject to RᵀR = KIK×K

(2.32)

Equation 2.32 is similar to the orthogonal Procrustes15 problem (Schönemann (1966))

in which we seek to transform one matrix into another using an orthogonal transfor-

mation matrix in such a way as to minimise the sum of the squares of the resulting

residuals between the target matrix and the transformed matrix. In this case Equation

2.32 seeks a rotation matrix R ∈RK×K so that the squared Euclidean distance between

the projection vectors Y∈RNtrd×K and their associated binary vectors B = sgn(XW) is

minimised, where PCA hyperplanes are stacked in the columns of W. This optimisa-

tion is challenging as both matrices B ∈RNtrd×K and R ∈RK×K are initially unknown.

To learn the optimal R we need to know optimal B and to learn the optimal B we

need to know the optimal R. This chicken and egg type problem can be solved with

an iterative scheme akin to k-means that starts off with a random guess for R, before

refining the matrix through a two-step optimisation procedure in which both matrices

15For the interested reader this problem is named after a particular grisly Greek myth involving the
protagonist Procrustes, a villain who offered unwitting travelers their much needed rest on a “magic”
bed that could perfectly accommodate any visitor no matter their height. Unfortunately, Procrustes had
a penchant for removing the arms and legs of his guests so that they could be perfectly accommodated
on the bed.
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Algorithm 4: ITERATIVE QUANTISATION (ITQ) (GONG AND LAZEBNIK

(2011))
Input: Data-points X ∈ RNtrd×D, PCA hyperplanes W ∈ RD×K , number of

iterations M, randomly initialised rotation matrix R ∈ RK×K

Output: Optimised rotation matrix R ∈ RK×K

1 Y← XW // Project data onto PCA hyperplanes

2 for m← 1 to M do
3 B← sgn(YR) // Rotate data using R and quantise

4 SΩŜᵀ← SV D(BᵀY) // Perform SVD on BᵀY
5 R← ŜSᵀ // Rotation minimising Eq 2.32 for fixed B

6 end
7 return R

are learnt individually with the other fixed (Gong and Lazebnik (2011)). The iterative

ITQ algorithm is presented in Algorithm 4.

The key step in the ITQ algorithm is shown in Line 4 of Algorithm 4. In Hanson

and Norris (1981) and Arun et al. (1987) it is shown that with a fixed target matrix B
the sought after transformation R minimising the squared Euclidean distance can be

obtained from the singular value decomposition (SVD) of matrix BᵀY. With a fixed R,

Gong and Lazebnik (2011) show that the optimal B minimising Equation 2.32 can be

obtained simply by using single bit quantisation (Section 2.5.1) (Line 3). In addition

to properties E1-E2, ITQ approximately conserves properties E3 and E4 of an effective

hashcode introduced in Section 2.6.1. The balanced partition property (E3) is met by

maximising the variance of the projections using PCA which was shown in Wang et al.

(2010b) to be a good approximation to conserving E3. E4 is approximately met by

computing PCA on the data as the resulting hyperplanes will be orthogonal, a relaxed

version of the pairwise independence property. The most computationally expensive

step of ITQ is in Line 4 where the SVD of a K×K matrix is computed. This step takes

O(K3) operations, where K is the hashcode length. The learnt rotation matrix can then

be used to construct an ITQ hashcode for an unseen query data-point q ∈ RD as given

in Equation 2.33

gl(q) =
1
2
(1+ sgn(RWᵀq)) (2.33)

where I assume the data has been mean-centered so that the quantisation threshold
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Figure 2.16: The effect of an ITQ rotation of the feature space. Here I show the same

data as in Figure 2.15 but rotated by R ∈ RK×K as found by ITQ over 100 iterations.

The variance is more evenly distributed between the two hyperplanes (indicated as

perpendicular lines) and the quantisation error is lower (no longer does a hyperplane

directly cut through a cluster center). This is the optimisation objective of ITQ (Gong

and Lazebnik (2011)).

tk = 0.

I conclude with two personal observations on the ITQ algorithm. Firstly, such

iterative two-step algorithms are a common and effective recipe for solving difficult

optimisation problems within this field and crop up time and again in the literature.

The need for a two-step algorithm is tied to the NP-hard problem of directly finding

the optimal binary hashcodes. This issue can be tackled by making a continuous re-

laxation of Y ∈ RNtrd×K as we first observed in the context of SH (Section 2.6.3.2).

In this case a two-step procedure will find the best continuous approximation to the

hashcodes followed by a second step that quantises the projections to generate the bits

using either SBQ or one of the more sophisticated binarisation schemes introduced in

Section 2.5. Being an approximation this process will produce sub-optimal hashcodes

and so the challenge in most data-dependent projection models is to minimise the error

in the continuous-to-binary conversion by learning the hashing hyperplanes in such a

way that the resulting projections are more amenable to accurate binarisation. This

algorithmic pattern is clearly evident in ITQ. Indeed, I will introduce my own novel

data-dependent projection algorithm in Chapter 6 which has as its centerpiece a multi-
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step iterative algorithm that allows us to solve what would otherwise be a much more

challenging optimisation problem. Only recently have authors turned to the more dif-

ficult problem of formulating data-dependent hashing algorithms that optimise for the

binary hashcodes directly without making a continuous relaxation, see Section 2.6.4.2

and Liu et al. (2014) for an overview.

Secondly I comment briefly on why ITQ is considered a method of projection in

this thesis, rather than quantisation. In Section 2.5, I defined a quantisation algorithm

as one which learns one or more thresholds along a projected dimension that are then

subsequently used in a thresholding operation to convert the real-valued projections

to binary. ITQ is therefore not strictly a quantisation algorithm under the definition

considered in this thesis as it does not directly convert real-valued projections to binary

relying instead on SBQ (Section 2.5.1) for quantisation. I therefore categorise ITQ as

a method for data-dependent projection as it works directly with the PCA hyperplanes

rotating the data so that the resulting projections better preserve the locality structure

of the input data-space.

2.6.3.4 Anchor Graph Hashing (AGH)

I previously described the Hierarchical Quantisation (HQ) algorithm employed by An-

chor Graph Hashing (AGH) in Section 2.5.2. In this section I will focus exclusively

on the AGH component that learns the projection function. AGH examines the same

relaxed objective function as SH which I repeat in Equation 2.34 for reading conve-

nience

argminY∈RNtrd×K tr(Yᵀ(D−S)Y)

subject to Y ∈ RNtrd×K

Yᵀ1 = 0

YᵀY = NtrdIK×K

(2.34)

The computational bottlenecks involved with this objective function are two-fold:

firstly the similarity matrix S ∈ RNtrd×Ntrd requires O(N2
trdD) computations to con-

struct. Secondly as for any hashing method we need to compute the hashcodes for

unseen query data-points using K hash functions
{

hk : RD→{0,1}
}K

k=1. Unfortu-

nately solving Equation 2.34 and binarising the resulting eigenvectors will only pro-

vide the hashcodes for the training data-points used to construct the adjacency matrix
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S ∈ RNtrd×Ntrd . We need to extend the K graph Laplacian eigenvectors to K eigen-

functions
{

Ψk : RD→ R
}K

k=1 which we can combine with an appropriate quantisa-

tion method to form the hash functions that will encode any data-point (seen or un-

seen). As mentioned in Section 2.6.3.2 this out-of-sample extension can be derived

using the Nyström method (Bengio et al. (2004); Williams and Seeger (2001)) requir-

ing O(NtrdK) time for one data-point. Clearly this time complexity is not amenable

to online hashcode generation for out-of-sample query data-points. The key take-

away message of the AGH algorithm is that a sparse, low-rank approximation of S
can be implicitly manipulated through operations on a truncated similarity matrix

Z ∈ RNtrd×C (C� Ntrd) known as the anchor graph. The approximate similarity ma-

trix Ŝ∈RNtrd×Ntrd , which never needs to be explicitly computed, permits eigenfunction

extension of the graph Laplacian in a time independent of the number of data-points

while avoiding the need to manipulate the full dense similarity matrix S. Further-

more, by computing the Nyström extension AGH is able to avoid the unrealistic sepa-

rable uniform distribution assumption made by Spectral Hashing (described in Section

2.6.3.2).

More specifically the centerpiece of the AGH method is the concept of the anchor

graph Z ∈ RNtrd×C, an approximation of a full data affinity graph, that only consists

of the similarities from Ntrd data-points to a small set of C anchors rather than the

complete pairwise similarities between N2
trd data-points. These anchors are simply

computed by running k-means over the training dataset and selecting the centroids{
ci ∈ RD}C

i=1 as the C anchor data-points. I first presented the anchor graph formu-

lation in Equation 2.10 in the context of the Hierarchical Quantisation (HQ) method

which for convenience I repeat in Equation 2.35

Zi j =


exp(−d2(x j,ci)/γ)

∑
i′∈〈 j〉

exp(−d2(x j,ci′ ))/γ)
if i ∈ 〈 j〉

0 otherwise

(2.35)

where γ is the kernel bandwidth,
{

d(., .) : RD×RD→ [0,1]
}

is a distance function

and 〈 j〉 ∈ {1 . . .R} are the indices of the R� C nearest anchors to x j under the dis-

tance metric d(., .). As the number of anchors is much less than the number of data-

points (C� Ntrd), constructing the anchor graph is O(NtrdCD) rather than O(N2
trdD)

for S. Liu et al. (2011) show that the full similarity matrix Ŝ can be approximated as



68 Chapter 2. Background

Ŝ = ZΣ−1Zᵀ where Σ = diag(Zᵀ1). The approximate similarity matrix Ŝ has the com-

putationally attractive properties of being sparse and low rank. The low rank property

is exploited in the graph Laplacian eigenvector extraction by solving the eigenvalue

system of the small C×C matrix Σ
1/2ZᵀZΣ

−1/2. Given a bit budget of K in the hierar-

chical variant of their algorithm, Liu et al. (2011) select K
′
=K/2 of the C eigenvectors

with the highest eigenvalues as the hashing hyperplane normal vectors. Stacking the

K
′

eigenvectors columnwise in matrix V in descending order of eigenvalue and the

corresponding eigenvalues on the diagonal of matrix Λ, the required graph Laplacian

eigenvectors Y ∈ RNtrd×K
′

can be computed as given in Equation 2.36.

Y =
√

NtrdZΣ
−1/2VΛ

−1/2 = ZW (2.36)

The training time complexity of computing Y is O(NtrdCK
′
). The columns of the

matrix W∈RC×K
′
can be seen as the normal vectors of K

′
hyperplanes partitioning the

space RC formed by the non-linear mapping in Equation 2.35. Liu et al. (2011) show

that an out-of-sample extension can be achieved in two steps: firstly, the unseen query

data-point q is non-linearly projected into the space RC by computing the similarity of

q to the C cluster centroids
{

ci ∈ RD}C
i=1 using Equation 2.35. This operation results in

a sparse transformed vector z∈RC which can also be interpreted as a kernelised feature

map (Murphy (2012)). This step is subsequently followed by a linear projection of z
onto the k-th hyperplane wk ∈ RC partitioning the space RC. The AGH hash function

is formed from both steps (Equation 2.37)

hk(q) =
1
2
(1+ sgn(wᵀ

k z)) (2.37)

where I again assume the data is mean centered so that tk = 0.

This hash function can be thought of as non-linearly mapping the data into a space

where it is more likely to be linearly separable by linear decision boundaries. Given an

unseen query data-point computing this out-of-sample extension takes O(CD+CK
′
)

operations, a testing time complexity that is a marked improvement over the O(NtrdK)

time complexity of the Nyström method16. Rather than generate one bit per hash

function as suggested by Equation 2.37, the most accurate variant of AGH generates

two bits for each of the resulting projected dimensions yk =Y•k with k∈ [1, . . . ,K ′ ]. We

16Assuming D� Ntrd , which is generally true for the most common image features such as Gist and
SIFT.
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previously discussed this Hierarchical Quantisation (HQ) algorithm in detail in Section

2.5.2.

2.6.3.5 A Brief Summary

In our first foray in data-dependent hashing algorithms I surveyed a selection of the

more well-known unsupervised algorithms that position the hashing hyperplanes based

on the distribution of the data. I reviewed Principal Components Analysis Hashing

(PCAH) (Section 2.6.3.1), Spectral Hashing (SH) (Section 2.6.3.2) and Anchor Graph

Hashing (AGH) (Section 2.6.3.4). I saw that all three models reviewed are closely

related in their application of a well-known dimensionality reduction method, either

Principal Components Analysis (PCA) or Laplacian Eigenmaps (LapEig), to learn the

hashing hyperplanes.

Three out of four of the hashing models (PCAH, SH, ITQ) used PCA, setting the

hashing hyperplanes to be the right singular vectors resulting from a SVD on the data

matrix. Two of these models (SH, ITQ) highlighted the issue of variance imbalance

in which the hyperplanes capturing a smaller amount of the variance are much less

reliable for hashing. The upshot of this is that PCAH retrieval effectiveness declines

markedly with longer hashcode lengths due to the incorporation of lower quality hy-

perplanes into the hashcode generation. To counter this degradation in performance

SH assigns more hashcode bits to the hyperplanes with higher variance while ITQ

rigidly rotates the feature space to explicitly balance the variance across hyperplanes.

All three models show higher retrieval effectiveness than PCAH which assigns 1 bit

per hyperplane or simply uses the PCA hyperplanes as is.

I also discussed how the AGH algorithm took a different strategy to the PCA-

based hashing algorithms by using a LapEig-inspired dimensionality reduction. In this

scenario a nearest neighbour graph was built from the input data which was then used

in an eigenvalue problem to extract graph Laplacian eigenvectors. Given that LapEig is

a non-projective dimensionality reduction these eigenvectors were shown to yield the

hashcodes for only those data-points used in the neighbourhood graph computation.

An appealing property of AGH is its computationally efficient method, based on the

Nyström method of Williams and Seeger (2001), for out-of-sample extension to unseen

data-points.

Aside from AGH which makes an honest attempt at reducing the computational

complexity at training time, the downside with most of these hashing algorithms is

the severe computational penalty O(min(N2D,ND2)) required for solving the SVD or
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eigenvalue problem making their application intractable for large-scale datasets of high

dimensionality. Indeed, as we will see in forthcoming sections most data-dependent

hashing models (both supervised and unsupervised) generally rely on a matrix factori-

sation.

2.6.4 Data-Dependent (Supervised) Projection Methods

In Section 2.4 and Sections 2.6.2-2.6.3 I reviewed a selection of state-of-the-art data-

independent and data-dependent hashing models. The data-independent models pre-

serve a similarity, such as the cosine or a kernel similarity, that is non data-adaptive

and is therefore unlikely to do very well at capturing a user-defined notion of similar-

ity across many different tasks. Moreover, the data-dependent (unsupervised) models

assume, for example, that discriminative hashcodes can be generated from projected

dimensions that capture the maximum variance in the input space. This relies on vari-

ance being a quantity that can effectively distinguish between unrelated data-points,

an assumption which may not be valid in many datasets of practical interest, such as

image datasets collated “in the wild” from the WWW that depict images of varying

topic, quality and resolution. This is exacerbated by the well-known semantic gap

problem in computer vision which highlights the gulf between the statistics of the im-

ages captured by low-level image features such as Gist and SIFT and the high-level

semantic concepts that are depicted in the image (Smeulders et al. (2000)). A robust

way of linking these two domains is one of the grand challenges in the sub-fields of

object recognition and image annotation (Moran and Lavrenko (2015a)), and is also

important in our selected task of image retrieval.

To mitigate the difficulties arising from the semantic gap and capture the complex

relationships between data-points found in real-world datasets, such as whether two

images depict a cat or a person, it is generally much better to learn a hash function from

a small amount of available supervision in the form of human annotated class labels

or pairwise cannot-link or must-link constraints that specify which data-point pairs

should or should not have the same hashcodes. In the visual search domain, Grauman

and Fergus (2013) highlight potential sources of supervisory information ranging from

explicit labelling of a subset of the database, to known correspondences between points

in image pairs and user feedback on image search results. It is this category of hashing

model that I review in this section. In general, I define a supervised hashing model as a

model that leverages the same type of information (e.g. class labels, metric distances)
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Figure 2.17: Supervised versus unsupervised projection function learning. Illustration

of a situation where learning hashing hyperplanes based on pairwise user provided con-

straints can yield a more effective bucketing of the space than a partitioning based on

maximum variance. Points with similar shapes and colours are 1-nearest neighbours.

In Figure (a) hyperplane h1 ∈ RD is learnt via PCA with its normal vector w1 ∈ RD

pointing in the direction of maximum variance in the data. Projecting data-points onto

the normal vector w1 ∈ RD places related data-points (indicated by the same shapes)

into different buckets. In contrast Figure (b) illustrates the effect of constraining the hy-

perplane positioning by using a set of must-link (show as dotted lines) and cannot-link

(shown as solid lines connecting the data-points) constraints. I only show a subset of

the constraints for clarity. In this case all related data-points fall within the same bucket

as each other yielding a more effective partitioning of the space.

in the hash function learning algorithm that was also used to compute the groundtruth

information for evaluation purposes. In Figure 2.17, I illustrate a situation in which

learning hyperplanes based on pairwise labels yields a more effective bucketing of the

space than one based purely on captured variance.

In a similar manner to the data-dependent (unsupervised) models, I restrict my at-

tention to a selection of the most well-known baselines from the literature and whose

authors have made the codebase freely available to the research community thereby

making a fair comparison to our own methods possible under identical experimen-

tal conditions. I review ITQ with a Canonical Correlation Analysis (CCA) embed-

ding (ITQ + CCA) (Gong and Lazebnik (2011)), Supervised Hashing with Kernels

(KSH) (Liu et al. (2012)), Binary Reconstructive Embedding (BRE) (Kulis and Dar-

rell (2009)) and Self-Taught Hashing (STH) (Zhang et al. (2010b)). These four models
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Figure 2.18: Relationship between the four supervised hashing models reviewed in this

section. The labels on the arrows indicate the transformation necessary to convert

between the different models. The fundamental difference between the models arises

in how the available labels are related to the projections/hashcodes so as to compute

an error signal to adjust the hashing hyperplanes.

fundamentally differ only in how they use the available labels to derive an error sig-

nal that can then be used to adjust the positioning of the hashing hyperplanes. For

example, BRE and KSH frame similar objective functions that attempt to minimise

the difference between the labels and the hashcode distances (BRE and KSH). STH

uses the LapEig objective which minimises the difference between the projections of

data-points with the same label while ITQ+CCA frames an objective that maximises

the correlation of the labels and data-point projections. The relationship between these

four supervised hashing models is summarised in Figure 2.18.

2.6.4.1 ITQ + Canonical Correlation Analysis (CCA)

I reviewed the unsupervised variant of Iterative Quantisation (ITQ) in Section 2.6.3.3.

ITQ learns an orthogonal rotation matrix R ∈ RK×K that transforms PCA projected

data in a way that minimises the error of mapping the data to the vertices of a binary

hypercube. ITQ is independent of the method for generating the orthogonal hashing

hyperplanes W = [w1,w2, . . . ,wK] where wk ∈ RD, which in the case of the origi-



2.6. Projection for Nearest Neighbour Search 73

nal algorithm was PCA. It is therefore straightforward to make ITQ into a supervised

algorithm by using a supervised embedding to learn the hashing hyperplanes rather

than PCA. Gong and Lazebnik (2011) replace PCA with Canonical Correlation Anal-

ysis (CCA) (Hardoon et al. (2003)) a well-known multi-view dimensionality reduction

technique that explores the interaction between data vectors in two different feature

spaces X and Z. Assume we have Ntrd training data-points in matrix X ∈ RNtrd×Dx

and their associated labels in matrix Z ∈ RNtrd×Dz , where usually Dx 6= Dz. Each row

of matrix Z is a binary indicator vector zi ∈ {0,1}Dz where a ‘1’ indicates that the

data-point xi is tagged with that label and a ‘0’ otherwise. The CCA algorithm finds

two hyperplane normal vectors wk ∈RDx and uk ∈RDz so that the projections Xwk and

Zuk are maximally correlated (Equation 2.38).

argmaxwk∈RD,uk∈RD
wkXZuk√

wᵀ
k XᵀXwkuᵀ

k ZᵀZuk

subject to wᵀ
k XᵀXwk = 1

uᵀ
k ZᵀZuk = 1

(2.38)

This objective function can be maximised by solving the following generalised

eigenvalue problem (Gong and Lazebnik (2011))

XᵀZ(ZᵀZ+ρI)−1ZᵀXᵀwk = λ
2
k(X

ᵀX+ρI)wk (2.39)

where λk is the eigenvalue and ρ is a regularisation constant set to 0.0001 in Gong and

Lazebnik (2011). Repeatedly solving Equation 2.39 for directions that are orthogonal

to all previously discovered hyperplanes gives K orthogonal hyperplanes with normals

W = [w1,w2, . . . ,wK] whose positioning in the feature space have been influenced by

the supervisory signal. Having learnt the hyperplanes W∈RD×K in modality X the re-

mainder of the ITQ+CCA algorithm proceeds in the same way as for the unsupervised

variant of ITQ (Section 2.6.3.3). If I denote D = max(Dx,Dz), then the computational

complexity of ITQ+CCA is bounded by O(NtrdD2 + D3). This is made up of the

O(NtrdD2) operations required to compute the covariance matrices and the O(D3) op-

erations arising from the matrix multiplications, inversion and solving the eigenvalue

problem (Rasiwasia et al. (2014)). Following a similar line of argument to ITQ, ITQ

+ CCA approximately preserves properties E1-E4 of an effective hashcode.
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2.6.4.2 Binary Reconstructive Embedding (BRE)

Binary Reconstructive Embedding (BRE) is the only projection method I consider that

does not make use of the spectral relaxation trick to circumvent the NP-hard opti-

misation problem of learning binary hashcodes directly. We were first introduced to

this continuous relaxation in the context of Spectral Hashing (Section 2.6.3.2). With-

out making the spectral relaxation and dropping the sign function from the optimi-

sation objective many approaches to data-dependent hashing are discontinuous and

non-differentiable. The contribution of BRE is a novel optimisation objective and a

coordinate descent algorithm that solves the discrete optimisation problem directly

without appealing to a continuous relaxation. As we have seen before in this litera-

ture review many methods solve for a matrix Y ∈ RNtrd×K of real-numbers and then

binarise this matrix to reveal the hashcodes using, for example, single bit quantisation

(SBQ). These two steps are disconnected and there is therefore no guarantee that the

real-values in Y ∈ RNtrd×K will reliably map to accurate binary hashcodes particularly

if they are close to the threshold boundary (which is typically at zero for mean cen-

tered data). BRE brings both steps into the optimisation objective by retaining the sign

function. I present the supervised variant of the BRE objective function in Equation

2.40

argminW∈RD×K ∑
i j∈S∈{0,1}Ntrd×Ntrd

{
(1−Si j)−

1
K
‖g(xi)−g(x j)‖2

2

}2

subject to g(xi) = [h1(xi),h2(xi), . . . ,hk(xi)]
ᵀ

where hk(xi) =
1
2

sgn(1+
C

∑
j=1

Wjkκ(x j,xi))

(2.40)

where S ∈ {0,1}Ntrd×Ntrd is an adjacency matrix with Si j = 1 indicates xi and x j are

related and 0 otherwise. Ntrd data-points (C < Ntrd� N) are sampled from the dataset

to construct S and C data-points are sampled uniformly at random as the anchor points

for efficient kernel computation. W ∈ RC×K is initialised randomly, κ is a kernel

function
{

κ : RD×RD→ R
}

. Kulis and Darrell (2009) set κ to be the linear kernel in

the original publication.

The objective function in Equation 2.40 attempts to make the normalised Hamming

distance low for those data-point pairs with Si j = 1, and large otherwise. No part of this

objective encourages the conservation of properties E3 and E4 of an effective hashcode.
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In the case of both objective functions a kernelised feature map
{

κ : RD×RD→ R
}

is

computed against a small number C of randomly sampled data-points from the train-

ing dataset, and the mapped data projected onto a set of K hyperplane normal vectors{
wk ∈ RC}K

k=1. This formulation of the hash function is similar to that of Anchor

Graph Hashing (Equation 2.37) except AGH maps the data non-linearly using an RBF

kernel and uses k-means centroids as the C samples to construct the kernel. The re-

trieval effectiveness of BRE may benefit from a non-linear kernelised feature map al-

though this formulation was not explored in the original publication.

Perhaps the most interesting contribution of BRE is the optimisation algorithm

used to minimise Equation 2.40 with the sign function intact. To optimise the non-

differentiable objective function Kulis and Darrell (2009) formulate a coordinate de-

scent algorithm that cycles through each hash function one by one and finds the value

minimising Equation 2.40 of a randomly chosen element Wjk of each hyperplane W•k,

while holding the remaining hyperplanes constant. Kulis and Darrell (2009) provide a

closed form solution for computing the optimal Wjk in O(N2
trd) time. This procedure

is repeated for the remaining hash functions. In total one iteration through all K hash

functions takes O(KN2
trd +KNtrd logNtrd) operations17. BRE meets properties E1-E2

of an effective hashcode. The hashcode bits generated by BRE are correlated (property

E3 is not conserved) given that the coordinate descent algorithm cycles through each

hash function in turn updating the current hash function based on the optimised hyper-

plane normal vectors of previously examined hash functions. The benefit of tackling

the discrete optimisation problem directly has recently garnered renewed attention in

Liu et al. (2014) and Shen et al. (2015).

2.6.4.3 Supervised Hashing with Kernels (KSH)

Supervised Hashing with Kernels (KSH) formulates a kernelised hash function in a

similar manner to AGH (Section 2.6.3.4) and BRE (Section 2.6.4.2) but proposes an

entirely different and spectrally relaxed optimisation algorithm (Liu et al. (2012)).

KSH exhibits the highest retrieval effectiveness compared to the supervised hashing

models I discuss in this section and frequently appears in the literature as the de-facto

baseline for comparison on the standard image datasets considered in this thesis. The

familiar kernelised hash function is presented in Equation 2.41

17For ease of presentation I assume each of the Ntrd training data-points forms Ntrd-1 supervisory
pairs with the other Ntrd-1 training data-points in S. In practice, for computational tractability, BRE
randomly selects a much smaller sample of pairs (e.g. 0.05Ntrd) for each training datapoint.
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hk(q) = sgn(
C

∑
j=1

Wjkκ(x j,q)+ tk) (2.41)

where κ is the kernel function κ : RD×RD → R, tk ∈ R is a scalar threshold and

W ∈ RC×K is a set of K hyperplane normal vectors. As for BRE and AGH a small

number of C (C� N) data-points are sampled uniformly at random from the dataset

X ∈ RN×D to compute the required kernel similarities. In addition, Ntrd data-points

(C < Ntrd � N) are sampled from the dataset to construct the adjacency matrix S ∈
{−1,1}Ntrd×Ntrd , which acts as the training samples for learning the hash functions.

The objective function of KSH (Equation 2.42) is very similar to the supervised BRE

objective function, the only salient difference being the removal of the sign function

and the computation of the inner product (gᵀ(xi)g(x j)) between a pair of hashcodes

for data-points xi,x j, rather than the Euclidean distance.

argminW∈RC×K ∑
i j∈S∈RNtrd×Ntrd

{
Si j−

1
K

gᵀ(xi)g(x j)

}2

subject to g(xi) = [h1(xi),h2(xi), . . . ,hK(xi)]
ᵀ

hk(xi) = sgn(
C

∑
j=1

Wjkκ(x j,xi))

(2.42)

Recall from Section 2.6.4.2 that BRE retains the sign function and tackles the re-

sulting NP-hard optimisation problem via a coordinate descent algorithm that mea-

sures the impact of flipping bits on the objective function value. In contrast KSH drops

the sign function and performs the hashcode optimisation over a continuous space

that admits a more efficient parameter update via gradient descent. KSH optimises

each of the K hash functions sequentially by firstly initialising each hyperplane normal{
wk ∈ RC}K

k=1 by solving an eigenvalue problem which is then followed by a gradient

descent optimisation to further refine the hyperplanes. To see how the KSH sequential

optimisation algorithm works more clearly, I drop the sign function and rewrite Equa-

tion 2.42 to iterate over the K hash functions rather than data-point pairs (Equation

2.43)

argminW∈RC×K

K

∑
k=1
‖KS−yk(yk)ᵀ‖2

F

where yk
i =

C

∑
j=1

Wjkκ(x j,xi)

(2.43)
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where I have assumed that the data is mean centered, and therefore tk = 0. Recall from

Table A.1 in Appendix A that the notation yk signifies the kth column of the projection

matrix Y ∈ RNtrd×K . It is possible to approximately solve Equation 2.43 by simply

optimising each hyperplane individually giving K independent optimisation problems.

Instead KSH opts for a solution strategy similar to that of BRE where the hyperplanes

are solved in a sequential manner thereby instilling a degree of dependence between

the hashcode bits. In the case of KSH this dependence is captured with a residue matrix

R ∈ ZNtrd×Ntrd
+ defined in Equation 2.44

Rk−1 = KS−
k−1

∑
l=1

yl(yl)ᵀ (2.44)

The magnitude of R is related to the number of mismatches between the signs of

data-point pairs where Si j = 1 in the adjacency matrix. The higher the number of

mismatches for a given data-point pair (xi,x j) over the previous k-1 hash functions

the greater the value of the corresponding element Rk−1
i j and the greater the influence

that pair will have on learning of the kth hash function. In this way the hash func-

tion learning is gradually biased towards correctly labelling those data-point pairs that

were incorrectly labelled by hyperplanes learnt earlier in the optimisation procedure.

Liu et al. (2012) show that the objective function in Equation 2.43 can be reduced to

Equation 2.45

argmaxwk∈RC (Kwk)
ᵀRk−1(Kwk)

where Ki j = κ(xi,x j)

subject to (Kwk)
ᵀ(Kwk) = L

(2.45)

where K ∈ RNtrd×C is the kernel matrix. Comparing the form of Equation 2.45 to the

standard eigenvalue problem template presented in Equation 2.24 we can immediately

see that the solution to this optimisation problem is the eigenvector with the largest

eigenvalue of KᵀRk−1Kwk = λKᵀKwk. In the KSH algorithm this eigenvector con-

stitutes the initialisation point for the kth hyperplane normal wk ∈ RC. The position

of this hyperplane is further refined via gradient descent from the gradient of a sig-

moid smoothed relaxation of Equation 2.45. The remaining hashing hyperplanes are

then learnt by updating the residue matrix and sequentially repeating the eigenvector

initialisation and gradient descent refinement steps for each.

Despite being a non-linear model, KSH maintains a computationally tractable op-
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timisation algorithm with time complexity O(NCK +N2
trdCK +NtrdC2K +C3K) by

limiting the number C,Ntrd
18 of sampled data-points used to construct the hash func-

tions and by making a continuous (real-valued) approximation to the binary hashcodes.

KSH does not enforce constraints E3-E4 of an effective hashcode, but does ensure

E1,E2 with highly discriminative hashcodes and fast out-of-sample-extension to un-

seen query data-points.

2.6.4.4 Self-Taught Hashing (STH)

Self-taught hashing (STH) (Zhang et al. (2010b)) employs a two-step procedure for

learning the hashing hyperplanes. The first step involves a Laplacian Eigenmap di-

mensionality reduction which is followed by a second step that learns the hyperplanes

for out-of-sample extension to unseen query data-points. STH is therefore reminiscent

of the unsupervised data-dependent hashing models Anchor Graph Hashing (AGH)

(Section 2.6.3.4) and Spectral Hashing (SH) (Section 2.6.3.2). The first step of STH is

identical to that of SH in which K graph Laplacian eigenvectors are extracted from the

graph Laplacian L = D−S. I present the now familiar graph Laplacian optimisation

objective in Equation 2.46

argminY∈RNtrd×K tr(Yᵀ(D−S)Y)

subject to Y ∈ RNtrd×K

YᵀD1 = 0

YᵀDY = NtrdIK×K

(2.46)

where tr(A) = ∑i Aii is the trace operator, S ∈ {0,1}Ntrd×Ntrd is a neighbourhood graph

formed from class labels, if two data-points share at least one class in common then

Si j = 1, otherwise Si j = 0 and D is the diagonal degree matrix Dii = ∑ j Si j. For com-

putational tractability Ntrd � N. Note the slight difference in the constraints between

Equation 2.46 and the objective of SH (Equation 2.28). The diagonal degree matrix

D makes an appearance in the constraints of Equation 2.46, which gives a normalised

cut of S rather than a ratio-cut (Aggarwal and Reddy (2014)) when the graph Lapla-

cian eigenvectors are binarised. Equation 2.46 is therefore equivalent to the Laplacian

Eigenmap embedding (Belkin and Niyogi (2003)). The solutions of Equation 2.46 are

the eigenvectors corresponding to the lowest eigenvalues of the generalised eigenvalue

18Typically Ntrd = 1000 and C = 300.
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problem Lyk = λDyk. The eigenvalue problem can be solved in O(MN2
trdK) opera-

tions using M iterations of the Lanczos algorithm (Golub and Van Loan (1996), Zhang

et al. (2010b)). Note that, as for BRE (Section 2.6.4.2), it is also straightforward to

frame STH as an unsupervised hashing model by computing S using, for example, the

Euclidean distance between feature vectors in the input feature space. In the same

way to SH, solving Equation 2.46 approximately preserves properties E3 and E4 of an

effective hashcode (Section 2.6.1).

Equation 2.46 can be solved as a standard eigenvalue problem to extract the re-

quired K graph Laplacian eigenvectors Y ∈ RNtrd×K . As I discussed in the context of

AGH, the spectral embedding matrix must be binarised to form the hashcodes, and

only then provides the encoding for the Ntrd data-points that formed the neighbour-

hood graph S. Rather than appealing to the Nyström method (Bengio et al. (2004);

Williams and Seeger (2001)), as in AGH (Section 2.6.3.4) or making a separable uni-

form distribution approximation as for SH (Section 2.6.3.2), STH makes the novel

contribution of learning a set of K binary support vector machine (SVM) classifiers

that predict the bits in the binarised spectral embedding matrix with maximum margin.

The learnt classifiers provide the required hyperplane normal vectors
{

wk ∈ RD}K
k=1

necessary for out-of-sample extension to unseen data-points. Training K linear SVMs

takes O(NtrdDK) time (Joachims (2006)) while out-of-sample extension (test time) is

O(DK) for a single test data-point.

2.6.4.5 A Brief Summary

I have reviewed four of the most prevalent methods in the literature for injecting a su-

pervised signal into the learning of the hashing hyperplanes for unimodal ANN search.

The methods reviewed included ITQ+CCA (Section 2.6.4.1), Binary Reconstructive

Embedding (BRE) (Section 2.6.4.2), Supervised Hashing with Kernels (KSH) (Section

2.6.4.3) and Self Taught Hashing (STH) (Section 2.6.4.4). The underlying principle

behind all of these methods is to learn a set of K hyperplanes that are informed by

must-link or cannot-link constraints on data-point pairs. The hyperplanes should not

partition must-link pairs, but should partition cannot-link pairs into distinct hashtable

buckets. An example must-link constraint would be for two images of a cat to be placed

in the same bucket, while a cannot-link constraint would demand that an image of a

dog be placed in a separate bucket. We saw how these methods differ at a high-level

only in how the available labels are compared to the projections/hashcodes so as to

compute an error signal for further adjustment of the hashing hyperplanes. KSH and
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BRE, for example, seek to minimise the difference between the label and either the in-

ner product of the projections of the two data-points (KSH) or the Hamming distance

between their binarised hashcodes (BRE). Despite the conceptual similarity between

the objective functions, the optimisation algorithms used in their solution were sub-

stantially different and formed perhaps the most interesting point of departure between

the different hashing models reviewed in this section. BRE for example attempted to

optimise the hashing hyperplanes by remaining within the discrete hashcode space,

thereby directly tackling an NP-hard optimisation problem. In contrast, KSH relaxed

the objective into a continuous domain and used a gradient descent procedure to learn

the hashing hyperplanes.

2.6.5 Cross-Modality Projection Methods

Locality sensitive hashing (LSH) and its kernelised variant SKLSH which were both

described in Section 2.4 and Section 2.6.2.1 and the data-dependent hashing mod-

els presented in Sections 2.6.3-2.6.4 are all confined to unimodal retrieval where the

queries and the database have identical feature representations. This means that the

learnt hyperplanes only partition (bucket) the data-space from that single feature repre-

sentation. This is a rather limiting restriction of many existing hashing models because

much of the data found today, particularly on the internet, is associated with multiple

modalities19. For example, consider an image from the popular photo sharing website

Flickr20 which is not only described by the raw pixel values themselves, but also with

associated tags assigned by users and geolocation information sourced from the GPS

system on the camera. It would clearly be very useful if we could pose a query in the

form of an image and retrieve relevant tags (Figure 2.19), or give the retrieval system

geographical coordinates and receive images related to that locality.

The data-dependent hashing models I describe in this section are able to hash

related data-points existing across two modalities into the same hashtable buckets,

thereby bringing the computational advantages of approximate nearest neighbour search

to multi-modal retrieval. Denote as X ∈RNtrd×Dx the feature descriptors in modality X
and Z ∈ RNtrd×Dz the feature descriptors in modality Z, where usually the dimension-

alities are not equal Dx 6= Dz. For simplicity of description I assume that both datasets

have the same number of training data-points Ntrd , and I further denote as Nxz the num-

ber of paired data-points across the modalities (Nxz ≤ Ntrd). The logical relationship

19I use the term ‘modality’ and ‘feature space’ interchangeably in this thesis.
20http://www.flickr.com

http://www.flickr.com


2.6. Projection for Nearest Neighbour Search 81

  

110101

010111

H           

H                                
     

        

010101

111101

.....

Query

Database

Query

Nearest
Neighbours

Hashtable

Tiger

 Compute 
 Similarity

Camera

Camera

Tiger

Tiger

Flowers

Flowers

Car

Car

Tiger

Figure 2.19: Cross-modal hashing-based ANN search. In the cross-modal variant of

hashing-based ANN search we wish to partition the input-space such that similar data-

points across modalities fall into the same hashtable buckets. In this diagram I show

how cross-modal hash functions can be used to retrieve similar images and documents

to a query image in constant time. The cross-modal hash functions H assign similar

hashcodes to similar images and documents thereby allowing similar data-points in

different modalities to collide in the same hashtable buckets.

between the data-points is encoded in an adjacency matrix S ∈ {0,1}Nxz×Nxz , where

Si j = 1 indicates that pair (xi,z j) are related, and 0 otherwise. At a high level all five

of these models attempt to learn two sets of K hyperplanes denoted as W ∈ RDx×K

and U ∈ RDz×K , one set for feature space X and another for feature space Z, such

that similar data-points (Si j = 1) across the two modalities receive similar hashcodes

dhamm(gX (xi),gZ(z j)) ≈ 0, and vice-versa for dissimilar data-points (Si j = 0). Here{
gx : RD→{0,1}K

}
is the binary embedding function formed from the concatenation

of K hash functions
{

hX
k : RD→{0,1}

}K
k=1 for modality X , and similar for modality

Z. This is a logical extension of the unimodal case in which we not only wish to make

similar data-points within a modality fall into the same hashtable buckets (e.g. two im-

ages of a cat), but also similar data-points across the two modalities (e.g. an image of
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Figure 2.20: The essence of learning to hash across modalities. In Figure (a) I show the

first modality X (e.g. image descriptor space) with data-points
{

xi ∈ RDx
}N

i=1 and hy-

perplane normal vectors
{

wk ∈ RDx
}K

k=1. In Figure (b) I show a different feature space

Z (e.g. textual annotations) with data-points
{

zi ∈ RDz
}N

i=1 and hyperplane normal

vectors
{

uk ∈ RDz
}K

k=1. Similar data-points within and across modalities are indicated

by the same colour and shape. The goal of cross-modal hashing is to position the two

sets of hyperplanes in such a way that they assign the same hashcodes to the same

data-points both within and across the two modalities.

a cat and a text snippet describing a cat). In Section 2.4 and Sections 2.6.3-2.6.4, I dis-

cussed how to learn K hyperplanes that assign similar data-points similar hashcodes

in the same modality. I saw how this is achieved by positioning the hashing hyper-

planes in the input space in a way that attempts to maximise the number of true nearest

neighbours within the same buckets. In this section we will see how this notion can be

extended to learning two sets of K hyperplanes that generate similar hashcodes for re-

lated data-points in two different modalities. In practice this boils down to augmenting

the objective function with a consistency term that ensures the two sets of hyperplanes

agree on their hashcode output for similar cross-modal data-points. I provide an intu-

itive high-level overview of this fundamental concept in Figure 2.20.

I use the same strategy, namely a freely available codebase and widely referenced

publication, to select appropriate baselines for cross-modal retrieval as I did for the

unimodal baselines described in Sections 2.6.3-2.6.4. The selected baselines are the

seminal Cross View Hashing (CVH) model of Kumar and Udupa (2011) (Section

2.6.5.1), Co-Regularised Hashing (CRH) (Zhen and Yeung (2012)) (Section 2.6.5.2),

Predicable Dual View Hashing (PDH) (Rastegari et al. (2013)) (Section 2.6.5.4), Inter-
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Figure 2.21: Relationship between the five cross-modal hashing models reviewed in

this section. I only consider the inter-modal consistency term when relating the models

(ignoring intra-modal and out-of-sample extension terms). The labels on the arcs de-

note the essential transform required to convert one model into the model(s) pointed to

by the arc.

Media Hashing (IMH) (Song et al. (2013)) (Section 2.6.5.5) and Cross Modal Semi-

Supervised Hashing (CMSSH) (Bronstein et al. (2010)) (2.6.5.3).

2.6.5.1 Cross View Hashing (CVH)

Cross View Hashing (CVH)21 (Kumar and Udupa (2011)) is equivalent to IT Q+CCA

(Section 2.6.4.1) in its use of Canonical Correlation Analysis (CCA) to find two sets

of hyperplanes that maximise the correlations of the projections from two different

modalities. There are two differences to IT Q+CCA: firstly, CVH retains both sets

of hyperplane normals W ∈ RDx×K and U ∈ RDz×K , rather than only using the set

pertaining to the visual modality; secondly, CVH does not involve a post-processing

step that rotates the input feature space to balance the variance captured across the

hyperplanes. The hash function for CVH is the standard linear hash function. Equation

2.47 presents the hash functions for both modalities

21As is standard in the literature I consider the special case of CVH where only cross-modality super-
vision is available and each data-point is paired with only one other in the opposing modality (Section
3.2 in Kumar and Udupa (2011)).
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hX
k (xi) =

1
2
(1+ sgn(wᵀ

k xi))

hZ
k (zi) =

1
2
(1+ sgn(uᵀ

k zi))

(2.47)

Following the same argument as for ITQ+CCA, the asymptotic computational com-

plexity of CVH is O(NtrdD2 +D3) where D = max(Dx,Dz). CVH was one of the first

proposed cross-modal hashing models to be proposed in the literature and typically

features in previous research as the de-facto baseline for comparison. The cross-modal

hashing models I will review in Sections 2.6.5.2-2.6.5.5 introduce new schemes for

learning both sets of hyperplane that achieve a higher retrieval effectiveness than CVH

on standard image-text datasets.

2.6.5.2 Co-Regularised Hashing (CRH)

Co-Regularised Hashing (CRH) learns 2K cross-modal hash functions by solving K

individual max-margin optimisation problems sequentially (Zhen and Yeung (2012)).

Boosting (Freund and Schapire (1997)) is used in each step to coordinate the learning

of the hash functions so that the pairwise constraints not met by hyperplanes con-

structed earlier in the optimisation sequence have a gradually higher likelihood of be-

ing met by subsequent hyperplanes. This brings about a dependence between the bits, a

trait we have seen before in the context of the unimodal data-dependent hashing model

KSH (Section 2.6.4.3). CRH uses the standard linear hash function (Equation 2.47)

as for CVH (Section 2.6.5.1). The objective function for learning the two hyperplane

normals wk ∈ RDx ,uk ∈ RDz pertaining to the same bit in modalities X , Z is made up

of three main terms: one to position the hyperplane normal wk in modality X , another

to position the hyperplane normal uk in modality Z and a third consistency term that

forces both hyperplanes to give similar projections for related data-points. The CRH

objective is presented in Equation 2.48

argminwk∈RDx ,uk∈RDz
1

Nx

Nx

∑
i=1

[1−|wᵀ
k xi|]++

1
Nz

Nz

∑
j=1

[1−|uᵀ
k z j|]+

γ

Nxz

∑
i, j=1

αi jSi j(wT
k xi−uᵀ

k z j)
2 +

λx

2
‖wk‖2 +

λz

2
‖uk‖2

(2.48)

where
{

αi j ∈ R+

}Ntrd
i, j=1 are weights updated using Adaboost (Freund and Schapire

(1997)), λx ∈ R+,λz ∈ R+ are regularisation constants, [a]+ is equal to a if a ≥ 0,
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and 0 otherwise, and γ ∈ R+ is an scalar governing the importance of the cross-modal

term. The intra-modality loss terms guide the projections to be away from zero by a

margin so that the data-points do not lie too close to the dividing hyperplanes, thereby

encouraging generalisability of the hash functions. The inter-modal loss term is in-

tuitive in its attempt to minimise the squared difference between the projections of

similar data-points across modalities22.

Equation 2.48 is non-convex and so Zhen and Yeung (2012) minimise it in an

alternate manner by solving two sub-problems: fixing wk ∈ RDx and optimising for

uk ∈ RDz and vice-versa. In practice this is achieved using the Concave-Convex Pro-

cedure (CCVP) (Yuille and Rangarajan (2003)) by framing each sub-problem as a

difference of convex functions. Having learnt hyperplane normals wk, uk at the kth

step, the weights {αi ∈ R+}Ntrd
i=1 for the point-pairs are updated using the standard Ad-

aboost framework (Freund and Schapire (1997)), in which the error term for Adaboost

is based upon a count of the number of times the outputs of the cross-modal hash func-

tions disagree. This entire procedure is then repeated with Equation 2.48 solved for

hyperplanes wk+1, uk+1 using the updated Adaboost weights. The computational time

complexity of CRH is bounded by O(KMND) where D = max(Dx,Dz) and M is the

number of iterations required for convergence of the Pegasos solver (Shalev-Shwartz

et al. (2007)). Properties E1, E2 of an effective hashcode (Section 2.6.1) are preserved

by CRH but not properties E3, E4.

2.6.5.3 Cross-Modal Similarity Sensitive Hashing (CMSSH)

Cross-Modal Similarity Sensitive Hashing (CMSSH) (Bronstein et al. (2010)) presents

a considerably simpler optimisation framework compared to CRH (Section 2.6.5.2) fo-

cusing entirely on ensuring the output of the cross-modal hash functions are consistent

with each other, but without any specific terms for optimising the intra-modal simi-

larity. CMSSH learns the 2K hash functions using a sequential procedure where, at

the kth step, two hyperplane normal vectors wk ∈RDx ,uk ∈RDz are computed with the

weighted objective function presented in Equation 2.49 that effectively coerces the kth

pair of hash functions to correct mistakes committed by the k-1 previous hash functions

argmaxwk∈RDx ,uk∈RDz

Nxz

∑
i, j=1

αi jSi jsgn(wᵀ
k xi)sgn(uᵀ

k z j) (2.49)

22In practice CRH also has an additional term that pushes dissimilar points further apart. I omit this
here for clarity and conciseness of explanation.
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where
{

αi j ∈ R+

}Nxz
i, j=1 are per data-point pair weights adjusted using Adaboost (Fre-

und and Schapire (1997)). CMSSH is similar to CVH in that the correlation of the

projections of related cross-modal data-points is maximised. As it stands Equation

2.49 is discontinuous and therefore non-differentiable making it difficult to optimise

with the sign function intact. Bronstein et al. (2010) therefore make the standard spec-

tral relaxation which we have previously seen in many other data-dependent hashing

models such as KSH (Section 2.6.4.3) and SH (Section 2.6.3.2). This relaxation simply

involves dropping the sign function altogether giving Equation 2.50.

argmaxwk∈RDx ,uk∈RDz

Nxz

∑
i, j=1

αi jSi j(wᵀ
k xi)(uᵀ

k z j)

= wᵀ
k

{
Nxz

∑
i j=1

αi jSi jxizᵀj

}
uk

= wᵀ
k Cuk

(2.50)

Equation 2.50 can be solved in closed form by performing an SVD on the matrix C ∈
RDx×Dz taking O(D2

xDz+DxD2
z +D3

z ) operations23. The per pair weights
{

αi j ∈ R+

}Nxz
i, j=1

are then updated using Adaboost to emphasise the misclassified data-point pairs and

the step repeated for the k+1 set of hyperplanes. The learnt hash functions are used

in the standard linear hash function (Equation 2.47) to generate binary hashcodes for

multimodal data. In a similar manner to CRH, CMSSH maintains properties E1, E2 of

an effective hashcode, but does not seek to conserve property E4 due to the sequential

dependence of hashcode bits induced through boosting.

2.6.5.4 Predictable Dual-View Hashing (PDH)

Predictable Dual-View Hashing (PDH) (Rastegari et al. (2013)) is the closest cross-

modal hashing model to my own contribution outlined in Chapter 6 and in Moran and

Lavrenko (2015b). Given this close relationship I present the full specification of the

PDH model in Algorithm 5 so that it is straightforward to compare and contrast both

models. Similar to CRH and CMSSH, PDH solves for the 2K hashing hyperplanes se-

quentially by solving for a pair of hyperplane normal vectors wk ∈RDx ,uk ∈RDz at the

kth step. PDH solves for the hyperplanes using an SVM-based formulation in which

23As C ∈ RDx×Dz may be non-square the solution is obtained via an SVD rather than the standard
eigenvalue problem used for the unimodal data-dependent hashing models described in Section 2.6.3.
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the hyperplanes are trained to partition data-points with opposing bits with maximum

margin. Different to these previously reviewed models, PDH does not induce a depen-

dence between bits using boosting but instead explicitly attempts to enforce property

E4 of an effective hashcode, namely that the bits should be pairwise independent. I

present the PDH objective function in Equation 2.51

argminW∈RDx×K ,U∈RDz×K ‖BxBx− I‖2
2 +‖BzBz− I‖2

2 +
K

∑
k=1
‖wk‖2 +

K

∑
k=1
‖uk‖2

+Cx

Ntrd

∑
i,k=1

ξ
x
ik +Cz

Ntrd

∑
i,k=1

ξ
z
ik

subject to Bx = sgn(XW)

Bz = sgn(ZU)

bz
ik(w

ᵀ
k xi)≥ 1−ξ

x
ik

bx
ik(u

ᵀ
k zi)≥ 1−ξ

z
ik

(2.51)

where ξx
ik ∈ R, ξ

z
ik ∈ R are slack variables that allow some points xi,zi to fall on the

wrong side of hyperplanes with normal vectors wk,uk and Cx ∈ R+, Cz ∈ R+ are pa-

rameters that permit a trade off between the size of the margins 1
||wk|| ,

1
||uk|| against the

number of points misclassified by wk,uk. The first two terms of the objective function

enforce the constraint that the bits should be pairwise independent (property E3). The

last two constraints are reminiscent of the standard SVM max-margin objective with

the hashcode bits bx
ik,b

z
ik in this case acting as the requisite target labels. Note the sub-

tle but important feature of these constraints where the hashcode bits (bx
ik,b

z
ik) for one

feature space are used as the targets for hyperplanes existing in the other feature space.

This means that over multiple iterations the hyperplanes in both feature spaces should

become more consistent in their projections for similar and dissimilar data-points.

Rastegari et al. (2013) solve Equation 2.51 by dividing it into multiple steps as

highlighted in Algorithm 5. Firstly, using the bits of the hashcodes in Bx ∈{−1,1}Ntrd×K ,

Bz ∈{−1,1}Ntrd×K are used as the labels to train 2K SVM classifiers (Lines 6, 10 in Al-

gorithm 5). This step computes an initial estimate of hashing hyperplanes W∈RDx×K ,

U ∈ RDz×K . The bits in Bx,Bz are then re-labelled with the learnt SVMs (Lines 9, 13

in Algorithm 5), which flips the sign of those data-points that happened to fall on

the wrong side of the respective hyperplanes. The pairwise independence property

between the bits is approximately enforced by solving the familiar graph Laplacian

eigenvalue problem in Equation 2.52
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Algorithm 5: PREDICTABLE DUAL VIEW HASHING (PDH) (RASTEGARI

ET AL. (2013))
Input: Data-points X ∈ RNtrd×Dx , Z ∈ RNtrd×Dz , Iterations M

Output: Hyperplanes W ∈ RDx×K , U ∈ RDz×K

1 Initialise W, U via CCA from X, Z
2 for m← 1 to M do
3 for k← 1 to K do
4 bx

k = Bx
•k

5 bz
k = Bz

•k

6 Train SVMx
k with bz

k as labels, training dataset X
7 Obtain hyperplane hx

k

8 W•k = wk

9 Bx
•k = sgn(Xwk)

10 Train SVMz
k with bx

k as labels, training dataset Z
11 Obtain hyperplane hz

k

12 U•k = uk

13 Bz
•k = sgn(Zuk)

14 end
15 Update Bx, Bz by solving eigenvalue problem in Equation 2.52.

16 end
17 return W,U

argminY∈RNtrd×K tr(Yᵀ
l (Dl−Sl)Yl)

subject to Yl ∈ RNtrd×K

Yᵀ
l 1 = 0

Yᵀ
l Yl = NtrdIK×K

(2.52)

where Yl ∈ RNtrd×K for l ∈ {x,z} are the real-valued (unbinarised) projections for

modalities X ,Z and Sl = Yᵀ
l Yl , with Dii = ∑ j Si j. As we saw in Section 2.6.3, the

solution to this problem is the top K eigenvectors with minimal eigenvalues (Line 15).

These K eigenvectors are subsequently binarised to form the updated hashcodes. Intu-

itively this eigenvalue problem is attempting to lower the pairwise correlation between

the data-point projection vectors along the rows of Yl for l ∈ {x,z} while maintain-

ing the relative distances between the projection vectors as defined by the inner prod-



2.6. Projection for Nearest Neighbour Search 89

uct similarity. These steps are repeated M times until the algorithm has reached a

suitable convergence point, at which point the learnt hyperplanes can be used in the

standard linear hash function (Equation 2.47) to hash novel cross-modal data-points

into hashtable buckets. The training time complexity is dominated by the O(MN2
trdK)

operations to solve the eigenvalue problems across M iterations using the Lanczos al-

gorithm (Golub and Van Loan (1996)).

2.6.5.5 Inter-Media Hashing (IMH)

Inter-Media Hashing (IMH) (Song et al. (2013)) can be thought of as a semi-supervised

cross-modal hashing model which not only utilises the pairwise supervisory informa-

tion in the adjacency matrix Sxz ∈ {0,1}Nxz×Nxz , but also from unsupervised informa-

tion originating from all Ntrd data-points within each modality, that is, including those

data-points that do not feature in Sxz. The relationship between these data-points is

computed through construction of a Euclidean k-NN graph within each modality. De-

note as Sx ∈ {0,1}Ntrd×Ntrd the k-NN graph between data-points in modality X , and

similarly for modality Z where Sz ∈ {0,1}Ntrd×Ntrd . Using modality X as an example,

the k-NN graph is constructed as in Equation 2.53

Sx
i j =

1 if xi ∈ NNk(x j) or x j ∈ NNk(xi)

0 otherwise
(2.53)

where NNk(xi) is a function that returns the set of k-nearest neighbours for data-point

xi as measured under, for example the Euclidean distance metric.

The IMH semi-supervised approach is to be contrasted with CVH, CMSSH and

PDH which learn entirely from the supervisory information in the adjacency matrix S
that pairs related data-points across the two modalities. In this sense IMH, in its full

form, bears most resemblance to CRH (Section 2.6.5.2) which also proposes unsuper-

vised terms in the objective function that act as a form of regularisation during the

training procedure. When the learning is entirely confined to the labelled data-points

in Sxz and further Sxz = INxy×Nxy , Song et al. (2013) show that IMH is in fact equiva-

lent to the CCA-based CVH model (Section 2.6.5.1). The IMH objective function is

presented in Equation 2.54
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argminW,U,Yx,Yz λ

Ntrd

∑
i, j=1

Sx
i j‖yx

i −yx
j‖2

2 +λ
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F +
Ntrd
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‖Uᵀz j−yz

j‖
2
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F

subject to (Yx)ᵀYx = IDx×Dx

(Yx)ᵀ1 = 0
(2.54)

where Sxz = INxz×Nxz and β ∈ R,λ ∈ R are user-specified scalar parameters affecting

the importance of the different terms in the objective function.

The IMH objective function is quite intuitive and builds on previous research such

as Weiss et al. (2008); Kumar and Udupa (2011); Zhen and Yeung (2012). The first

two terms encourage similar data-points within both modalities to have similar pro-

jected values and therefore similar hashcodes upon binarisation. It is exactly the graph

Laplacian eigenvalue problem (Equation 2.28) we first saw in the context of Spectral

Hashing (SH) in Section 2.6.3.2 and extended first to the dual-modality case by CVH

(Section 2.6.5.1). The third term encourages the projections of similar data-points

across modalities to be the same, which is akin to the inter-modal consistency term

used in the CRH model (Section 2.6.5.2) without the Adaboost per-pair weights. The

last two terms are out-of-sample extension terms yielding the desired hashing hyper-

planes W ∈RDx×K,U ∈RDz×K using the standard L2 regularised linear regression for-

mulation with the learnt projections for the Ntrd training data-points as the regression

targets. Song et al. (2013) minimise Equation 2.54 by transforming the objective into

a trace minimisation problem involving the modality X projections Yx. As is custom-

ary in the learning to hash literature (Section 2.6.3), the trace minimisation is solved

as an eigenvalue problem taking the K eigenvectors with the smallest eigenvalues as

the columns of Yx. Note that solving this eigenvalue problem will achieve the orthog-

onality constraint in the objective function. Given the solution for the projections in

modality X , Song et al. (2013) show that the optimal Yz and W, U can be obtained

using closed form formulae based upon the learnt Yx.

As for all hashing models relying on a matrix factorisation, solving the eigenvalue

problem dominates the computational time complexity of IMH requiring O(N3
trd) oper-

ations24. IMH maintains properties E1, E2 of an effective hashcode in both modalities

24For the datasets we consider in this thesis, Ntrd = 2,000-10,000 to constrain computation time. In
a real-world application Ntrd be significantly higher.
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X , Y , while only maintaining properties E3, E4 in modality X as a result of solving

the eigenvalue problem.

2.6.5.6 A Brief Summary

In this section I described five prominent hashing algorithms that are capable of in-

dexing similar data-points that exist in two incommensurable feature spaces into the

same hashtable buckets. Specifically, I reviewed Cross-View Hashing (CVH) (Section

2.6.5.1), Co-Regularised Hashing (Section 2.6.5.2), Cross-Modal Semi-Supervised Hash-

ing (Section 2.6.5.3), Predictable Dual-View Hashing (Section 2.6.5.4) and Inter-Media

Hashing (Section 2.6.5.5). The essential link between all of these algorithms was the

learning of two sets of K hyperplanes, one set of K hyperplanes for each feature space,

in a way that encourages the hyperplanes in both spaces to assign similar projected

values to similar cross-modal data-points. In all cases this is achieved by framing an

optimising an objective function with a cross-modal consistency term that penalises a

mismatch between the projected values of similar cross-modal data-points. Some of

the more recently proposed cross-modal hashing algorithms (CRH, IMH, PDH) aug-

mented this inter-modal consistency term with additional intra-modal terms that reg-

ularise the learning of the hyperplanes by, for example, ensuring that similar within-

modality data-points receive similar projected values. The disadvantage of all of these

algorithms are their reliance on either an expensive matrix factorisation or non-convex

optimisation.

2.7 Conclusion

The purpose of this chapter was to introduce the background information relevant to

the topic of this thesis, all of which is important for understanding the novel contribu-

tions that will be introduced in later chapters. I began this chapter in Section 2.3 by

motivating the need for more efficient algorithms for nearest neighbour (NN) search

that do not require an exhaustive brute-force scan of the dataset. This led us to the field

of approximate nearest neighbour search which I argued is dominated by the seminal

method of Locality Sensitive Hashing (LSH). We saw in Section 2.4 how LSH is in

fact a family of different algorithms for generating similarity preserving hashcodes for

a wide range of similarity functions of interest, from the inner product similarity to the

Euclidean distance. I discussed how the LSH hash function family for the inner prod-
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uct similarity forms the focus of this thesis. In this case LSH will generate hashcodes

with a low Hamming distance to each other for those data-points that are similar under

the inner product similarity. This property enables the hashcodes to be used as indices

into the buckets of a set of hashtables to retrieve nearest neighbours in a constant time

per query, a much improved query-time versus a brute-force linear scan.

In Sections 2.5-2.6, I then discussed how the contributions in this thesis address the

effectiveness of two critical components of the LSH algorithm: projection (hyperplane)

learning and binary quantisation. Retrieval effectiveness is highly dependent on how

well these two steps preserve the original neighbourhood structure between the data-

points in the hashcode Hamming space. Unfortunately, we saw how LSH generates its

hyperplanes and quantisation thresholds randomly in the input space relying on asymp-

totic guarantees that as the number of hyperplanes increases, the desired similarity

will be well reflected by the Hamming distance between the binary hashcodes. A ran-

dom partitioning may lead to the separation of many related data-points into different

hashtable buckets, contrary to the central premise of hashing-based ANN search. I de-

scribed how relaxing this data-independence assumption could mitigate this effect and

potentially lead to improved retrieval effectiveness while simultaneously generating

more compact hashcodes compared to LSH. This dissertation is not the only research

to address this important downside to LSH and so I conducted a review of recently

proposed and closely related work within the quantisation and projection branches

of the field in Section 2.5 and Section 2.6, respectively. My specific focus was on

data-dependent hashing algorithms that learn the hashing hyperplanes and quantisa-

tion thresholds in a way that is informed by the distribution of the data, using either

an unsupervised (Section 2.6.3) or supervised (Section 2.6.4) signal to avoid placing

related unimodal (Sections 2.6.3-2.6.4) or cross-modal (Section 2.6.5) data-points into

different hashtable buckets. The reviewed algorithms will form a broad and strong set

of baselines in our experimental evaluation presented in later chapters.

Four questions unaddressed by the current literature have been identified by con-

ducting this review, each of which are investigated in subsequent chapters of this thesis.

Firstly, the multi-threshold quantisation models that I described in Section 2.5 employ

unsupervised learning to position the thresholds. Given this, I explore in Chapter 4

how retrieval effectiveness can be improved by formulating a suitable semi-supervised

objective function for multiple threshold learning. Secondly, I discovered how most

existing quantisation models for hashing are restricted to a uniform number of thresh-

olds per projected dimension. To the best of my knowledge there is no existing work
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that explores the effect of varying the number of assigned thresholds per projected

dimension on retrieval effectiveness. I fill this gap in the current literature in Chap-

ter 5 by proposing a new quantisation model that learns an appropriate allocation of

thresholds across projected dimensions based on the neighbourhood preserving qual-

ity of the associated hyperplanes. Thirdly, the current breed of supervised projection

functions identified in Sections 2.6.4-2.6.5 employ computationally expensive eigen-

decomposition and kernel-based optimisation strategies. In Chapter 6, I explore the

extent to which a simpler and computationally less expensive optimisation algorithm

can compete with these state-of-the-art supervised projection functions, both within

the unimodal and cross-modal problem domains. Finally, there is no previous work

that learns both the hashing hypersurfaces and multiple quantisation thresholds in the

same model. I address this knowledge gap in Chapter 7 by combining my quantisation

models from Chapters 4-5 with my supervised projection function from Chapter 6.

Having now firmly placed the research described in this thesis in the context of

previous related work I will introduce in the next chapter the datasets, evaluation

paradigms and evaluation metrics that will be used to judge the quality of nearest

neighbour search in my experimental evaluation.





Chapter 3

Experimental Methodology

3.1 Introduction

In this chapter I describe the experimental methodology adopted throughout the thesis.

This includes the datasets selected as the testbed for the retrieval experiments (Section

3.2), the definition of groundtruth for evaluation (Section 3.3) and the metrics adopted

to ascertain retrieval effectiveness (Section 3.6). I attempt to keep the evaluation strat-

egy aligned as closely as possible to previously related work in the learning to hash

literature. However, as I will discuss throughout this section, the evaluation method-

ology used by previous related work is not consistent across publications and exhibits

certain flaws in the experimental design. This chapter describes my remedy for these

flaws and places the evaluation on a standard foundation.

3.2 Datasets

The focus of this thesis is learning hash functions for the task of large-scale image

retrieval. This task will be split into three sub-tasks: 1) an image is used to retrieve

related images from a still image archive, 2) a text query is used to retrieve related

images, 3) an image query is used to retrieve relevant annotations for that image. I will

therefore conduct both unimodal and cross-modal retrieval experiments in this thesis

which will cover a wide range of important use-cases in image retrieval from query-by-

example search to image annotation. Unimodal datasets are those where the query and

the database are in the same visual modality such as bag-of-visual-word feature de-

scriptors. Cross-modal datasets permit retrieval experiments that straddle two different

modalities such as a textual query executed against an image database. The latter task

95
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mimics the familiar image search scenario offered by many modern web search en-

gines. In all cases I will constrain the evaluation to baselines that perform these tasks

using hashing-based ANN search and do not seek to compare against, for example,

fully fledged image annotation models. To align the evaluation closely with the learn-

ing to hash literature I select a subset of the most popular datasets from both categories

as my experimental testbed (Sections 3.2.1-3.2.2). My desiderata for dataset selection

is two-fold: firstly, the datasets must be publicly available to enable replication of ex-

perimental results by a third party; and secondly the datasets must be standard in the

sense that they have been widely used in related publications. This ensures that the

experimental results published in this thesis are reproducible and directly comparable

to previously published research.

3.2.1 Unimodal Retrieval Experiments

For the unimodal experiments, I select four popular and freely available image datasets:

LabelMe, CIFAR-10, NUS-WIDE and SIFT1M. The datasets are of widely varying

size (22,019-1 million images), are represented by an array of different feature descrip-

tors (from GIST, SIFT to bag of visual words) and cover a diverse range of different

image topics from natural scenes to personal photos, logos and drawings. These prop-

erties ensure that the datasets will provide a challenging test suite for evaluation in this

thesis. All datasets are identical to those used in many recent publications (Kong and

Li (2012a), Shen et al. (2015), Liu et al. (2012)) and are available online to the research

community.

• LABELME: 22,019 images represented as 512 dimensional GIST descriptors

(Torralba et al. (2008); Russell et al. (2008))1 The dataset is mean centred.

• CIFAR-10: 60,000 32× 32 colour images sampled from the 80 million Tiny

Images dataset (Krizhevsky and Hinton (2009)). Each image is encoded with a

512 dimensional GIST descriptor (Oliva and Torralba (2001)) and is manually

assigned a label from a selection of 10 classes2. Each class has 6,000 associated

images. The visual feature descriptors are mean centered.

• NUS-WIDE: 269,648 images downloaded from Flickr each annotated with mul-

tiple ground truth concept tags (e.g. nature, dog, animal, swimming, car) from

1http://www.cs.toronto.edu/˜norouzi/research/mlh/
2http://www.cs.toronto.edu/˜kriz/cifar.html

http://www.cs.toronto.edu/~norouzi/research/mlh/
http://www.cs.toronto.edu/~kriz/cifar.html
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Figure 3.1: The NUS-WIDE dataset consists of around 270,000 images randomly sam-

pled from Flickr. Given the diversity of images (from people, animals, landscapes to

buildings and drawings) and widely varying resolution the dataset provides a challeng-

ing testbed for image retrieval.

an 81 concept vocabulary3 (Chua et al. (2009)). The images are represented

by a 500 dimensional bag-of-visual-words (BoW) feature descriptor formed by

vector quantising SIFT descriptors via k-means clustering. The visual feature

descriptors are L2-normalised to unit length and mean centered. For illustrative

purposes I show a random sampling of images from the NUS-WIDE dataset in

Figure 3.1.

• SIFT1M: 1,000,000 images from Flickr encoded with 128-dimensional SIFT

descriptors4. This dataset was first introduced by Jegou et al. (2011) and has

since became a standard image collection for evaluating nearest neighbour search

methods (Kong and Li (2012a), He et al. (2013), Wang et al. (2010b)). The

dataset is mean centred.

3http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
4http://lear.inrialpes.fr/˜jegou/data.php

http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
http://lear.inrialpes.fr/~jegou/data.php
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Dataset # images # labels Labels/image Images/label Descriptor

LABELME 22,019 – – – 512-D Gist

CIFAR-10 60,000 10 1 6,000 512-D Gist

NUS-WIDE 269,648 81 1.87 6,220 500-D BoW

SIFT1M 1,000,000 – – – 128-D SIFT

Table 3.1: Salient statistics of the four datasets used in my unimodal experimental

evaluation. The Labels/image and Images/label are the mean values computed on the

entire dataset.

3.2.2 Cross-modal Retrieval Experiments

The cross-modal retrieval experiments are conducted on the two most popular cross-

modal datasets in the learning to hash literature, namely the ‘Wiki’ dataset and NUS-

WIDE (Kumar and Udupa (2011); Zhen and Yeung (2012); Song et al. (2013); Raste-

gari et al. (2013); Bronstein et al. (2010)). Both datasets come with images and asso-

ciated paired textual descriptors, a key requirement for training and evaluating a cross-

modal retrieval model. As for the unimodal retrieval datasets described in Section 3.2.1

these two cross-modal datasets are also freely available to the research community.

• Wiki: is generated from 2,866 Wikipedia articles5 derived from Wikipedia’s

“feature articles” (Rasiwasia et al. (2010)). The featured articles segment of

Wikipedia hosts the highest quality articles on the site as judged by a panel of

independent Wikipedia editors. Each feature article is a document consisting of

multiple sections and annotated with at least one relevant image from the Wiki-

media commons. Each article is designated with a manually labelled category

out of 29 possibilities. Rasiwasia et al. (2010) only keep the articles pertaining

to the 10 most populated categories. Each article is further split by section and

the image manually placed in that section by the author(s) is used as the corre-

sponding visual description of the text in that section. Any section that ends up

without an associated image is discarded. This leaves 2,866 short and focused

“articles” of a median length of 200 words, with each article having at least 70

words. I use the image and text feature set provided by Rasiwasia et al. (2010)

which is used in most related cross-modal hashing research (Zhen and Yeung

(2012)). The visual modality is represented as a 128-dimensional SIFT (Lowe

5http://www.svcl.ucsd.edu/projects/crossmodal/

http://www.svcl.ucsd.edu/projects/crossmodal/
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Figure 3.2: Three example Wikipedia article sections (Offa King of Mercia (https:

//en.wikipedia.org/wiki/Offa_of_Mercia), the Tasmanian devil (https://en.

wikipedia.org/wiki/Tasmanian_devil) and a description from the life of Nigerian

novelist Chinua Achebe (https://en.wikipedia.org/wiki/Chinua_Achebe) and

their aligned images taken from the cross-modal Wiki dataset.

(2004)) bag-of-words histogram, while the textual modality is represented as

10-dimensional probability distribution over Latent Dirichlet Allocation (LDA)

topics (Blei et al. (2003)). Three example Wikipedia article sections and their

associated images are shown in Figure 3.2.

• NUS-WIDE: is identical to the unprocessed NUS-WIDE dataset described in

Section 3.2.1 (Chua et al. (2009)). For my cross-modal experiments I pre-process

the dataset in a different manner to the strategy described in Section 3.2.1 so that

my experiments are compatible with those presented in the relevant literature

(Zhen and Yeung (2012)). More specifically, for cross-modal retrieval the multi-

ple image tags associated with an image are used to define the textual modality. I

https://en.wikipedia.org/wiki/Offa_of_Mercia
https://en.wikipedia.org/wiki/Offa_of_Mercia
https://en.wikipedia.org/wiki/Tasmanian_devil
https://en.wikipedia.org/wiki/Tasmanian_devil
https://en.wikipedia.org/wiki/Chinua_Achebe


100 Chapter 3. Experimental Methodology

keep the image-text pairs associated with the most frequent 10 classes. Each im-

age is associated with a subset of 5,018 tags manually assigned by Flickr users. I

perform a PCA dimensionality reduction on the 269,648×5018 dimensional tag

co-occurrence matrix to form a 1,000-dimensional tag feature set. This projected

tag feature set is then mean-centered and used as a representation of the textual

modality. This is a standard pre-processing step in the literature (Zhen and Ye-

ung (2012)). The visual modality is represented by the same 500 dimensional

bag-of-words (BoW) feature descriptors described in the context of NUS-WIDE

in Section 3.2.1. The visual descriptors are L2-normalised to unit length and

mean centered.

3.3 Nearest Neighbour Groundtruth Definition

In order to evaluate the retrieval effectiveness of a hashing model we need to define

which data-points in the database are considered to be nearest neighbours of the query

data-points. I refer to these data-points as the true nearest neighbours of a query. The

system is penalised depending on the degree to which it fails to return the true nearest

neighbours for a query. The definition of the groundtruth nearest neighbours varies

widely between publications. In this thesis I consider two of the strategies commonly

used to define groundtruth which involves either constructing an ε-ball around the

query data-point (Section 3.3.1) or using human assigned class-labels (Section 3.3.2).

To the best of my knowledge, there has been no work to verify whether or not the ε-

ball groundtruth definition correlates with user search satisfaction. I discuss this point

further in Chapter 8 as part of possible future work.

3.3.1 ε-Ball Nearest Neighbours

I opt primarily for the ε-nearest neighbour (ε-NN) definition in this thesis (Figure

3.3a)6. In this paradigm a ball of radius ε is defined around a query data-point in

the input feature space and the true nearest neighbours are defined as those data-points

enclosed within the ball. To compute the ε-NN groundtruth I follow previous related

work (Kong et al. (2012); Kong and Li (2012a); Kulis and Darrell (2009); Gong and

Lazebnik (2011)) and randomly sample 100 data-points from the training dataset to

6Defining ground-truth nearest neighbours can also be achieved by computing a k-NN graph. In this
case related data-points to a query are those that have the k smallest distances to the query. I leave this
type of evaluation as future work.
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Figure 3.3: Two definitions of groundtruth nearest neighbours (NN). In Figure (a) I show

how to define nearest neighbours of a data-point using an ε-ball. All data-points en-

closed by the ball are nearest neighbours of the data-point at the center. In Figure (b)

I show a class-based definition of nearest neighbours. Nearest neighbours are defined

as those data-points sharing at least one class label in common.

compute the Euclidean distance at which each data-point has R nearest neighbours on

average. The ε-ball radius is then set to equal this average distance. The parameter

R is set to 50 nearest neighbours in the literature (Kong et al. (2012); Kong and Li

(2012a,b); Kulis and Darrell (2009); Raginsky and Lazebnik (2009); Gong and Lazeb-

nik (2011)), and for compatibility I use the same setting throughout this thesis. The

groundtruth matrix S ∈ {0,1}Ntrd×Ntrd is then derived by computing the Euclidean dis-

tance D ∈ RNtrd×Ntrd between a small subset of the data-points (Ntrd � N) and thresh-

olding the distances by ε. This method of groundtruth generation is presented in Equa-

tion 3.1 and Figure 3.3a.

S =

Si j = 1, if Di j ≤ ε

Si j = 0, if Di j > ε

(3.1)

3.3.2 Class-Based Nearest Neighbours

Experimental results will be presented based on class labelled derived groundtruth

(Figure 3.3b) in situations where the ε-NN evaluation paradigm is not possible such as

for cross-modal retrieval (it is not possible to directly compute the Euclidean distance

between two feature vectors of a different type) or where I wish to present additional
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results that can be directly compared to a specific portion of the literature that tradi-

tionally only uses a class-label based evaluation (e.g. the data-dependent supervised

models discussed in Section 2.6.4). In this scenario Si j = 1 for an element of the

groundtruth matrix S if the corresponding pair of data-points xi,x j share at least one

class label or annotation in common, and Si j = 0 otherwise. This is the same strategy

used by most related research in the learning to hash literature (Gong and Lazebnik

(2011); Liu et al. (2012)).

3.4 Evaluation Paradigms

There are two main paradigms for evaluating hashing models: the Hamming rank-

ing evaluation paradigm (Section 3.4.1) and the hashtable bucket evaluation paradigm

(Section 3.4.2). Both paradigms are illustrated in Figure 3.4. The Hamming rank-

ing paradigm is standard within the learning to hash research literature while the

hashtable bucket evaluation paradigm is frequently used in practical hashing appli-

cations in which a fast query-time is of prime importance. I introduce both paradigms

in Sections 3.4.1-3.4.2 before explaining why I use the Hamming ranking evaluation

paradigm exclusively throughout this thesis in Section 3.4.3.

3.4.1 Hamming Ranking Evaluation

In all the experiments in this thesis I will follow previous related research (Kong et al.

(2012); Kong and Li (2012a,b); Liu et al. (2012, 2011); Gong and Lazebnik (2011);

Zhang et al. (2010b); Kulis and Grauman (2009)) and evaluate retrieval effectiveness

using the widely accepted Hamming ranking evaluation paradigm. In this evaluation

paradigm, binary hashcodes are generated for both the query and the database images.

The Hamming distance is then computed from the query images to all of the database

images, with the database dataset images ranked in ascending order of the Hamming

distance. The resulting ranked lists are then used to compute retrieval evaluation met-

rics such as area under the precision recall curve (AUPRC) (Section 3.6.3) and mean

average precision (mAP) (Section 3.6.4). The Hamming ranking evaluation paradigm

is a proxy for evaluating hashing accuracy over the range of user preferences (preci-

sion/recall) and without having to specify the parameters (K,L) of a specific hashtable

implementation. I discuss this latter point further in Section 3.4.3.
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Figure 3.4: Two evaluation paradigms for hashing. In both cases relevant images are

those depicting similar objects. In Figure (a) the Hamming distance between the query

hashcode and the database images is computed. The images are ranked and the re-

sulting ranked list used to compute a retrieval metric such as average precision (AP). In

this case we find an AP = 0.87. The average precision scores are aggregated across

queries by computing the mean average precision (mAP). In Figure (b) I show the

hashtable evaluation strategy. Each image is hashed to a bucket. A count is then

made of the number of true positives (TPs), false positives (FPs) and false negatives

(FNs) colliding in the same buckets. In this toy example, T P = 3, FP = 1, FN = 2

which equates to a micro-average F1-measure of 0.78. On both diagrams + indicates

a true positive while a − indicates a false positive/negative.

3.4.2 Hashtable Bucket-Based Evaluation

The Hamming ranking evaluation paradigm is by definition of O(N) time complexity

for a single query data-point. The hash bucket-based evaluation has a constant O(1)

search time independent of the dataset size. A hashtable lookup evaluation is much

closer to how the hashing models would be used in a real-world application where a

fast query time is a necessity. Despite this fact a hashtable evaluation is rarely reported

in the learning to hash literature with the Hamming ranking paradigm being the pre-

ferred evaluation methodology. I previously described the application of hashtables

in the context of Locality Sensitive Hashing (LSH) (Chapter 2, Section 2.4). In this

evaluation paradigm the hashcodes are generated for the query and database points

which are then used as the indices into the buckets of L hashtables. The union is then

taken over all the data-points that collide in the same buckets as the query across the
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L hashtables. The set of data-points thus formed can then be used to compute the

effectiveness metrics of precision, recall and Fβ-measure. I describe these metrics in

more detail in Section 3.6, but the intuition is that we want to reward the algorithm if it

returns many true nearest neighbours to the query in the retrieved set while penalising

it for returning unrelated data-points. As we examine all colliding data-points for a

query we are therefore using the second hashtable query strategy which was discussed

in the description of LSH in Chapter 2, Section 2.4.

3.4.3 Hamming Ranking versus Hashtable Bucket Evaluation

The hashtable bucket evaluation paradigm is heavily dependent on both the particular

hashtable implementation (i.e. values of K, L, whether or not chaining is used, etc) and

on the end application itself, for example is the hashtable on a drone and therefore do

we have limited available main memory? If I opt for a hashtable evaluation paradigm

I either need to pick a default setting of K and L and tie my evaluation to this specific

hashtable implementation, or alternatively I can measure the hashing model perfor-

mance over many different values of the hashtable parameters leading to an explosion

in the number of results to be reported. To abstract away from the specifics of a partic-

ular hashtable implementation and to obtain a single number summarising the quality

of the hashcodes, researchers in the Computer Vision literature prefer to evaluate their

hashing models by Hamming ranking which involves computing the Hamming dis-

tance between the hashcodes, rather than using a hashtable-based setup (Gong and

Lazebnik (2011), Liu et al. (2011)). The Hamming distance given in Equation 2.4

(Chapter 2, Section 2.3) measures the number of bits that are different between two

hashcodes and is therefore likely to be a good indicator of the quality of a hashtable

lookup using those hashcodes. The more bits in common the greater the likelihood of

a collision between the corresponding data-points.

There is an interesting, but not immediately obvious link between the Hamming

ranking evaluation paradigm and the hashtable evaluation paradigm. Measuring the

quality of a set of ranked lists using mAP and AUPRC is effectively acting as a proxy

for many different settings of K and L in a corresponding hashtable evaluation. To con-

firm this fact, I make reference to Figure 3.5 in which I show five hashcodes ranked in

ascending order of Hamming distance from the query (marked in the diagram in bold

font). Observe that each threshold effectively defines a set of “colliding” data-points,

that is those above the threshold with the lowest Hamming distance to the query. The
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Figure 3.5: An analogy between the Hamming ranking evaluation paradigm and the

hashtable bucket evaluation paradigm. I rank five hashcodes in ascending order by

Hamming distance from the query hashcode (shown here in bold). The ranked list is

thresholded at three different points (t1, t2, t3), with the thresholds indicated by the

dashed horizontal lines. The hashcodes above the threshold can be considered to

be “colliding” with the query hashcode. The settings of K and L that would cause

the collision are shown for the four different Hamming distances. For example, for

the bottom most thresholding splitting the hashcodes into L = 6 segments of K = 1

bits will cause the hashcode at Hamming distance 5 to collide in the same bucket as

the hashcodes at Hamming distance 2,1 and 0. In this way we see that a particular

thresholding of a ranked list of hashcodes is equivalent to many different settings of K

and L in a hashtable evaluation.

thresholded ranked list therefore corresponds to settings of K and L that ensure the

data-points above the threshold will collide in at least one hypothetical hashtable. The

L hashtables in Figure 3.5 are formed by splitting the hashcodes into L K-bit segments,

with each K-bit segment indexing into a specific bucket of one of the L hashtables. Just

as choosing a particular setting of K and L is application specific so is choosing a par-

ticular threshold in the Hamming ranking evaluation paradigm. Usefully the mAP and

AUPRC provide a single number measure of ranking quality that is computed by ag-

gregating across many different settings of the ranked list threshold, and consequently

many different values of K and L. The Hamming ranking evaluation paradigm is there-

fore a more general evaluation strategy for hashing that is able to measure the overall

quality of hashcodes without being tied to a particular end-application. In effect it indi-

cates how good the hashing-based ANN search would be if we found the best setting of

K and L in a hashtable bucket evaluation. Given this attractive advantage I accord with

the relevant literature and follow the Hamming ranking evaluation strategy throughout
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this thesis (Chapters 4-7). I leave a hashtable bucket evaluation to future work.

3.5 Constructing Random Dataset Splits

In this section I will describe how the datasets introduced in Section 3.2 are partitioned

to form testing and validation queries and training and database splits for the purposes

of learning and evaluating the hash functions. Two strategies for forming splits will

be described: in Section 3.5.1 I describe the literature standard strategy that is widely

used by the research community, while in Section 3.5.2 I describe my proposed split-

ting methodology that seeks to remedy concerns with the accepted evaluation strategy.

In both cases, when class-based ground-truth is used, I sample the splits so as to ob-

tain a balanced distribution of classes within each partition. This sampling strategy is

discussed in more detail in Chapter 6, Section 6.3.

3.5.1 Literature Standard Splits

In previous work repeated random subsampling cross-validation over ten independent

runs is used to evaluate the quality of the learnt hash functions (Liu et al. (2012); Kong

et al. (2012); Kong and Li (2012a); Liu et al. (2014); Wang et al. (2012)). Figure 3.6

shows an example of a random dataset split for one run. The entire dataset is denoted as

X∈RN×D. This dataset is divided into a held-out set of test queries Xteq ∈RNteq×D and

a database split Xdb ∈RNdb×D. The test queries are used once when I come to compute

the evaluation metric by ranking the database split (Section 3.4.1). The database split

also doubles as the training dataset for learning the hash functions. The best setting of

model hyperparameters7 is found by grid search on the validation split of the dataset.

In practice this grid search is conducted by running a set of validation queries Xvaq ∈
RNvaq×D against a validation database Xvad ∈RNvad×D, both of which are sampled from

the database Xdb. I am therefore using a form of nested cross-validation in which the

optimal hyperparameters are determined for each run. The training database Xtrd ∈
RNtrd×D is used to learn the parameters (hyperplanes, quantisation thresholds) of the

hash functions and is itself a subset of Xdb. In the remainder of this dissertation I refer

to this splitting strategy as the literature standard splitting strategy. I illustrate this

method of forming dataset splits in Figure 3.6.

7Hyperparameters are parameters other than the hashing hyperplanes or quantisation thresholds.
Example of hyperparameters are the flexibility of margin C for the SVM and the kernel bandwidth
parameter γ for the RBF kernel.
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Figure 3.6: The literature standard dataset splitting procedure. The standard procedure

used in the literature for splitting a dataset into testing and training partitions. The entire

dataset X ∈ RN×D is represented as the concatenation of the individual rectangles,

each of which highlights a particular partition. The rectangle in grey represents the split

of the dataset that is held-out and only used once for computing the final measure of

retrieval effectiveness.

3.5.2 Improved Splitting Strategy

Unfortunately, there is a potential overfitting concern with the standard dataset splitting

strategy described in Section 3.5.1 given that the database points which are ranked or

indexed with respect to the test queries are also used as the training dataset for learning

the hash functions themselves. Ideally there should be a clean separation between the

split of the dataset that is used to learn the hash functions and the split of the dataset

that is ranked/indexed in order to compute the final measure of retrieval effectiveness.

This ensures that I can evaluate the true generalisation performance of the hash func-

tions when there is not only unseen queries but also an unseen database that is to

be ranked/indexed with respect to those queries. Currently the literature is only con-

cerned with the generalisation performance with respect to unseen query data-points

and where the database is known a-priori and can be used for hash function learning.

To the best of my knowledge I am the first in the literature to note this technical flaw

in the standard method for forming dataset splits. To mitigate this overfitting concern I

propose a new method for generating splits of the dataset. In this new strategy I again

perform repeated random subsampling cross-validation over ten runs. However, the

makeup of a random split for a run now differs from the literature standard splitting

strategy. In my suggested dataset splitting strategy I divide the dataset into five splits

as shown in Figure 3.7. I have a set of held-out test queries Xteq ∈ RNteq×D and also a
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Figure 3.7: My improved dataset splitting procedure. My proposed splitting strategy for

overcoming the overfitting concern with the literature standard strategy. In addition to

the test queries I also advocate holding out a split of the dataset to act as the testing

database. The held-out splits of the dataset are shown in grey. At test time the testing

queries are used to retrieve related items from the testing database. This retrieval run

is used to compute the final measure of effectiveness for determining the quality of the

hash functions.

held-out test database Xted ∈ RNted×D against which those test queries are run. Both

of the test queries and test database are only used once when I come to compute the

final retrieval effectiveness metric for that particular run. The remainder of the dataset

forms the database split Xdb ∈ RNdb×D which is used for setting the parameters and

hyperparameters of the hashing models. The database split is further divided into a set

of validation queries Xvaq ∈RNvaq×D, a validation database split Xvad ∈RNvad×D which

is ranked/indexed against the validation queries and a training split that is used to learn

the hash functions Xtrd ∈ RNtrd×D. For the remainder of this dissertation I refer to this

splitting strategy as the improved splitting strategy.

3.6 Evaluation Metrics

I follow previous research in the learning to hash literature and judge the retrieval

effectiveness by the standard Information Retrieval (IR) metrics of precision, recall,

Fβ-measure (Section 3.6.1), area under the precision recall curve (AUPRC) (Section

3.6.3) and mean average precision (mAP) (Section 3.6.4).
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3.6.1 Precision, Recall, Fβ-Measure

Precision, recall and their harmonic mean, the Fβ-measure, are set-based evaluation

metrics that can be used to ascertain the quality of an unranked collection of images.

The retrieved set can be determined by looking into the colliding hashtable buckets

for the Hashtable bucket evaluation or by defining a Hamming radius threshold for the

Hamming ranking evaluation. In terms of the Hamming ranking evaluation, precision

and recall can be computed by counting the number of true nearest neighbours that are

within a fixed Hamming radius (true positives, TPs), the number of non nearest neigh-

bours that are within a fixed Hamming radius (false positives, FPs) and the number of

related data-points that are not are within a fixed Hamming radius to the query (false

negatives, FNs).

More formally, I denote the groundtruth matrix as S ∈ {0,1}Ntrd×Ntrd (Sections

3.3.1-3.3.2). The groundtruth adjacency matrix specifies which data-points are true

nearest neighbour pairs (Si j = 1) and which data-point pairs are unrelated (Si j = 0).

As we discussed in Section 3.3, in the context of hashing-based ANN search, a data-

point x j is denoted as a true nearest neighbour (Si j = 1) if it is within an ε-ball of the

query data-point qi or shares at least one class label in common with the query. Fol-

lowing a retrieval run, the ranked data-points within a certain Hamming radius (D) of

the query are those data-points considered to be related to the query, while those data-

points outside of the Hamming radius D are considered to be unrelated8. The results of

a ranked retrieval for a certain Hamming distance threshold D are represented by the

square matrix R ∈ {0,1}N×N given in Equation 3.2.

Ri j =

1, if x j is within Hamming radius D to the query qi

0, otherwise.
(3.2)

Given the definitions of S and R, the number of true positives for a single query

data-point qi is defined in Equation 3.3

T P(qi) = ∑
j

Si j ·Ri j (3.3)

A false negative (FN) is a true nearest neighbour (Si j = 1) that is outside of the Ham-

ming radius around the query qi ∈ RD. The total false negative count for the query is

8This is the Hamming ranking evaluation paradigm discussed in Section 3.4.1.
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given in Equation 3.4

FN(qi) = ∑
j

Si j−T P(qi) (3.4)

A false positive (FP) is a non-nearest neighbour (Si j = 0) that falls within the query

Hamming radius qi ∈ RD (Equation 3.5)

FP(qi) = ∑
j
(1−Si j) ·Ri j (3.5)

Given Equations 3.3-3.5 the precision and recall metrics can then be defined as in

Equations 3.6-3.7

P(qi) =
T P(qi)

T P(qi)+FP(qi)
(3.6)

Precision is therefore the fraction of true nearest neighbours that are within the fixed

Hamming radius out of all data-points that are within the fixed Hamming radius to the

query data-point

R(qi) =
T P(qi)

T P(qi)+FN(qi)
(3.7)

Recall is then the fraction of true nearest neighbours that are within the fixed Hamming

radius to the query out of all possible true nearest neighbours for that query, regardless

whether or not they are within the specified Hamming radius.

In a typical image retrieval experiment we have more than one query data-point.

The question arises as to how we aggregate the precision and recall scores for all Q

queries. There are effectively two ways which involve either taking a micro-average

or a macro-average. To accord with the literature I am most interested in the micro-

average in this thesis which would sum the TPs, FPs and FNs across all queries before

computing the total precision and recall (Equations 3.8-3.9).

Pmicro =
∑

Q
i=1 T P(qi)

∑
Q
i=1 T P(qi)+∑

Q
i=1 FP(qi)

(3.8)

Rmicro =
∑

Q
i=1 T P(qi)

∑
Q
i=1 T P(qi)+∑

Q
i=1 FN(qi)

(3.9)

Finally, the weighted harmonic mean of recall and precision is known as the Fβ-

measure and is presented in Equation 3.10 (Rijsbergen (1979)):
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Fβ =
(1+β2)PmicroRmicro

β2Pmicro +Rmicro

=
(1+β2)T Pmicro

(1+β2)T Pmicro +β2FNmicro +FPmicro

(3.10)

Fβ-measure can be used to combine precision and recall resulting from both a

macro or micro-average. The free parameter β ∈ R+ is used to adjust the contribu-

tion from the precision and recall. Setting β < 1 in Equation 3.10 weights precision

higher than recall, and vice-versa for a setting of β > 1. In most applications β is set to

1.0 giving the commonly used F1-measure that provides an equal balance between the

contribution of precision and recall to the final score. The greater the Fβ-measure the

more effective are the hash functions at returning true nearest neighbours in the same

hashtable buckets.

3.6.2 Precision Recall Curve (PR Curve)

The precision and recall set-based evaluation metrics discussed in Section 3.6.1 are

computed at a fixed operating point of the hashing algorithm. This operating point is

usually derived from a particular parameter setting that is itself driven by user or sys-

tem constraints. For example, in the context of a hashtable bucket evaluation paradigm

(Section 3.4.2) this threshold could be implicitly defined by varying the number of

hashtables L and the number of hashcode bits K. For the Hamming ranking evaluation

paradigm (Section 3.4.1) the threshold is the radius of the Hamming ball around the

queries. Database points with a Hamming distance to the query that puts them outside

of the radius are not considered part of the retrieved set and therefore do not contribute

to the computation of the precision and recall metrics. In contrast to the set-based eval-

uation metrics, the precision-recall (PR) curve measures the effectiveness of a ranked

list of items across a range of different operating points. For the Hamming ranking

evaluation paradigm, the PR curve is constructed by finding all the data-points within

a certain Hamming radius D of the query set and computing the precision and recall

over the corresponding retrieved set. By varying the Hamming radius from unity to

the maximum Hamming radius Dmax exhibited by database hashcodes we can trace

out a PR curve using the resulting Dmax precision-recall values. This curve depicts

the trade-off between precision and recall as the Hamming radius from the queries is

gradually increased. We expect that as the Hamming radius is increased the precision
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Figure 3.8: Precision recall curves for the CIFAR-10 dataset for a hashcode length of

32 bits. The three hashing algorithms indicated on this graph are studied in Chapter 6.

will drop (as more non-relevant data-points are encountered) while the recall will in-

crease (as more relevant data-points are retrieved). An example precision-recall curve

is presented in Figure 3.8.

3.6.3 Area Under the Precision Recall Curve

In many situations a single number summarising the ranking effectiveness captured by

the precision-recall curve is required. Given its wide application in previously related

research (Kong et al. (2012); Kong and Li (2012a,b); Moran et al. (2013a,b)) I settle

for the area under the precision-recall curve (AUPRC) as the main single number

effectiveness metric used consistently throughout this dissertation. The AUPRC is

a real-valued number constrained to be within the limits of 0 and 1 and provides a

summary of the retrieval effectiveness across all levels of recall. The computation of

AUPRC is defined in Equation 3.11.

AUPRC =
∫ 1

0
P(R)dR

=
Dmax

∑
d=1

P(d)δR(d)
(3.11)

where P(R) denotes the micro precision at micro recall R, P(d) is the precision at
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Hamming radius d and δR(d) is the change in micro recall between Hamming radius

d−1 and d9. The greater the area under the PR curve (AUPRC) the higher the retrieval

effectiveness of the associated hashing model. The ideal PR curve has a precision of

1.0 across all recall levels leading to an AUPRC of 1.0.

3.6.4 Mean Average Precision (mAP)

Mean average precision (mAP) is also a commonly applied single-number evaluation

metric for summarising the effectiveness of a ranking. However, in contrast to AUPRC

which is directly computed from the precision-recall curve, mAP is calculated from the

Q ranked lists that are obtained by computing the Hamming distance from every query

data-point
{

qi ∈ RD}Q
i=1 to all the database data-points

{
x j ∈ RD}N

j=1 . Given a set of

Q ranked lists, mAP is defined as follows (Wu et al. (2015)): denote as L the number

of true nearest neighbours for query q among the retrieved data-points, Pq(r) as the

precision for query data-point q when the top r data-points are returned, and δ(r) as an

indicator function which returns ‘1’ when the rth data-point is a true nearest neighbour

of the query and ‘0’ otherwise. The average precision (AP) for a single query q is then

given in Equation 3.12 while the average of this quantity across all Q queries, the mean

average precision or mAP, is defined in Equation 3.13.

AP(q) =
1
L

R

∑
r=1

Pq(r)δ(r) (3.12)

mAP =
1
|Q|

Q

∑
i=1

AP(qi) (3.13)

Equation 3.12 computes the precision at each point when a new relevant image is

retrieved. The average precision (AP) for a single query q is then the mean of these

precision values. The mAP is then computed by simply taking the mean of the average

precisions across all Q queries (Equation 3.13). mAP is a real-valued number between

0.0 and 1.0, with a higher number indicating a more effective ranked retrieval and

favours relevant images retrieved at higher (better) ranks. mAP is frequently used as a

single-number evaluation metric in certain sub-fields of the learning to hash literature,

particularly supervised and unsupervised data-dependent projection (Liu et al. (2011),

Liu et al. (2012), Gong and Lazebnik (2011), Zhang et al. (2010b)). When comparing

the contributions in this thesis to those particular sub-fields I will also report mAP in

9The finite sum representation for the AUPRC can be computed using the trapezoidal rule. This is
implemented as the trapz function in Matlab.
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addition to AUPRC so that my experimental results are directly comparable to previ-

ously published research.

3.6.5 Comparing and Contrasting AUPRC and mAP

The application of AUPRC and mAP as an evaluation metric is not consistent across

the learning to hash literature, with some sub-fields (particularly binary quantisation)

favouring AUPRC while others (such as data-dependent projection) appear to favour

mAP. It is well-known that mAP is approximately the average of the AUPRC for a set

of queries (Turpin and Scholer (2006)) so it is interesting to briefly consider here the

retrieval scenarios where both metrics are expected to be in agreement and when they

are likely to differ.

AUPRC is a micro-average in which the individual true positives, false positives

and false negatives are aggregated across all Q queries for a specific threshold. The

total aggregated counts are then used to compute the precision and recall for each

possible setting of the threshold. The resulting precision and recall values can then

be used to compute the AUPRC as given by Equation 3.11. In contrast the mAP is

a macro-average which is found by computing the true positives, false positives and

resulting precision per query, per relevant document retrieved and then averaging those

precision values across all Q queries (Equations 3.12-3.13).

In practice, differences between the mAP and AUPRC will only arise in retrieval

applications in which the distribution of relevant documents across queries is skewed.

In this scenario the AUPRC will favour models that return more relevant documents

from the queries with a larger number of relevant documents to the detriment of those

queries that have a smaller number of relevant documents. In contrast the mAP will

weight the contribution of every query equally even if many documents are relevant to

some queries and very few to other queries. This equal weighting of queries ensures

that mAP is insensitive to the performance variation between those queries that have

many relevant documents and other queries that have very few relevant documents. To

achieve a high mAP score the system must aim to do well across all queries and not

just those with many relevant documents.

In a practical scenario, where the distribution of relevant documents per query is

highly imbalanced, the choice of summarising the ranking effectiveness with either

mAP or AUPRC is application specific (Sebastiani (2002)). In some cases we may be

primarily interested in high effectiveness for the queries with a greater number of rel-
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evant documents (AUPRC). This may be appropriate for evaluating system orientated

tasks in which we wish to quantify how well the system does as a whole in returning

pairs of true nearest neighbours (e.g. plagiarism detection). In other cases we may be

equally interested in queries with a much smaller number of true positives (mAP). The

latter scenario may arise in a user evaluation situation such as web search where the

information retrieval system must not be seen to prioritise retrieval effectiveness for

one user over another.

3.7 Summary

In this chapter I introduced the evaluation methodology that is commonly employed in

the related research literature and which will be used to measure the effectiveness of

my own contributions in this thesis. I began in Section 3.2 by outlining a collection of

image and document datasets that will be used for my nearest neighbour (NN) search

experiments. The datasets were divided into unimodal (image only) and cross-modal

datasets (image-document), and were shown to encompass a large variability in the

feature descriptors used to encode the images and documents, as well as the type of

objects depicted in the images, their resolution and the total number of images (from

22,019 up to 1 million images) per dataset.

The definition of groundtruth is an important facet of any experimental method-

ology. In Section 3.3, I introduced two main strategies for judging the quality of a

nearest neighbour search algorithm. The first strategy constructs a ball of radius ε

around a query and any data-points falling within that radius are deemed true near-

est neighbours (Section 3.3.1). The second strategy sets true nearest neighbours to be

those data-points that share at least one class label in common with the query (Section

3.3.2). The latter groundtruth definition is required for cross-modal retrieval experi-

ments in which the feature descriptors occupy incommensurate feature spaces making

an ε-NN evaluation impractical.

In Section 3.4, I then defined the nearest neighbour search strategy to be used in

evaluating the quality of the hashcodes. One natural option is to index the database and

query images into hashtable buckets and count the number of true nearest neighbours

that fall within the same buckets as the query (Section 3.4.2). Surprisingly I discussed

how this hashtable lookup evaluation strategy is not at all common in the learning to

hash literature. Instead most publications of note use what is termed the Hamming

ranking evaluation paradigm where the Hamming distance is exhaustively computed
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from the query to every data-point in the dataset (Section 3.4.1). The data-points are

then ranked in ascending order of Hamming distance and the resulting ranked list is

used to compute ranking-based evaluation metrics.

The next point I addressed in Section 3.5 was how to split the datasets into random

partitions. In a retrieval setting I need a set of held-out test queries and a database

over which retrieval will be performed. The accepted methodology in the literature

(the literature standard splitting strategy) was to randomly select a set of held-out test

queries and to use the remaining data-points as the database to be ranked and as the

training dataset for learning the hash functions (Section 3.5.1). I identified a potential

overfitting concern with this strategy and advocated an approach (the improved split-

ting strategy) where a certain split of the dataset forms a held-out database that cannot

be used to learn the hash functions at training time (Section 3.5.2).

The final part of this chapter, in Section 3.6, introduced the evaluation metrics I

will use to quantify the retrieval effectiveness of my algorithms with respect to prior

art. In this thesis I use the standard Information Retrieval (IR) metrics of area under

the precision recall curve (AUPRC) and mean average precision (mAP) to evaluate the

quality of the hashcodes (Sections 3.6.3-3.6.4).

3.8 Conclusion

Having defined the research landscape within which this thesis is firmly embedded

in Chapters 2-3 I am now in a position to introduce my own novel contributions to

the field. I begin in Chapter 4 with a new multi-threshold quantisation algorithm that

relaxes the limiting assumption of Single Bit Quantisation (SBQ) (Chapter 2, Sec-

tion 2.5.1) in that only one threshold should be used for binarisation per projected di-

mension, and furthermore that the threshold position should remain unoptimised. My

model assigns more than one threshold per dimension and dynamically optimises their

positions based on the distribution of the input data, showing a significant increase in

retrieval effectiveness versus a host of state-of-the-art quantisation models.



Chapter 4

Learning Multiple Quantisation

Thresholds

The research presented in this Chapter has been previously published in Moran et al.

(2013a).

4.1 Introduction

In this chapter I make a first attempt at improving the retrieval effectiveness of the

data-independent and data-dependent (unsupervised) projection models introduced in

Chapter 2, Section 2.4 and Section 2.6.3 by introducing a new method for quantising

their projections into binary hashcodes. I introduced the process of quantisation for

hashing-based ANN search in Chapter 2, Section 2.5. In that section I discussed how

it was common to quantise the projections using single bit quantisation (SBQ) in which

a single threshold is placed directly at zero on a projected dimension for mean centered

data. Projected values above the threshold contributed a ‘1’ to the binary encoding for

their corresponding data-point and a ‘0’ otherwise. An argument was made that a static

placement of a threshold directly at the region of highest point density is a sub-optimal

approach due to the high likelihood of separating related data-points on either side

of the threshold, thereby causing related data-points to be assigned different bits and

ultimately negatively impacting hashing-based ANN search effectiveness.

To improve upon SBQ in this chapter I will relax the assumption of using one stat-

ically placed threshold for binarising a projected dimension (assumption A1 presented

in Chapter 1) by both optimising the threshold position and by exploring the benefits

of allocating one or more thresholds per projected dimension, specifically T = 1,2,3,7

117
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Method Data-Dependent Supervised # Thresholds Codebook

SBQ 1 0/1

DBQ X 2 00/11/10

HQ X 3 00/01/10/11

MHQ X 2B−1 NBC

NPQ X X 1,2,2B−1 Any

Table 4.1: Comparison of the quantisation algorithm introduced in this chapter (NPQ)

versus the most closely related quantisation models from the literature. All of the base-

lines were previously reviewed in Chapter 2. B ≥ 2,B ∈ Z denotes the number of bits

per projected dimension. NBC stands for natural binary code.

and 15 thresholds1. As I previously discussed in Chapter 2 a quantisation scheme must

provide an associated binary codebook C , which assigns codewords to the thresholded

regions of a projected dimension and a method of positioning the threshold(s). For

SBQ, the codebook is simple 0/1 binary encoding {ci : ci ∈ {0,1}} and the threshold

is placed at zero, without any optimisation of the positioning. In this chapter I will ex-

plore a multi-bit codebook for the thresholded regions
{

ci : ci ∈ {0,1}B
}

where B≥ 1

bits (or T thresholds) are allocated per projected dimension. In the experiment eval-

uation I observe the corresponding change in retrieval effectiveness versus a vanilla

single bit B = 1 per projected dimension encoding. In tandem with this I will also

ascertain the benefit of optimising the threshold positions, rather than simply assum-

ing that a static placement will be optimal. Table 4.1 presents a comparison of the

proposed model (NPQ) to a selection of representative models from the literature.

The remainder of this Chapter is organised as follows: I begin in Section 4.2 by

formulating my proposed multi-threshold quantisation algorithm. This section is bro-

ken down into Section 4.2.2 which introduces the proposed semi-supervised objective

function which directly maximises the number of related data-points assigned the same

bits, while minimising the occurrence of unrelated data-points being assigned the same

bits. I detail how this objective function is optimised by stochastic search in Section

4.2.3. I examine the effectiveness and efficiency of the quantisation algorithm in Sec-

tion 4.3 with a quantitative evaluation over the unimodal datasets presented in Chapter

3, Section 3.2. I then conclude this chapter in Section 4.4 with a discussion and con-

1The threshold quantities of T = 1,2,3,7,15 is entirely dictated by the binary codebooks used. See
Chapter 2, Sections 2.5.1-2.5.4.
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clusion on the main experimental findings.

4.2 Quantisation Threshold Optimisation

4.2.1 Problem Definition

My objective in this chapter is to learn a set of thresholds tk = [tk1, tk2, . . . , tkT ] where

tki ∈ R and tk1 < tk2 . . . < tkT for each of the K projected dimensions
{

yk ∈ RN}K
k=1.

The quality of the quantisation will be judged by using the resulting hashcodes to

retrieve the nearest neighbours to a set of image queries. Note here we are already as-

suming that an existing projection function (such as LSH or ITQ) has already generated

the projections, but crucially they are yet to be binarised. The learnt thresholds will

be used to quantise the real-valued projections into binary using a specified codebook{
ci : ci ∈ {0,1}B

}
. In addition to the codebook, I formulate in this section an optimi-

sation algorithm that will learn the quantisation thresholds so that neighbouring points

xi ∈RD,x j ∈RD are more likely to have similar hashcodes bi ∈ {0,1}K ,b j ∈ {0,1}K .

This optimisation problem is challenging due to the prohibitively large search space

O(NT ) of possible thresholds and the non-differentiable nature of my desired semi-

supervised objective function. In Sections 4.2.2-4.2.3 I discuss the intractability of

the problem and introduce an algorithmic solution that is both readily scalable and

demonstrably effective.

4.2.2 Judging Threshold Quality: F1-Measure Objective Function

In contrast to previous quantisation models such as AGH (Liu et al. (2011)), DBQ

(Kong et al. (2012)) and MHQ (Kong and Li (2012a)), my quantisation algorithm,

which I will refer to as Neighbourhood Preserving Quantisation (NPQ), leverages a

binary adjacency matrix S ∈ {0,1}Ntrd×Ntrd , where Ntrd is the number of training data-

points (Ntrd� N), to guide the threshold positioning. My hypothesis is that the neigh-

bourhood structure between the data-points in the input feature space is a valuable

signal for guiding the quantisation thresholds within the lower-dimensional projected

space. The adjacency matrix S therefore encodes the neighbourhood structure of the

data-points in the original feature space, where Si j = 1 if points xi and x j are consid-

ered neighbours (a positive pair), and Si j = 0 otherwise (a negative pair)2. S can be

2I set diagonal matrix elements to zero (Sii = 0) for all computations in this chapter.
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generated, for example, by computing Euclidean distance between Ntrd data-points and

setting any data-points within an ε-ball of each other as true nearest neighbours3. The

pairwise affinity matrix S specifies the pairs of points that should fall within the same

thresholded regions and therefore be assigned identical hashcodes from the codebook.

We can now define the desired objective function for threshold positioning that di-

rectly leverages the neighbourhood structure encoded in S. For a fixed set of thresholds

tk = [tk1 . . . tkT ] I define a per-projected dimension indicator matrix Pk ∈ {0,1}Ntrd×Ntrd

with the property given in Equation 4.1:

Pk
i j =

1, if ∃γ s.t. tkγ ≤ (yk
i ,y

k
j)< tk(γ+1)

0, otherwise.
(4.1)

The index γ∈Z spans the range: 0≤ γ≤ T , where the scalar quantity T denotes the

total number of thresholds partitioning a given projected dimension. Intuitively, matrix

Pk indicates whether or not the projections (yk
i ,y

k
j) of any pair of data-points (xi,x j) fall

within the same thresholded region of the one-dimensional projected dimension yk ∈
RNtrd . Given a particular instantiation of the thresholds [tk1 . . . tkT ], the algorithm counts

the number of true positives (TP), false negatives (FN) and false positives (FP) across

all regions. The requisite TP, FP and FN counts can then be stated as in Equations

4.2-4.4

T P =
1
2 ∑

i j
Pi jSi j =

1
2
‖P◦S‖1 (4.2)

FN =
1
2 ∑

i j
Si j−T P =

1
2
‖S‖1−T P (4.3)

FP =
1
2 ∑

i j
Pi j−T P =

1
2
‖P‖1−T P (4.4)

where ◦ denotes the Hadamard (elementwise) product and ‖.‖1 is the L1 matrix norm

defined as ‖X‖1 =∑i j |Xi j|. Intuitively TP is the number of positive pairs that are found

within the same thresholded region, FP is the proportion of negative pairs found within

the same region, and FN are the proportions of positive pairs found in different regions.

The factor of 1/2 appears in Equations 4.2-4.4 as both P and S are symmetric matrices

under the ε-NN groundtruth paradigm and so each pairwise relationship between two

3A fuller definition of ε-NNs can be found in Chapter 3, Section 3.3.1
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Figure 4.1: Maximisation of the F1-measure can lead to an effective setting of the quan-

tisation thresholds. In both diagrams we seek to position three thresholds along the

same projected dimension. In the top diagram the threshold positioning leads to an

F1-measure of 0.18. This is a rather low score which results from separating many

of the true NNs (indicated with the same colour and shape) in different regions. The

threshold positions in the lower diagram lead to a higher F1-measure, approximately

twice as high, which arises from capturing more true nearest neighbours in the same

thresholded regions.

points is counted twice: for example if xi and x j are true nearest neighbours then

Si j = 1 and S ji = 1. The TP, FP and FN counts are combined using the familiar set-

based F1-measure4 from Information Retrieval (Equation 4.5):

F1(tk) =
2‖P◦S‖1

‖S‖1 +‖P‖1
(4.5)

The application of an F1-measure5 based objective function is motivated by the

highly unbalanced nature of the adjacency matrix S: this matrix is usually very sparse,

with approximately 1% of the elements being positive pairs. The F1-measure is well

known to be much less affected by this imbalanced distribution between positive and

negatives (as we are not affected by true negatives) than, for instance, the classification

accuracy (Chawla (2005)). I present a simple example in Figure 4.1 that illustrates the

computation of the F1-measure on a toy projected dimension. The overall objective

function that I seek to optimise is given in Equation 4.6.

4I use Fβ-measure with β = 1.0 throughout this Chapter. In Chapter 5, I explore the extent to which
retrieval performance can be increased by tuning this parameter based on the data distribution.

5Specifically I use micro F1-measure which collates the TPs, FPs and FNs across data-points before
computing the precision and recall. The benefits of computing a macro F1-measure in the context of
multiple threshold learning is left for future work.
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Jnpq(tk) = αF1(tk)+(1−α)(1−Ω(tk)) (4.6)

where α ∈ [0,1] and the unsupervised term Ω(tk) is defined as given in Equation 4.7:

Ω(tk) =
1
σk

T+1

∑
j=1

∑
i:yk

i∈r j

{
yk

i −µ j

}2
(4.7)

where r j =
{

yi|t j−1 ≤ yi < t j,yi ∈ yk} denotes the projections within thresholded re-

gion r j with t0 = −∞, tT+1 = +∞, σk = ∑
Ntrd
i=1
{

yk
i −µk

}2, µk ∈ R denotes the mean of

projected dimension yk ∈ RN and µ j ∈ R denotes the mean of the projections located

in thresholded region r j. Intuitively maximisation of Equation 4.6 encourages a clus-

tering of the projected dimension so that as many of the must-link (i.e. Si j = 1) and

cannot-link (i.e. Si j = 0) constraints encoded in the adjacency matrix S are respected

while also minimising the cluster dispersion of the projections within each thresholded

region. Equation 4.6 therefore fuses two valuable signals in a complementary manner:

the neighbourhood structure encoded in the adjacency matrix which provides informa-

tion on the pairwise relationships between the data-points in the input feature space;

and the neighbourhood information captured by the projection function that was re-

sponsible for generating the projected dimensions in the first place. In this way we

avoid relying entirely on the ability of the projection function to correctly place nearby

data-points within close proximity of each other along a projected dimension. This

semi-supervised objective function is the main point of conceptual departure from ex-

isting quantisation algorithms such as AGH (Chapter 2, Section 2.5.2), MHQ (Chapter

2, Section 2.5.4) and DBQ (Chapter 2, Section 2.5.3) which only leverage the structure

in the projected space. I investigate the synergy between these two signals and their

resulting effect on retrieval performance in my experimental evaluation (Section 4.3).

The F1-measure term in Equation 4.6 is non-differentiable due to the discontinuous

form of Equation 4.1 at the threshold points tkγ, tk(γ+1). Continuous optimisation via

gradient ascent is therefore difficult. I will demonstrate in Section 4.2.3 that we can

directly optimise this objective function without appealing to a continuous relaxation.

4.2.3 Efficient Threshold Optimisation through Stochastic Search

For a given projected dimension yk ∈ RNtrd , there is an optimal setting of the thresh-

olds t∗k = [tk1 . . . tkT ] that will maximise Equation 4.6. There are two issues we need to

tackle to optimise this function, Firstly, as I discussed, my desired objective function
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is non-differentiable making a gradient descent approach infeasible. Secondly, brute

force maximisation is of O(N2
trdNT

trdT )6 time complexity (T ∈ [1,2, . . . ,15]), which due

to the high degree polynomial does not scale up to large training datasets and multi-

ple quantisation thresholds per dimension. I tackle both issues by exploring two non-

deterministic optimisation frameworks, namely simulated annealing (Kirkpatrick et al.

(1983)) and evolutionary algorithms (EA) (Goldberg (1989)). Both stochastic search

methods are well known techniques for discovering approximate solutions to chal-

lenging combinatorial optimisation problems. Neither stochastic search framework

requires the function to be continuous or have a derivative and has parameters that can

trade-off computation time versus accuracy achieved. If I denote by F a parameter that

controls the number of evaluations of Equation 4.6 within the optimisation framework,

we are able to achieve a more reasonable time complexity of O(N2
trdT F) for learning

the optimal threshold positions for a single projected dimension7. Remarkably, as we

will see in the experimental evaluation, despite the approximate nature of the stochas-

tic search algorithm we are able to find a good local optimum within an acceptable

number of objective function evaluations (F). In total, for K
′
= bK/Bc projected di-

mensions, the time complexity is of O(K
′
N2

trdT F), where B denotes the number of bits

per projected dimension

I will now describe the specifics of how I use simulated annealing and evolutionary

algorithms to optimise Equation 4.6. The stochastic search is described in the context

of a single (arbitrary) projected dimension yk ∈RNtrd since each projected dimension is

quantised independently. To learn a set of thresholds for a given projected dimension,

the stochastic search algorithm initially generates H candidate sets of thresholds uni-

formly at random in the matrix Tk ∈ RH×T where Tk
r• = [tr1 . . . trT ] with r ∈ [1 . . .H].

The number H of candidate threshold sets (i.e. rows in matrix Tk) is 1 for simulated

annealing and H ≥ 1 for evolutionary algorithms. Each row of the threshold matrix

Tk ∈ RH×T represents a starting point in the T dimensional threshold space. The ob-

jective of the stochastic search is to navigate through this space of thresholds to points

representing local maxima in the objective function (Equation 4.6). The threshold con-

figuration in the row of Tk that yields the greatest local maximum as judged by Equa-

tion 4.6 is selected as the quantisation for projected dimension yk. At each iteration

the stochastic search algorithm evaluates each row of thresholds Tk
r• by constructing

6Typically the adjacency matrix S is highly sparse and so the number of non-zero elements are much
less than N2

trd .
7The unsupervised part of the objective function is linear O(FNtrd) and so I ignore it in my statement

of the overall time complexity.
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the matrix Prk and computing the corresponding objective function value (Equation

4.6). Each threshold in the matrix Tk is then subsequently perturbed to shift the search

into a new region of threshold space. The manner in which each row of thresholds in

Tk are modified to move into a position in threshold space possibly exhibiting a higher

objective function value is particular to the stochastic search algorithm. In the next two

sections I will briefly describe how I adapt simulated annealing (Section 4.2.3.1) and

evolutionary algorithms (Section 4.2.3.2) for my task. Application of both stochastic

search methods for threshold finding in the context of hashing-based ANN search is

novel to my knowledge.

4.2.3.1 Simulated Annealing

Simulated annealing is a popular non-deterministic optimisation algorithm used to find

a good, but not necessary global optimum for problems that exhibit a large search space

which would otherwise take an inordinate amount of computation to traverse exhaus-

tively (Ingber (1993), Kirkpatrick et al. (1983)). This method of stochastic search has

been used successfully in many diverse applications from finding the optimal wiring

of a computer chip (Kirkpatrick et al. (1983)) to finding the conformational substates

of proteins (Bohr and Brunak (1989)). Simulated annealing is named after the pro-

cess of annealing in Metallurgy whereby a crystalline solid is gradually cooled to form

a low energy highly structured crystal lattice with minimal defects. The maximum

temperature and the cooling schedule are critical parameters of the physical annealing

process if the ground energy state is to be achieved. The computational version of sim-

ulated annealing exhibits three important factors that affect the stochastic search: the

maximum temperature, the scheme for reducing the temperature and the scheme for

proposing updates (perturbing the current solutions). There have been many proposals

in the literature for reducing the temperature and exploring the solution space (Ingber

(1993)). In this thesis I select the perturbation function that modifies the thresholds tk

(i.e. selects the “neighbours” of the current state) by a magnitude given by the current

temperature S ∈R, with a direction that is chosen uniformly at random. The perturbed

set of thresholds t′k is accepted either if the new objective function value J (t′k) is greater

than the previous value J (tk), or at random with a probability that is dependent on the

current temperature and the difference between the old and new objective function val-

ues for the thresholds. The probability of a sub-optimal solution being accepted is

given in Equation 4.8.
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Algorithm 6: MULTIPLE THRESHOLD LEARNING VIA SIMULATED ANNEAL-

ING

Input: Projected dimension yk ∈ RNtrd , initial temperature S0 ∈ R, number of

iterations M ∈ Z+

Output: Optimised quantisation thresholds tk ∈ RT for projected dimension

yk ∈ RNtrd

1 S = S0

2 Initialise thresholds tk ∈ RT uniformly at random

3 for m← 1 to M do
4

{
∆ : ∆ j ∼Uni f (0,1), j ∈ [1,T ]

}
// Draw perturbation vector

5 ∆ = ∆/‖∆‖2

6 t′k = tk +S∆ // Generate solution candidate

7 r ∼Uni f (0,1)

8 ∆k = J (t′k)− J (tk)

9 if (J (t′k)> J (tk)) then
10 tk = t′k
11 else if (r < (1/(1+ exp(∆k

S )))) then
12 tk = t′k // Accept solution based on Boltzmann density

13 end
14 S = S0×0.95M // Anneal temperature

15 end
16 return tk

Pr(∆k,S) =
1

(1+ exp(∆k
S ))

(4.8)

where ∆k = J (t′k)− J (tk). The probability distribution in Equation 4.8 is known as

Boltzmann annealing (Szu and Hartley (1987)). While moving the search to a re-

gion of lower objective function value may seem counterintuitive, it is exactly this

possibility that permits the search to escape local maxima in the hope of discover-

ing a greater local maximum. The temperature is lowered (cooled) by the function:

S = S0× 0.95m where S0 is the initial temperature and S is the current temperature at

iteration m ∈ {1, . . . ,M}. At high temperature the stochastic search will explore more

of the parameter space, and as the temperature is gradually lowered the exploration
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will become more and more restricted with a lower probability of jumping to sub-

optimal regions of threshold space. The search terminates when there is no significant

difference between the objective function values or a maximum number of iterations

has been exceeded. The threshold configuration at termination of the search is used

to quantise the projected dimension yk. Simulated annealing requires no derivative

information on the function to be evaluated, making it an ideal candidate for directly

maximising Equation 4.6.

My adaptation of simulated annealing for threshold finding is presented in Algo-

rithm 6. In Line 4, the perturbation vector ∆ is drawn uniformly at random and specifies

how the existing set of thresholds are to be adjusted. In Line 6 the perturbation vec-

tor is multiplied by the temperature S, which dictates the magnitude of the threshold

change. Finally in Lines 9-13 the new set of thresholds (t′k) are either excepted if the

objective function value (J (t′k)) is greater than what it was previously (J (tk)), or if not,

with a probability based on Equation 4.8. I use the Matlab simulated annealing toolkit

for all the simulated annealing experiments in this dissertation8.

4.2.3.2 Evolutionary Algorithms

Evolutionary algorithms employ a method reminiscent to “natural selection” and the

Darwinian principle of the survival of the fittest to generate gradually better solutions

(“individuals”) to a combinatorial search problem. The intuition behind this method

of stochastic search is to increase the average fitness of a set of individuals by repeat-

edly breeding together individuals using operators inspired by natural genetics, such as

crossover and mutation. The fitness of the individuals is judged using the application-

specific objective function, which is Equation 4.6 for the purposes of this chapter. This

iterative breeding process has the net effect that over a number of iterations M the pop-

ulation of individuals will have a higher average fitness than their parents from earlier

generations (“iterations”). In my application the individuals are sets of thresholds Tk
r•,

each of which represents a particular quantisation of the projected dimension yk. The

goal is to find a set of thresholds that give the highest value for the objective function.

More than one individual is generated (H > 1) by instantiating the matrix Tk ∈ RH×T

with entries selected uniformly at random. Each individual represents a particular

point in threshold space, and therefore the evolutionary algorithm maintains multiple

parallel hypotheses as to the optimal quantisation of the projected dimension. The H

8http://uk.mathworks.com/discovery/simulated-annealing.html

http://uk.mathworks.com/discovery/simulated-annealing.html
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individuals in the current population represented by Tk ∈ RH×T are used to generate

new, potentially higher quality individuals by iteratively repeating the following four

steps:

1. Sampling: Probabilistically select for reproduction a predefined proportion H
′
=

max(bωH +0.5c,2) of the H sets of thresholds in Tk ∈RH×T with a probability

dependent on their relative objective function values. The parameter ω ∈ R and

is set to the default of 0.9 in this thesis. The greater the fitness value of an in-

dividual the higher the likelihood that it will be selected as a hypothesis for the

optimal configuration of quantisation thresholds. I opt for the standard stochas-

tic universal sampling (SUS) method in this thesis. Briefly, SUS is a form of

roulette wheel selection in which every individual is allocated a portion of the

hypothetical wheel in proportion to its computed fitness value. Individuals with

a higher fitness are allocated a correspondingly larger portion of the wheel. In

this fitness proportionate form of sampling, the wheel is spun only once and in-

dividuals located at equally spaced intervals (computed based on the number of

desired individuals to be sampled) around the wheel, from the point at which the

wheel stopped, are selected for breeding. Individuals may be selected multiple

times particularly if they have a high fitness values. SUS guarantees that the

observed selection frequencies of individuals accord with the expected selected

frequencies: so for example if an individual occupies 20% of the wheel and we

wish to sample 100 individuals then that individual will be selected 20 times on

average. This guarantee is not given for the vanilla roulette wheel selection al-

gorithm in which the wheel is spun as many times as the number of individuals

we wish to sample.

2. Crossover: The H
′
individuals selected in the previous sampling step are placed

into bH ′
/2c pairs and the single point crossover operator is then applied to each

pair with probability θ ∈ [0,1]9. Given two sets of thresholds tk = [tk
1 . . . t

k
T ],

t′k = [tk′
1 . . . tk′

T ], single point crossover picks an integer index i ∈ [1,T ] uniformly

at random and forms two new pairs (the “offspring”) by swapping elements us-

ing the index i as the crossover point giving two new sets of thresholds: tk =

[tk
1 . . . t

k
i , t

k′
i+1 . . . t

k
′

T ] and t′k = [tk′
1 . . . tk′

i , t
k
i+1 . . . t

k
T ]. In practice the pairs are formed

by taking individuals in the even numbered rows and crossing them with the in-

dividuals in the adjacent odd number rows: so for example the thresholds in row

9Crossover is usually applied with a high probability θ≈ 0.7 (Freitas (2002)).
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Tk
1• are crossed with those in row Tk

2•, and the same for those in rows Tk
3•, Tk

4•

and so forth.

3. Mutation: Apply the mutation operator with probability φ ∈ [0,1] to the ωH

offspring produced by the crossover operator10. Mutation randomly changes

the value of a single threshold for a particular individual. In the evolutionary

algorithms literature mutation acts as a background operator that ensures the

probability of exploring a particular subspace of the threshold space is always

greater than zero. Mutation is an exploration operator which drives the search

to previously untouched areas of the space. This is to be contrasted with the

other operators which geared towards the exploitation of promising regions of

the solution space.

4. Reinsertion: Reinsert the offspring into the current population Tk ∈ RH×T . If

the number of offspring H
′
is less than the number of individuals (H) in the orig-

inal population, i.e. there is a generation gap (G), then a suitable replacement

strategy is evoked. In this thesis I use an elitist replacement strategy in which

the H
′

generated offspring replaces the individuals in the population that have

the lowest fitness values. The remaining H−H
′

individuals in the original pop-

ulation with the highest fitness are therefore deterministically propagated to the

next generation.

The above four steps are repeated for a predefined number of generations M. Given

the bias towards maintaining and “breeding” those individuals that have a higher fit-

ness, we expect that over a sufficient number of generations the average fitness value

of the population of individuals will increase and therefore gradually move towards

regions of threshold space with high objective function values. In my case I hope that

this region contains a configuration of the quantisation thresholds that assign similar

data-points similar bits, and dissimilar data-points different bits. The search terminates

when the maximum number of generations have been exceeded or there is no appre-

ciable increase in the objective function value. At termination of the search the set of

thresholds Tk
r• with the maximum objective function value at generation M is used to

quantise the corresponding projected dimension yk.

Algorithm 7 summarises the main steps in using evolutionary algorithms to learn

multiple quantisation thresholds. Line 1 initialises a matrix Tk of thresholds, one set
10In practice mutation is typically applied with a very low probability 0.001 ≤ φ ≤ 0.01 (Freitas

(2002)).
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Algorithm 7: MULTIPLE THRESHOLD LEARNING VIA EVOLUTIONARY AL-

GORITHMS

Input: Projected dimension yk ∈ RNtrd , # iterations M ∈ Z+, number of

threshold sets H ∈ Z+, number of thresholds per dimension U ∈ Z+,

Mutation probability φ ∈ [0,1], Crossover probability θ ∈ [0,1],

Proportion to select ω ∈ [0,1]

Output: Optimised quantisation thresholds tk ∈ RT for yk ∈ RNtrd

1 Initialise H sets of thresholds Tk ∈ RH×T uniformly at random

2 for m← 1 to M do
3 Compute f ∈ RH such that f j = Jnpq(Tk

j•)

4 Select H
′
= max(bωH +0.5c,2) rows from Tk based on f, place in Tk′

5 Form bH ′
/2c pairs from Tk′ , crossover pairs with probability θ

6 Mutate thresholds in Tk′ with probability φ

7 Reinsert Tk′ in Tk with elitist replacement

8 end
9 return tk = argmax

t j

Jnpq(Tk
j•)

of T thresholds per row. In Line 3, the objective function (Equation 4.6) is computed

for each of the H sets of thresholds on the rows of matrix Tk. In Line 4, the sampling

step is performed and selects H
′
= max(bωH +0.5c,2) rows from matrix Tk. In Line

5, bH ′
/2c pairs are formed from the selected threshold sets and the crossover operator

is applied. The resulting H
′
sets of thresholds are mutated (Line 6), and then reinserted

back into matrix Tk (Line 7). In Line 9 the row of Tk that yields the highest objective

function value is selected as the set of thresholds (tk) used for quantising the given

projected dimension. The evolutionary algorithm solver I use in this thesis is the open-

source Sheffield Genetic Algorithms Toolbox11. I compare and contrast the efficiency

and empirical performance of both simulated annealing and evolutionary algorithms in

my experimental evaluation (Section 4.3).

11http://codem.group.shef.ac.uk/index.php/ga-toolbox

http://codem.group.shef.ac.uk/index.php/ga-toolbox
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4.3 Experimental Evaluation

4.3.1 Experimental Configuration

In this section I perform a set of experiments to examine the effectiveness and effi-

ciency of the multi-threshold quantisation algorithm described in Section 4.2. I directly

compare my model to state-of-the-art quantisation algorithms from the literature: Sin-

gle Bit Quantisation (SBQ), Hierarchical Quantisation (HQ), Double Bit Quantisation

(DBQ) and Manhattan Hashing Quantisation (MHQ). All of these baselines quantisa-

tion algorithms were reviewed in detail in Chapter 2, Section 2.5. The experimental

evaluation is structured to provide an answer to the following four main hypotheses:

• H1: A single threshold optimised using Equation 4.6 yields a higher retrieval

effectiveness than Single Bit Quantisation (SBQ) for LSH and PCA projections.

• H2: Two thresholds optimised using Equation 4.6 leads to a higher retrieval

effectiveness than Double Bit Quantisation (DBQ) for LSH and PCA projections.

• H3: Multiple (3, 7, 15) thresholds optimised with Equation 4.6 outperform mul-

tiple thresholds learning using the Manhattan Quantisation (MHQ) algorithm of

Kong et al. (2012) for LSH and PCA projections.

• H4: Three thresholds optimised with Equation 4.6 yield a higher retrieval effec-

tiveness for PCA, LSH, ITQ, SH, SKLSH projections than the MHQ quantisation

algorithm.

In all four cases I use the appropriate quantisation codebook, namely the traditional

binary 0/1 codebook (Indyk and Motwani (1998)) for H1, the double bit quantisation

codebook (Kong and Li (2012a)) for H2 and the Manhattan quantisation codebook

(Kong et al. (2012)) for H3,H4
12. My quantisation model is general and can poten-

tially be used with any binary codebook, any number of thresholds and indeed any

projection function of interest. To this end these four hypotheses will examine differ-

ent configurations of my quantisation algorithm in which the codebook (binary, DBQ

and MHQ) and number of thresholds (T = 1,2,3,7 and 15 thresholds) are varied. In

doing so I hope to understand the exact circumstances in which the proposed quan-

tisation algorithm is most effective while also discovering where it is most likely to

12I use the Manhattan quantisation codebook for H4 because it constitutes the best prior art for multi-
threshold quantisation.
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Parameter Setting Chapter Reference

Groundtruth Definition ε-NN Chapter 3, Section 3.3

Evaluation Metric AUPRC Chapter 3, Section 3.6.3

Evaluation Paradigm Hamming Ranking Chapter 3, Section 3.4.1

Random Partitions 10 Chapter 3, Section 3.5

Number of Bits (K) 16-128 Chapter 2, Section 2.4

Table 4.2: Configuration of the main experimental parameters for the results presented

in this section.

fail. In addition to these four hypotheses I will also measure the impact of the main

parameters of my method, specifically the effect of the training database size Ntrd and

the influence of the interpolation parameter α. I will also be interested in the training

time of the threshold optimisation algorithm, given the importance of efficiency for any

method of hashing-based ANN search.

To constrain the quantity of experiments I closely follow the experimental protocol

in the relevant literature (Kong et al. (2012); Kong and Li (2012a,b); Kulis and Dar-

rell (2009); Raginsky and Lazebnik (2009); Gong and Lazebnik (2011)) and make a

number of choices with regards to the groundtruth and evaluation paradigm. Unless

otherwise stated in the relevant experiment I use the experimental framework detailed

in Table 4.2 for evaluation. Specifically, the experiments will be conducted on the three

unimodal image datasets (CIFAR-10, NUS-WIDE and SIFT1M) described in Chapter

3, Section 3.2.1 using the ε-NN groundtruth definition presented in Chapter 3, Section

3.3. The Hamming ranking evaluation paradigm (Chapter 3, Section 3.4.1) and area

under the precision recall curve (AUPRC) (Chapter 3, Section 3.6.3) will be used to

ascertain the quality of the hashcodes. In all experiments I also follow previously ac-

cepted procedure (Kong et al. (2012), Kong and Li (2012a), Kong and Li (2012b)) and

randomly select Nteq = 1,000 data points as testing queries (Xteq ∈ RNteq×D), with the

remaining points (Xdb ∈ RNdb×D) being used as the database upon which to learn and

test the hash functions according to the selected dataset splitting strategy (namely the

literature standard or improved splitting strategy). A further breakdown of the specific

dataset splits I use is shown in Tables 4.3-4.4.
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Partition CIFAR-10 NUS-WIDE SIFT1M

Test queries (Nteq) 1,000 1,000 1,000

Validation queries (Nvaq) 1,000 1,000 1,000

Validation database (Nvad) 10,000 10,000 10,000

Training database (Ntrd) 2,000 10,000 10,000

Test database (Nted) 46,000 247,648 978,000

Table 4.3: Improved splitting strategy partition sizes for the experiments in this chapter.

This breakdown is based on the splitting strategy introduced in Chapter 3, Section 3.5.

There is no overlap between the data-points across partitions.

Partition CIFAR-10 NUS-WIDE SIFT1M

Test queries (Nteq) 1,000 1,000 1,000

Validation queries (Nvaq) 1,000 1,000 1,000

Validation database (Nvad) 10,000 10,000 10,000

Training database (Ntrd) 2,000 10,000 10,000

Test database (Nted) 59,000 268,648 999,000

Table 4.4: Literature standard splitting strategy partition sizes for the experiments in

this chapter. This breakdown is based on the splitting strategy introduced in Chapter 3,

Section 3.5.

4.3.2 Parameter Optimisation

The quantisation thresholds are then learnt on the training dataset (Xtrd ∈ RNtrd×D).

The thresholds are then subsequently used to quantise the test dataset projections

(Xteq ∈ RNteq×D,Xted ∈ RNted×D). All reported AUPRC figures are computed using

repeated random sub-sampling cross-validation averaged over ten independent runs.

To determine the statistical significance of my results I use a Wilcoxon signed rank

test (Smucker et al. (2007)). When comparing system A to system B on a given ran-

dom split of the dataset, the unit of the significance test is a pair of AUPRC values,

one from a retrieval run by System A and the other from a retrieval run by System

B. In all presented result tables the symbol NN/HH indicates a statistically signifi-

cant increase/decrease with p < 0.01, while N/H indicates a statistically significant

increase/decrease with p < 0.05. Further hypothesis specific experimental settings, for

example the setting of the interpolation parameter α, will be detailed in the relevant
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section.

4.3.3 Experimental Results

4.3.3.1 Effect of the Amount of Supervision (Ntrd)

In this experiment I will examine the effect of the amount of supervisory information

Ntrd on the retrieval effectiveness of my semi-supervised threshold optimisation algo-

rithm. Recall from Section 4.2 that the adjacency matrix S ∈ {0,1}Ntrd×Ntrd specifies

which pairs of data-points xi ∈ RD,x j ∈ RD should be assigned the same binary codes

(Si j = 1) and which pairs should have different binary codes Si j = 0. My chosen objec-

tive function (Equation 4.6) uses this information to position the quantisation thresh-

olds along a projected dimension to maximise the number of true pairs (Si j = 1) that fall

within the same quantised regions (and therefore assigned the same bits) while min-

imising the number of unrelated data-points (Si j = 0) falling within the same thresh-

olded regions. The experimental configuration used in this section is presented in

Table 4.5. I use the simplest possible parametrisation of the model. Concretely, I con-

figure the model to optimise the position one threshold per projected dimension and

use the standard binary 0/1 codebook with Hamming distance for pairwise compar-

isons. To isolate the effect of Ntrd I set the interpolation parameter in Equation 4.6 to

α = 1 throughout this experiment. The threshold configuration maximising Equation

4.6 is obtained using evolutionary algorithms (Section 4.2.3.2) with setting of H = 15

(number of populations) and M = 15 (number of generations). I study the effect of the

stochastic search method in Section 4.3.3.3 and the effect of the α parameter in Section

4.3.3.2.

Method # Thresholds/dim Encoding Ranking Strategy

NPQ 1 0/1 Hamming

Table 4.5: Parametrisation of the quantisation methods studied in Section 4.3.3.1. NPQ

stands for Neighbourhood Preserving Quantisation and is the novel algorithm proposed

in this chapter.

The validation dataset AUPRC obtained with various levels of supervision is shown

in Figure 4.2 for all three image datasets. The trend exhibited by the graph accords

with expectations in that there is a steady increase in AUPRC as more supervision is

used for the threshold learning. In all three cases the AUPRC starts to level between
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Figure 4.2: The effect of the amount of supervision Ntrd on the validation dataset re-

trieval effectiveness (AUPRC). The results are shown for LSH projections with T = 1

threshold per projected dimension (hashcode length of 32 bits). The bars show the

standard error of the mean.

Ntrd = 2,000-10,000 data-points suggesting there are limited gains in retrieval effec-

tiveness to be had with increasing levels of supervision after that point. This result is

encouraging from an efficiency standpoint given that the larger the adjacency matrix

the greater the amount of computation and memory required to learn the quantisation

thresholds13. For all three datasets this experiment suggests that a relatively small adja-

cency matrix of around 1-2% of the total dataset size is sufficient for learning effective

quantisation thresholds. In the remaining experiments in this chapter I set Ntrd = 2000

for CIFAR-10 and Ntrd = 10,000 for the larger NUS-WIDE and SIFT1M datasets, as

this is the amount of training data at which the maximum validation dataset AUPRC is

reached in each case. The training time of the multi-threshold quantisation algorithm

with these settings of Ntrd is examined in Section 4.3.3.4.

4.3.3.2 Effect of the α Interpolation Parameter

In this section I study the effect of varying the interpolation parameter α ∈ [0,1] in

Equation 4.6 for LSH projections. This parameter interpolates between the supervised

13The time complexity of threshold learning is O(N2
trdT F), where F = HM is the number of objective

function evaluations made by the Evolutionary Algorithm. Memory requirements scale as O(N2
trd).

Typically the adjacency matrix S is highly sparse and so the number of non-zero elements S� N2
trd .
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(b) DBQ (00/11/10) codebook

Figure 4.3: Variation in AUPRC with the value of α for the CIFAR-10 dataset (LSH pro-

jections) and the binary (0/1) codebook (Figure (a)) and the DBQ (00/11/10) codebook

(Figure (b)) .

F1-measure term obtained from counting the number of true positives, false positives

and false negatives within each thresholded region, with the unsupervised normalised

variance term obtained from the projections of the data-points. Studying the preferred

setting of this parameter will shed light on which signal (unsupervised or supervised)

is the most important for effective placement of the quantisation thresholds, or whether

a convex combination of the two signals is best. Intuitively one might expect the ma-

jority of the weight to be assigned to the more reliable supervised signal. The optimum

threshold configuration is obtained using evolutionary algorithms (EA), with the de-

tailed examination of the parametrisation of this stochastic search method postponed to

Section 4.3.3.3. The amount of supervisory information Ntrd is set to 2,000 data-points.

The experimental results are presented in Figures 4.3-4.4. In each case the valida-

tion dataset AUPRC is measured for each setting of α across a wide range of hashcode

lengths (32-256 bits). Each point on the graphs is averaged over ten random train-

ing/validation/test splits of the dataset in accordance with the procedure outlined in

Section 4.3.2. In Figure 4.3a the quantisation model is parametrised to use the vanilla

0/1 codebook of Single Bit Quantisation (SBQ). It is clear that a setting of α = 1 is

preferred across all hashcode lengths for this particular instantiation of the quantisa-

tion model, with all weight being allocated to the supervised signal. Interestingly, the

unsupervised signal is therefore deemed unreliable and not required. This finding is of

significance to the future design of quantisation algorithms, which before the innova-
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Figure 4.4: Variation in AUPRC with the value of α for the CIFAR-10 dataset and the

MHQ codebook (LSH projections). T = 3 thresholds are optimised per projected di-

mension.

tion discussed in this chapter, all relied on the neighbourhood information arising from

the unsupervised signal. A slightly different pattern emerges when the codebook is

changed to the Double Bit Quantisation (DBQ) 00/11/10 codebook (Figure 4.3b) and

the Manhattan Hashing Quantisation (MHQ) natural binary codebook (NBC) (Figure

4.4). In both of these cases an α = 1 is optimal for hashcodes of a lower length (<

128 bits), while an α < 1 leads to a higher retrieval effectiveness for longer hashcodes

(≥ 128 bits). This result suggests that for these non-standard codebooks (DBQ, MHQ)

with LSH projections, in which more than one threshold is optimised per projected di-

mension, the influence of the unsupervised neighbourhood information resulting from

the low-dimensional projection function becomes increasingly more important as the

hashcode length increases.

4.3.3.3 Effect of Stochastic Search (Simulated Annealing versus Evolutionary

Algorithms)

I discussed in Section 4.2.3 how two stochastic search methods, evolutionary algo-

rithms and simulated annealing, can be used to efficiently optimise Equation 4.6 ver-

sus a purely brute-force search for the best threshold configuration. In this experiment

I will compare both methods of stochastic search to see which is most effective for
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Figure 4.5: Figure (a) shows the effect of initial temperature (S0) and number of itera-

tions (M) on the CIFAR-10 validation dataset AUPRC. Figure (b) illustrates the effect on

validation dataset AUPRC of varying the number of populations (H) and the number of

generations (M) for the evolutionary algorithm (EA). Results are for CIFAR-10 at 32 bits

with LSH projections and T = 1 thresholds per projected dimension (0/1 codebook).

the task of threshold optimisation. Ideally we would like the stochastic search to find

a threshold configuration that leads to the greatest AUPRC while taking a minimal

number of evaluations of Equation 4.6.

Before comparing both stochastic search frameworks I firstly examine the initial

temperature S0 for simulated annealing since in preliminary experiments this single

parameter was found to have the greatest effect on the final retrieval AUPRC. I an-

neal the temperature by S = S0× 0.95m where S0 is the initial temperature and S is

the current temperature for iteration m ∈ {1, . . . ,M}. The next candidate threshold is

selected with a step length that equals the temperature with the direction chosen uni-

formly at random. These simulated annealing settings were found to work best on a

preliminary set of experiments. Figure 4.5a shows the effect on validation AUPRC of

the temperature parameter with the number of iterations (M) of the simulated anneal-

ing stochastic search. A temperature of S0 = 2000 and between M = 30-50 iterations

appears to offer the fastest path to the highest AUPRC on the validation dataset. I

therefore set S0 = 2000 and constrain the number of iterations to below M = 100 for

simulated annealing in the remaining experiments.

For evolutionary algorithms we have the mutation (φ), crossover (θ) and genera-

tion gap (G) parameters to set. In practice I find the default setting (φ = 0.001,θ = 0.7,
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Figure 4.6: CIFAR-10 validation AUPRC for a certain number of objective function eval-

uations (F) for both simulated annealing (SA) and evolutionary algorithms (EA). Figure

(a) shows the result for optimising 1 and 15 thresholds per projected dimension. Figure

(b) shows the learning curves for 3 and 7 thresholds.

G = 0.9) in the Sheffield Genetic Algorithms Toolbox14 to work well. I study in detail

the effect of the remaining two parameters of the evolutionary algorithm, namely the

number of populations (candidate threshold hypotheses) H and the number of genera-

tions (iterations) M. Figure 4.5b plots the AUPRC results arising from a grid search on

the CIFAR-10 validation dataset for values of M ∈ [1, . . . ,15] and H ∈ [1, . . . ,15]. A

population of more than one (H > 1) appears to be critical for achieving the highest re-

trieval effectiveness, with the number of generations (M) having a smaller boost on the

performance. For example, with just one generation and five populations the evolution-

ary algorithm attains an AUPRC of 0.1483 which is close to the value achieved with

ten generations and five populations (0.1496 AUPRC). The fact that the AUPRC tails

off rapidly for a low number of populations and generations ensures that the stochastic

search remains efficient despite being an inherently randomised process.

The question arises as to which stochastic search method is better for the purposes

of threshold learning. I plot in Figures 4.6a-4.6b the results of optimising 1,3,7 and

15 thresholds per projected dimension with simulated annealing (SA) and the evolu-

tionary algorithm (EA). I note that for a single threshold (Figure 4.6a) it appears that

SA reaches the highest validation AUPRC with a lower number of objective func-

tion evaluations than does EA. Nevertheless, they both reach a validation AUPRC

14http://codem.group.shef.ac.uk/index.php/ga-toolbox

http://codem.group.shef.ac.uk/index.php/ga-toolbox
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that is approximately equal after a sufficient number of objective function evaluations

(F > 700). For multiple thresholds per projected dimension (3,7,15) in Figures 4.6a-

4.6b we see a different picture: here the EA reaches a higher validation AUPRC than

SA. Furthermore, SA cannot reach the validation AUPRC achieved by EA even after

F = 1,000. Based on these results I opt for evolutionary algorithms for the remainder

of this thesis because this style of stochastic search appears to give a consistently good

AUPRC across all threshold quantities. I set the number of generations to M = 15 and

the number of individuals to H = 15. This setting of the parameters provides an ac-

ceptable tradeoff between effectiveness (final AUPRC achieved) and efficiency (time

taken to learn the thresholds) for all three image collections. The experiments in this

section were conducted on the CIFAR-10 dataset. In future work it would be prudent

to confirm these results on additional datasets (NUS-WIDE, SIFT1M).

4.3.3.4 Evaluation of Training Time

The setting of the quantisation thresholds is a one-time offline training cost conducted

prior to using the learnt thresholds to generate the hashcodes for the database and query

data-points. Nevertheless, despite this being an offline process that will crucially not

affect the nearest neighbour search query time, and therefore not affect the core rea-

son for wanting to use hashing-based ANN search in the first place, it is imperative

that the training cost be as low as possible so that the act of learning the hashcodes

for large datasets remains tolerable. We have already seen in Section 4.3.3.1 how a

relatively small, and sparse, adjacency matrix of around 1% of the total dataset size

is sufficient for use in learning the quantisation thresholds. In this experiment I seek

to measure how this offline processing cost compares against the baseline quantisation

models using the optimal size Ntrd of the supervisory adjacency matrix determined

for the CIFAR-10 dataset in Section 4.3.3.1. I use broadly the same model configura-

tion as I did in Section 4.3.3.1: namely the optimisation of thresholds for LSH-based

projections.

The training timing results for the CIFAR-10 image dataset are shown in Table

4.6 using Ntrd = 2,000. The training time of my multi-threshold quantisation model

(NPQ) is an order of magnitude faster than the HQ algorithm of Liu et al. (2011) while

being commensurate with the MHQ multi-threshold quantisation algorithm of Kong

et al. (2012). This latter finding is particularly encouraging as the time complexity

of NPQ is dependent on the square of the number of supervisory training data-points,

whereas the k-means clustering algorithm used by MHQ has a linear dependence. In
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Number of Thresholds

Model T = 1 T = 2 T = 3 T = 7 T = 15

NPQ 0.180 0.202 0.225 0.360 0.639

SBQ 0.001 – – – –

DBQ – 0.002 – – –

MHQ – – 0.276 0.291 0.376

HQ – – 1.160 – –

Table 4.6: Mean time taken (in seconds) per projected dimension to learn the quanti-

sation thresholds with Ntrd = 2000 on the CIFAR-10 dataset. The timing results were

recorded on an otherwise idle Intel 2.7GHz, 16Gb RAM machine and averaged over

ten random dataset partitions. All models are implemented in the same software stack

(Matlab). The evolutionary algorithm had the setting H = 15,M = 15. NPQ timings

include the time to compute the supervised and unsupervised terms in Equation 4.6.

practice, the computational time complexity of NPQ is substantially reduced by the

sparsity of the matrix S and the efficient matrix operations that I use to enumerate the

required true positive (TP), false positive (FP) and false negative (FN) counts.

To accelerate the training time of NPQ I avoid computing the indicator matrix P
(Equation 4.1) and instead compute the F1-measure by manipulating the highly sparse

adjacency matrix S. My more efficient counting procedure involves first rearranging

(sorting) the rows and columns of the adjacency matrix S so that they are in the same

order as the sorted projected values for projected dimension yk. This pre-processing

step takes O(Ntrd logNtrd) time. Counting the TPs, FPs and FNs for each thresholded

region then simply amounts to taking rectangular slices of the resulting matrix, which

contain many fewer elements than the full adjacency matrix. Furthermore since this F1-

measure computation is repeatedly called by the stochastic search algorithm to evaluate

candidate threshold positions, any computational savings in the corresponding function

will positively impact the overall training time.

To better illustrate this more efficient method of counting the TPs, FPs and FNs

we will consider the hypothetical projected dimension shown in Figure 4.7. In this

diagram the data-points are arranged from left-to-right along the projected dimension

in ascending order of their projected value. This means that data-point i has the low-

est projected value while data-point d has the highest. As before, data-points with the

same shape and colour are true nearest neighbours in the original higher dimensional
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Figure 4.7: Example projected dimension used to illustrate an efficient method of com-

puting the TPs, FPs and FNs required to compute the F1-measure in Equation 4.6.

feature space. The corresponding adjacency matrix S encoding the pairwise relation-

ships between the data-points is shown in matrix 4.9. For example, as data-points a,b

are true nearest neighbours a ‘1’ is placed in elements Sa,b and Sb,a of S. To efficiently

compute the required TPs, FPs and FN counts I sort the rows and columns of S in the

same order as the projected dimension in Figure 4.7. The rearranged adjacency matrix

S′ is shown in matrix 4.10.



S a b c d e f g h i

a 0 1 0 0 0 0 0 0 0

b 1 0 0 0 0 0 0 0 0

c 0 0 0 0 0 1 0 0 0

d 0 0 0 0 0 0 0 1 1

e 0 0 0 0 0 0 1 0 0

f 0 0 1 0 0 0 0 0 0

g 0 0 0 0 1 0 0 0 0

h 0 0 0 1 0 0 0 0 1

i 0 0 0 1 0 0 0 1 0



(4.9)

With the adjacency matrix rearranged in this manner, determining the necessary TP,

FP and FN counts for Equation 4.6 is possible entirely through efficient sparse matrix

operations. These operations involve computing the number of 1’s in T +1 rectangular

slices of the adjacency matrix, with the size of the rectangular slices determined by the

threshold positions. For our toy example presented in Figure 4.7, the four slices of S′

are shown in matrix 4.10. The number of true positives (TPs) is then simply half the

number of 1’s found in the four rectangular slices, which in this case is T P = 4/2 =

2. The number of FPs can be determined by firstly computing the total number of

elements within the four rectangular slices (ignoring elements on the diagonal), which
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in this case is equal to 12+ 6 = 18. Halving this value and subtracting the TPs, will

give FP = 18/2− 2 = 7. Finally the FNs are computed by subtracting the TP count

from half the total number of non-zero elements15 in S. In this case FN = 12/2−
2 = 4. We can confirm that these counts are indeed correct by appealing to Figure

4.7 and enumerating the counts manually. Importantly, none of these computations

involves explicitly enumerating the zeroes in the matrix, enabling the required counts

to be entirely determined from the sparse matrix representation alone, an important

advantage in practice16.



S′ i e f g h a c b d

i 0 0 0 0 1 0 0 0 1

e 0 0 0 1 0 0 0 0 0

f 0 0 0 0 0 0 1 0 0

g 0 1 0 0 0 0 0 0 0

h 1 0 0 0 0 0 0 0 1

a 0 0 0 0 0 0 0 1 0

c 0 0 1 0 0 0 0 0 0

b 0 0 0 0 0 1 0 0 0

d 1 0 0 0 1 0 0 0 0



(4.10)

4.3.3.5 Experiment I: Single Threshold Optimisation

In this experiment I examine the first hypothesis H1 as outlined in Section 4.3.1. To

investigate this hypothesis I optimise the position of a single threshold per projected

dimension using Equation 4.6 and compare directly to standard Single Bit Quantisa-

tion (SBQ) which places the quantisation threshold directly at zero along the mean

centered projected dimension. For relevant background information on SBQ please

refer to Chapter 2, Section 2.5.1. I also present a random baseline (RND) which places

a threshold uniformly at random along each projected dimension. Both baselines will

make it obvious whether or not learning the threshold positions is in fact useful for

improving retrieval effectiveness. To optimise the threshold I maximise Equation 4.6

15Counting the total number of 1’s in the matrix need only be done once before starting the threshold
optimisation, and reused in each objective function call.

16Given the matrix S is symmetric under the ε-NN groundtruth definition additional gains in efficiency
can be realised by only storing the non-zero elements in the upper or lower triangular half of the matrix.
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using stochastic search via evolutionary algorithms. The meta-parameter α ∈ [0,1] is

set to 1.0 for all hashcode lengths, which was found to be optimal for the 0/1 code-

book in our parameter study in Section 4.3.3.2. All factors of variation are kept the

same between the three quantisation algorithms: specifically, I use the same codebook

and the same ranking criterion to compute AUPRC (Hamming distance). I show the

parametrisation of this experiment in Table 4.7 and the retrieval results in Tables 4.8-

4.9.

Method # Thresholds/dim Encoding Ranking Strategy

NPQ 1 0/1 Hamming

SBQ 1 0/1 Hamming

Table 4.7: Parametrisation of the quantisation methods studied in Experiment I.

(a) Quantising LSH projections with T = 1 threshold per projected dimension

I firstly examine the retrieval effectiveness arising from the quantisation of LSH

projections with a learnt threshold. The experimental results in Table 4.8 suggest that

placing a threshold at zero is a sub-optimal quantisation strategy. Retrieval effective-

ness is significantly lower (Wilcoxon signed rank test, p < 0.01) than optimising the

threshold using my semi-supervised quantisation algorithm (NPQ). Figure 4.8a shows

that the superior performance of my quantisation algorithm holds across a wide range

of hashcode lengths on the CIFAR-10 dataset. In the case of LSH, these results con-

firm the claim set out in Chapter 2, Section 2.5.1 that a threshold set by default at zero

is very likely to divide many related data-points on opposite sides of the quantisation

threshold. This finding is a particularly encouraging result for two reasons: firstly, it

supports the case for further studying the threshold optimisation problem in the context

of ANN search. Secondly, as LSH is an undoubtedly popular method for hashing-based

ANN search, replacing SBQ with my threshold optimisation algorithm (NPQ) is likely

to give an immediate boost in retrieval effectiveness on the many end-applications that

rely on this hash function.

(b) Quantising PCA projections with T = 1 threshold per projected dimension

The NPQ quantisation algorithm is independent of the projection stage and there-

fore has the appealing advantage of being applicable to the projections arising from
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CIFAR-10 NUS-WIDE SIFT1M

LSH + NPQ 0.1963 (0.1899)NN 0.5008 (0.5006)NN 0.1220 (0.1297)NN

LSH + SBQ 0.1069 (0.1068) 0.3395 (0.3392) 0.0974 (0.0974)

LSH + RND 0.0339 (0.0339) 0.0253 (0.0252) 0.0103 (0.0103)

Table 4.8: AUPRC for the single threshold (T = 1) optimisation experiment at 32

bits for LSH projections NN/HH indicates a statistically significant increase/decrease

(Wilcoxon, p < 0.01) over SBQ. The improved splitting strategy result are in brackets.

CIFAR-10 NUS-WIDE SIFT1M

PCA + NPQ 0.1018 (0.1012)NN 0.1208 (0.1205)NN 0.2085 (0.2085)NN

PCA + SBQ 0.0387 (0.0388) 0.0477 (0.0477) 0.1081 (0.1081)

PCA + RND 0.0297 (0.0297) 0.0075 (0.0075) 0.0148 (0.0148)

Table 4.9: AUPRC for the single threshold (T = 1) optimisation experiment at 32

bits for PCA projections. NN/HH indicates a statistically significant increase/decrease

(Wilcoxon, p < 0.01) over SBQ. The improved splitting strategy result are in brackets.

any hash function. As a consequence I also study the quantisation of PCA-based pro-

jections given the centrality of PCA to many of the data-dependent (unsupervised)

projection functions in the literature (Chapter 2, Section 2.6.3). The retrieval results

for this projection are presented in Table 4.9. The first point of note with these results,

when comparing to the LSH retrieval results in Table 4.9, is the substantially lower

effectiveness of PCA-based projections versus LSH projections for nearest neighbour

search on two out of the three datasets (CIFAR-10 and NUS-WIDE). For example, on

CIFAR-10 at 32 bits LSH+SBQ realises a 176% relative increase in AUPRC versus

PCA+SBQ. This result suggests that PCA projections, despite their data-dependent

nature, are less effective for partitioning the input space compared to randomly drawn

LSH hyperplanes. I hypothesise that this drop in retrieval effectiveness is related to

the imbalanced variance problem discussed in Chapter 2, Section 2.6.3.1. The eigen-

vectors with the lowest eigenvalues are generally unreliable and provide little infor-

mation on the input feature space. This means that any hashcode bits generated from

these eigenvectors are ineffective for distinguishing related and unrelated data-points.

I introduce quantisation algorithms that address the imbalanced variance problem in

Chapter 5.

In Table 4.9 it is apparent that optimising a single threshold (PCA+NPQ) for PCA
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Figure 4.8: AUPRC versus hashcode length on CIFAR-10 for Experiment I. Results for

LSH projections are shown in Figure (a) and PCA projections in Figure (b). The bars

show the standard error of the mean.

projections yields a significantly higher effectiveness than either a statically placed

threshold (PCA+SBQ) or a random threshold placement (PCA+RND). This improve-

ment in retrieval effectiveness is confirmed across a wide range of hashcode lengths on

the CIFAR dataset (Figure 4.8b) where the difference in AUPRC continues to increase

as the hashcode length is increased. This result suggests that optimising a single thresh-

old is also beneficial for PCA projections. Given the generality of the multi-threshold

quantisation algorithm to PCA projections we have reason to suspect it may provide an

additional boost in retrieval effectiveness when used to quantise projections from other

data-dependent projection functions. I defer examination of this hypothesis to Section

4.3.3.8.

In contrast, in Figure 4.8b, it is readily apparent that the retrieval effectiveness of

PCA+SBQ declines as the hashcode length increases. This effect can be attributed to

the noisy (low variance) PCA dimensions that are being used to generate the increas-

ingly longer hashcodes. Unlike in standard vision algorithms, such as those for image

annotation (Moran and Lavrenko (2014)), the dimensions can be weighted so to em-

phasise their importance (or not) to the specific task. In hashing, however, there is no

such notion of a dimension weighting and all dimensions are therefore treated equally

when computing and ranking with the Hamming distance. This equal treatment in

the presence of noisy dimensions can markedly affect performance as is observed for

PCA+SBQ in Figure 4.8b. In Chapter 5, I explore how a notion of dimension weight-
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ing through multiple bit assignment can mitigate this particular issue in the context of

hashing.

(c) Standard dataset splitting strategy versus the improved splitting strategy

The final observation I make from the experimental results in Tables 4.8-4.9 is the

similarity of the AUPRC arising from the standard splitting strategy (Chapter 3, Sec-

tion 3.5.1) used in the learning to hash literature and the improved strategy outlined in

Chapter 3, Section 3.5.2. In many cases there is no significant difference in the AUPRC

achieved when computing retrieval results using either strategy. I previously made the

argument in Chapter 3, Section 3.5 that the literature standard method of defining test

and training splits ran the risk of overfitting the hash functions to the training dataset.

The reason for this assumption was that the training dataset used to learn the hash func-

tions was also a subset of the database used for the test retrieval run. The results in this

section downplay this fear as I find that holding out a completely separate test database

for the final retrieval run leads to not only the same ranking of the quantisation algo-

rithms in terms of most effective to least effective but also nearly identical AUPRC

as averaged over ten random dataset splits. Despite the literature standard splitting

strategy arguably being less technically sound from a machine learning perspective I

provide the first evidence here that it is nevertheless a valid evaluation methodology.

The retrieval results arising from the literature standard splitting strategy will only be

provided in the remaining experiments of this chapter.

4.3.3.6 Experiment II: Double Threshold Optimisation

In this experiment I will examine the hypothesis (H2) that optimising two thresholds

per projected dimension with my proposed semi-supervised objective function (Equa-

tion 4.6) can achieve a higher retrieval effectiveness than the Double Bit Quantisation

(DBQ) algorithm of Kong and Li (2012a). The DBQ algorithm was outlined in de-

tail in Chapter 2, Section 2.5.3. As two thresholds will induce three regions along the

projected dimension we can no longer uniquely label each region using a single bit

encoding as I did for Experiment I in Section 4.3.3.5. I therefore opt for the DBQ

multi-bit codebook in which two bits are assigned per projected dimension. This en-

coding scheme is shown in Figure 2.11 of Chapter 2. In addition to DBQ and the

purely random threshold setting baseline RND, I also compare to the baseline EQL

which sets the thresholds at equally spaced intervals along the projected dimension. If
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Method # Thresholds/dim Encoding Ranking Strategy

NPQ 2 01/11/10 Hamming

DBQ 2 01/11/10 Hamming

RND 2 01/11/10 Hamming

EQL 2 01/11/10 Hamming

SBQ 1 0/1 Hamming

Table 4.10: Parametrisation of the quantisation methods studied in experiment II

we denote as T = 2 the number of thresholds per projected dimension, then the width

of each interval w is computed as specified in Equation 4.11

w =
yk

max− yk
min

T +1
(4.11)

where yk
min ∈ R and yk

max ∈ R are the minimum and maximum projected values of

projected dimension yk ∈RNtrd . Given the width w ∈R the quantisation thresholds are

then placed at the positions along the projected dimension given by yk
min +w, yk

min +

2w, . . ., yk
min +Tw. The parametrisation of the quantisation algorithms studied in this

experiment is shown in Table 4.10. The NPQ, DBQ, RND and EQL quantisation

algorithms all assign 2 bits per projected dimension and therefore only use K/2 of the

number of available hyperplanes to generate K bits. In the case of LSH projections the

first K/2 hyperplanes are used to partition the input space, while for PCA projections

the K/2 hyperplanes with the largest eigenvalues are used because these are generally

more reliable (Liu et al. (2011)). As the SBQ algorithm only assigns 1 bit per projected

dimension it will use all K available hyperplanes to generate K bits. I mirror the

experimental evaluation in Section 4.3.3.5 by analysing the retrieval results with both

LSH and PCA projections. The interpolation parameter α∈ [0,1] in Equation 4.6 is set

to α = 1.0 for hashcodes of length K < 128 bits and α = 0.8 for K ≥ 128 bits. These

settings of α were found to be optimal in the parameter study conducted in Section

4.3.3.2.

(a) Quantising LSH projections with T = 2 thresholds per projected dimension

The retrieval results obtained by quantising LSH projections and using the result-

ing hashcodes for nearest neighbour search are presented in Table 4.11 for a hashcode

length of 32 bits and in Figure 4.9 for hashcodes of length 16 through to 128 bits.
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CIFAR-10 NUS-WIDE SIFT1M

LSH + NPQ 0.1535NN 0.3459 0.0933

LSH + DBQ 0.0786 0.1460 0.0764

LSH + SBQ 0.1069 0.3395 0.0974

LSH + EQL 0.0342 0.0228 0.0208

LSH + RND 0.0319 0.0188 0.0062

Table 4.11: AUPRC for the double threshold (T = 2) quantisation experiment (II) for LSH

projections. NN/HH indicates a statistically significant increase/decrease (Wilcoxon,

p < 0.01) over SBQ.

Examining the results in Table 4.11 we observe that the multi-threshold optimisation

model (LSH+NPQ) attains a statistically significant increase (Wilcoxon signed rank,

p < 0.01) in retrieval effectiveness with respect to the DBQ, EQL and RND baseline

quantisation algorithms across all three still image collections. For example, on the

CIFAR-10 dataset at 32 bits LSH+NPQ achieves a 95% relative increase in AUPRC

versus LSH+DBQ. This result suggests that, for LSH projections, the quantisation al-

gorithm proposed in this chapter is significantly more effective at the placement of two

thresholds per projected dimension in comparison to the DBQ quantisation algorithm.

I observe mixed results when comparing the retrieval effectiveness of LSH+SBQ

versus my own quantisation model (LSH+NPQ). Recall from Chapter 2, Section 2.5.1

that SBQ assigns one bit per projected dimension with a single threshold placed at zero

along each projected dimension. On the CIFAR-10 dataset optimising two thresholds

per projected dimension using my quantisation model yields a significant 44% relative

increase in AUPRC versus statically placing a single threshold per projected dimension

(LSH+SBQ). Surprisingly the DBQ quantisation model (LSH+DBQ) obtains a signif-

icantly lower retrieval effectiveness than a single threshold quantisation (LSH+SBQ)

on the same dataset. This result again suggests that the DBQ threshold optimisation

algorithm is not as effective as my own. However, I note an opposite trend on the larger

NUS-WIDE and SIFT1M datasets where there is no significant difference between a

single threshold at zero (LSH+SBQ) and allocating and optimising two thresholds per

projected dimension (LSH+NPQ). The most likely reason for this observation is the

use of half the number of hyperplanes, compared to all hyperplanes in the case of a

single threshold per projected dimension.

The question arises as to whether or not it is actually beneficial to assign and opti-
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(b) PCA projections

Figure 4.9: AUPRC versus hashcode length on CIFAR-10 for Experiment II. Results for

LSH projections are shown in Figure (a) and PCA projections in Figure (b). The bars

show the standard error of the mean.

mise two thresholds per projected dimension for LSH projections. We can answer this

question by comparing the retrieval results in Table 4.8 to the retrieval results in Table

4.11. Recall from Section 4.3.3.5 that the retrieval results in Table 4.8 for LSH+NPQ

were obtained by optimising a single threshold per projected dimension. For example

on the CIFAR-10 dataset optimising a single threshold per projected dimension using

my quantisation model obtains an AUPRC of 0.1963 (Table 4.8). This retrieval result

should be compared to an AUPRC of 0.1535 which is obtained through optimising

two thresholds per projected dimension (Table 4.11) with the same model. A similar

pattern is also observed on the NUSWIDE and SIFT1M image collections. We can

conclude that for LSH allocating and optimising two thresholds per projected dimen-

sion is a much less effective quantisation approach compared to optimising a single

threshold per projected dimension, with the caveat that we are using the Hamming

distance for hashcode comparison. In Section 4.3.3.8, I will show that using multiple

thresholds can be more effective than a single threshold for LSH when the Manhattan

distance is used for hashcode ranking in the manner proposed by Kong et al. (2012).

In all experiments in this chapter, the strategy taken is to reduce the quantity of

hyperplanes in proportion to the number of bits added. For example, if B = 2 bits are

assigned per projected dimension, as was the case for the experiments in this section,

then the quantity of hyperplanes is halved so that the total number of bits used does

not exceed the bit budget K. For example, for an assigned bit budget of 32 bits, only
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CIFAR-10 NUS-WIDE SIFT1M

PCA + NPQ 0.1388NN 0.1526NN 0.2478NN

PCA + DBQ 0.1084 0.0723 0.1816

PCA + SBQ 0.0387 0.0477 0.1081

PCA + EQL 0.0879 0.0221 0.0495

PCA + RND 0.0363 0.0112 0.0139

Table 4.12: AUPRC for the double threshold (T = 2) quantisation experiment (II)

for PCA projections. NN/HH indicates a statistically significant increase/decrease

(Wilcoxon, p < 0.01) over DBQ.

16 hyperplanes will be used with an allocation of B = 2 bits per hyperplane. The

main reason that this strategy is used here and is prevalent in the literature (Kong et al.

(2012); Kong and Li (2012a)) is to ensure that all models use the same computational

resources for hashcode storage and comparison. Permitting the multi-bit quantisation

models to use the same number of planes but with more bits would involve using

more storage and computation time for their hashcodes (as they will consist of more

bits). The focus in the hashing literature is to maximise performance with respect to

a fixed bit budget K, which has the desirable effect of constraining the computational

resources used. The alternate strategy of increasing the number of bits for a fixed

hyperplane budget would likely see an increase in effectiveness as more bits are added.

For example, in Figure 4.8a assigning 1 bit per hyperplane for 48 hyperplanes achieves

an AUPRC of 0.2406, whereas assigning 2 bits per hyperplane for 48 hyperplanes in

Figure 4.9a attains a substantially higher AUPRC of 0.3320.

(b) Quantising PCA projections with T = 2 thresholds per projected dimension

I present in Table 4.12 the retrieval results arising from allocating and optimis-

ing two thresholds per projected dimension for PCA projections. In stark contrast to

LSH projections I find that optimising two thresholds per PCA projected dimension

results in significantly higher (Wilcoxon signed rank, p < 0.01) retrieval effectiveness

compared to a single threshold (PCA+SBQ) across all three datasets. For example

on the CIFAR-10 dataset at 32 bits PCA+NPQ with two thresholds per projected di-

mension attains a 259% relative increase in AUPRC versus a single threshold quanti-

sation (PCA+SBQ). Similar increases in retrieval effectiveness are also observed on

the NUS-WIDE and SIFT1M datasets. This result suggests that allocating more than
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Method # Thresholds/dim Encoding Ranking Strategy

NPQ 3,7,15 NBC Manhattan

MHQ 3,7,15 NBC Manhattan

RND 3,7,15 NBC Manhattan

EQL 3,7,15 NBC Manhattan

Table 4.13: Parameterisation of the quantisation methods studied in experiment III

one threshold (two in this experiment) to the eigenvectors (hyperplane normal vectors)

with the greatest eigenvalues directly benefits retrieval effectiveness, a finding which

I explore in more detail in Chapter 5. This finding is corroborated by Table 4.9 in

Section 4.3.3.5 in which optimising a single threshold with NPQ results in a lower re-

trieval effectiveness compared to the optimisation of two thresholds using my model.

Despite the higher retrieval effectiveness for PCA+NPQ with two thresholds per pro-

jected dimension it still cannot match the retrieval performance of LSH+NPQ with

one threshold per projected dimension (Table 4.8), at least for two of the considered

datasets (CIFAR-10, NUS-WIDE).

Finally, I note that my multi-threshold quantisation model (PCA+NPQ) also demon-

strates a higher retrieval effectiveness than the DBQ quantisation algorithm of Kong

and Li (2012a) (PCA+DBQ). This result provides further evidence as to the impor-

tance of fusing together two complementary signals in the form of affinity information

between the data-points in the input feature space (provided in the adjacency matrix S)

and information captured by the low-dimensional projection function (i.e. PCA) itself.

4.3.3.7 Experiment III: Multiple (T = 3,7,15) Threshold Optimisation

The experiments in this section compare the multi-threshold quantisation algorithm

(NPQ) introduced in this chapter against the Manhattan Hashing Quantisation (MHQ)

algorithm of Kong et al. (2012) and reviewed in Chapter 2, Section 2.5.4. In doing so I

seek to answer hypothesis H3 as to whether or not optimising three or more thresholds

with the semi-supervised objective function (Equation 4.6) can yield a higher retrieval

effectiveness than MHQ. To the best of my knowledge MHQ is the only quantisation

algorithm for hashing-based ANN search that generalises to 3+ thresholds per pro-

jected dimension, a feat that is possible through the use of Natural Binary Code (NBC)

to encode the thresholded regions and Manhattan distance to compute the distances be-

tween the hashcodes. For a full discussion of MHQ please refer to Chapter 2, Section
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# Thresholds

Method 3 7 15

LSH + NPQ 0.1621NN 0.0921N 0.0830NN

LSH + MHQ 0.0877 0.0645 0.0517

LSH + EQL 0.0617 0.0564 0.0503

LSH + RND 0.0357 0.0339 0.0384

Table 4.14: AUPRC on the CIFAR-10 dataset for LSH projections with a hashcode

length of 32 bits and varying thresholds (T = 3,7,15). NN/HH indicates a statistically

significant increase/decrease (Wilcoxon, p < 0.01) over MHQ. N/H indicates a statisti-

cally significant increase/decrease (Wilcoxon, p < 0.05) over MHQ.

2.5.4.

The parametrisation of this experiment is shown in Table 4.13. I configure my

multi-threshold quantisation model to use the MHQ codebook and seek to optimise

3, 7 and 15 thresholds per projected dimension which is equivalent to an assignment

of 2, 3 and 4 bits for each hyperplane respectively. In each case to generate K bits

bK/Bc hyperplanes are needed, where T = 2B− 1: for example, to generate 32 bits

with an assignment of 3 thresholds per projected dimension only b32/2c = 16 of the

available hyperplanes are used. As for Section 4.3.3.5 and Section 4.3.3.6 the first

bK/Bc LSH hyperplanes are selected, while the bK/Bc PCA hyperplanes capturing

the highest variance in the input feature space are used. The meta-parameter α ∈ [0,1]

in Equation 4.6 is set to α = 1.0 for hashcodes of length K < 128 bits and α = 0.8 for

K ≥ 128 bits, as was found to be optimal in the parameter study conducted in Section

4.3.3.2.

(a) Quantising LSH projections with T = 3,7,15 thresholds per projected dimen-
sion

The retrieval results for this experiment are presented in Table 4.14 and Figure

4.10a for LSH projections. I confirm hypothesis H3 for LSH projections given the sig-

nificantly higher AUPRC (Wilcoxon signed rank test (p< 0.01)) for LSH+NPQ versus

the baseline quantisation algorithms, and in particular LSH+MHQ. This strongly sug-

gests that the quantisation algorithm introduced in this chapter achieves state-of-the-art

retrieval effectiveness for nearest neighbour search using any quantity of thresholds.

Furthermore, it is abundantly clear that LSH has a preference for a lower number of
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# Thresholds

Method 3 7 15

PCA + NPQ 0.1660N 0.1824NN 0.1504N

PCA + MHQ 0.1408 0.1456 0.1299

PCA + EQL 0.0865 0.1236 0.1216

PCA + RND 0.0471 0.0708 0.0780

Table 4.15: AUPRC on the CIFAR-10 dataset for PCA projections with a hashcode

length of 32 bits and varying thresholds (T = 3,7,15). NN/HH indicates a statistically

significant increase/decrease (Wilcoxon, p < 0.01) over MHQ. N/H indicates a statisti-

cally significant increase/decrease (Wilcoxon, p < 0.05) over MHQ.

thresholds (T = 3) with AUPRC falling as more thresholds (T = 7,15) are allocated to

each projected dimension. This result is true not only for my quantisation model but

also for the multi-threshold baseline quantisation algorithms (MHQ, EQL). This find-

ing accords with earlier observations made in Section 4.3.3.5 and Section 4.3.3.6 in

which I discovered that optimising just a single threshold is the best strategy for LSH.

Indeed, by comparing Table 4.8 to Table 4.14 it is apparent that optimising a single

threshold yields the highest overall AUPRC for LSH (namely 0.1963 AUPRC versus

an AUPRC of 0.1621).

(b) Quantising PCA projections with T = 3,7,15 thresholds per projected dimen-
sion

I again confirm hypothesis H3 by examining the AUPRC for PCA projection quan-

tisation in Table 4.15 and Figure 4.10b. There is a statistically significant (Wilcoxon

signed rank, p< 0.01) increase in AUPRC when comparing PCA+NPQ to PCA+MHQ

for a hashcode length of 32 bits. I also find that PCA+NPQ dominates PCA+MHQ for

hashcode lengths of between 16-128 bits (Figure 4.10b). This result provides further

evidence regarding the effectiveness of positioning multiple quantisation thresholds by

optimising Equation 4.6 using evolutionary algorithms in contrast to a purely unsuper-

vised (k-means) clustering of the projected dimension. In contrast to LSH projections

I again find that multiple thresholds lead to the highest retrieval effectiveness (Table

4.15) for PCA projections. For the CIFAR-10 dataset, seven thresholds per projected

dimension, which equates to three bits per hyperplane, appears to be optimal with a

higher (T = 15) or lower (T = 3) number of thresholds leading to a significantly lower
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Method # Thresholds/dim Encoding Ranking Strategy

NPQ 3 NBC Manhattan

MHQ 3 NBC Manhattan

EQL 3 NBC Manhattan

HQ 1+3 0/1 Hamming

SBQ 1 0/1 Hamming

Table 4.16: Parametrisation of the quantisation methods studied in experiment IV. NBC

stands for natural binary code.

AUPRC. This observation suggests that there is a sweet spot for the threshold alloca-

tion per projected dimension, an important finding that I will investigate and expand

upon much further in the next chapter of this dissertation. I can furthermore measure

the efficacy of the MHQ codebook and pairwise comparison metric (Manhattan dis-

tance) in comparison to the DBQ (00/11/10) codebook and the vanilla binary (0/1)

codebook with Hamming distance. The maximum AUPRC achieved with PCA+NPQ

is 0.1824 using the MHQ codebook and the Manhattan ranking strategy (Table 4.15).

This should be contrasted with 0.1388 AUPRC for the DBQ codebook (Table 4.12) and

0.1018 AUPRC for the binary codebook (Table 4.9). Clearly the MHQ codebook and

the Manhattan ranking strategy for pairwise hashcode comparison leads to the highest

AUPRC and therefore is clearly more effective than either alternative. I therefore con-

firm the original findings of Kong et al. (2012) when using their codebook and ranking

strategy with my own quantisation model.

4.3.3.8 Experiment IV: Generalisation to other Projection Functions

In this final experiment I will expand the number of projection functions to be quan-

tised from LSH and PCA to other more recent data-dependent models, namely Spec-

tral Hashing (SH), Iterative Quantisation (ITQ) and Shift Invariant Kernel Hashing

(SKLSH). SH was discussed in detail in Chapter 2, Section 2.6.3.2, while ITQ was re-

viewed in Chapter 2, Section 2.6.3.3 and SKLSH in Chapter 2, Section 2.6.2.117. The

experimental setup is shown in Table 4.16. The ability of my multi-threshold quan-

tisation algorithm to generalise to other projection functions is measured against six

quantisation model baselines: the data-dependent models MHQ, DBQ, and HQ and

17I use an SKLSH kernel bandwidth γ = 1 for CIFAR-10 and NUS-WIDE and γ = 0.000001 for
SIFT1M which allows me to replicate the MHQ results reported by Kong et al. (2012).
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Figure 4.10: AUPRC on the CIFAR-10 dataset for Experiment III (T = 3 thresholds per

projected dimension). Results for LSH projections are shown in Figure (a) and PCA

projections in Figure (b). The bars show the standard error of the mean.

the data-independent quantisation models SBQ, RND and EQL.

In all cases each quantisation algorithm is configured to generate hashcodes of

length 32 bits for the CIFAR-10, NUS-WIDE and SIFT1M datasets, and the retrieval

effectiveness of those hashcodes measured using the Hamming ranking evaluation

paradigm and the AUPRC metric. I parametrise my own multi-threshold quantisation

algorithm with the MHQ codebook and Manhattan ranking strategy as was the case for

hypothesis H3 in Section 4.3.3.7, setting 3 thresholds (or 2 bits) per projected dimen-

sion. Three thresholds (equivalently 2 bits) per projected dimension was in general

found to work the best for MHQ across a wide selection of projection functions in the

original paper (Kong et al. (2012)). The interpolation parameter α ∈ [0,1] in Equation

4.6 is set to α = 1.0 for hashcodes of length K < 128 bits and α = 0.8 for K ≥ 128 bits.

This configuration was found to be optimal in the experiments in Section 4.3.3.2. The

hierarchical quantisation (HQ) algorithm is tied to the anchor graph hashing (AGH)

projection function as was discussed in Chapter 2, Section 2.6.3.4. I therefore use the

default AGH parameters of 300 anchor data-points and 5 nearest anchors as suggested

in Liu et al. (2011).

(a) Generalisation to other Projection Functions

The results of this experiment are shown for CIFAR-10, NUS-WIDE and SIFT1M

image datasets in Tables 4.17-4.19. In each table the projections resulting from the
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projection functions listed along the first column are quantised into binary hashcodes

by applying the quantisation algorithms detailed along the top row. The results listed

are for a hashcode length of 32 bits, although I find that the higher retrieval effective-

ness of my multi-threshold quantisation model persists for longer and shorter hashcode

lengths. It is immediately obvious that my own multi-threshold quantisation algorithm

significantly (Wilcoxon signed rank test, p < 0.01 or p < 0.05) outperforms the six

baselines quantisation schemes across all five different projection functions and on all

three image datasets. This is a strong result that clearly shows the generality and power

of the proposed multi-threshold quantisation model. The key difference between my

proposed model (NPQ) and the state-of-the-art quantisation models, DBQ and MHQ, is

that the latter rely entirely on the unsupervised signal arising from the low-dimensional

projection function that is used, such as ITQ or LSH. The findings in this section sug-

gest that these projection methods are somewhat limited in their ability to preserve the

neighbourhood information between the data-points in the low-dimensional projected

space. Quantising the resulting projections using an unsupervised one-dimensional

clustering algorithm such as k-means (in the case of MHQ) is therefore sub-optimal.

The quantisation model, and therefore the associated clustering algorithm, needs to

take into account supervised information resulting from the original high-dimensional

feature space.

The boost in retrieval effectiveness is particularly encouraging for ITQ projections,

which is widely considered to be a state-of-the-art data-dependent (unsupervised) pro-

jection function. ITQ quantised with SBQ yields the highest retrieval effectiveness

compared to any of the other considered projection functions quantised with SBQ. Re-

placing SBQ with my own multi-threshold quantisation algorithm (NPQ) and quantis-

ing the resulting projections yields a further increase in retrieval effectiveness for ITQ:

from a 47% relative rise in AUPRC on the CIFAR-10 dataset to a 92% increase for

SIFT1M. I note that the other data-dependent quantisation models (DBQ, MHQ) have

a lower AUPRC when quantising ITQ projections on the CIFAR-10 and NUS-WIDE

datasets compared to SBQ. This suggests that my own multi-threshold quantisation al-

gorithm is the only data-dependent quantisation model that attains consistently better

performance for ITQ across different image datasets. A selection of qualitative results

comparing the top ten ranked retrieval effectiveness of ITQ+NPQ and ITQ+SBQ are

displayed in Tables 4.20-4.23.

The experimental results in Tables 4.17-4.19, combined with the findings of the

previous experiments (Sections 4.3.3.5-4.3.3.7), indicate that optimising the semi-
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Quantisation Model

Projection NPQ SBQ MHQ DBQ HQ EQL RND

LSH 0.1621NN 0.0954 0.0877 0.0850 – 0.0617 0.0357

ITQ 0.3917NN 0.2669 0.2168 0.2205 – 0.1182 0.0708

SH 0.1834NN 0.0626 0.1365 0.0952 – 0.1172 0.0588

PCA 0.1660NN 0.0387 0.1408 0.1084 0.0775 0.0865 0.0471

SKLSH 0.1063NN 0.0513 0.0610 0.0418 – 0.0517 0.0407

Table 4.17: AUPRC on the CIFAR-10 dataset with a hashcode length of 32 bits. The

quantisation algorithms listed on the first row are used to quantise the projections from

the hash functions in the first column. NN/HH indicates a statistically significant in-

crease/decrease (Wilcoxon, p < 0.01) over MHQ or SBQ, whichever baseline has the

highest AUPRC.

Quantisation Model

Projection NPQ SBQ MHQ DBQ HQ EQL RND

LSH 0.4238N 0.3395 0.1551 0.1501 – 0.0491 0.0292

ITQ 0.5130N 0.4842 0.3140 0.3960 – 0.0115 0.0235

SH 0.1965NN 0.0232 0.0708 0.0337 – 0.0380 0.0245

PCA 0.2178NN 0.0477 0.0734 0.0809 0.0491 0.0186 0.0126

SKLSH 0.2650NN 0.0310 0.0515 0.0270 – 0.0356 0.0242

Table 4.18: AUPRC on the NUS-WIDE dataset with a hashcode length of 32 bits.

NN/HH indicates a statistically significant increase/decrease (Wilcoxon, p < 0.01) over

MHQ or SBQ, whichever baseline has the highest AUPRC. N/H indicates a statistically

significant increase/decrease (Wilcoxon, p < 0.05) over MHQ or SBQ.

supervised objective in Equation 4.6 is a superior method of learning the quantisation

thresholds for nearest neighbour search compared to fully unsupervised techniques

such as k-means clustering (MHQ) or spectral graph partitioning (HQ). I therefore con-

firm the final hypothesis of this chapter H4 by showing the generality of my algorithm

to a wide selection of projection functions, both data-independent and data-dependent.

This is in addition to the generality of the algorithm to other codebooks and to differ-

ent quantities of quantisation threshold per projected dimension as was confirmed in

the experiments in Sections 4.3.3.5-4.3.3.7. To the best of my knowledge the multi-

threshold quantisation model introduced in this chapter is the first scalar quantisation
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Quantisation Model

Projection NPQ SBQ MHQ DBQ HQ EQL RND

LSH 0.1339NN 0.0974 0.1076 0.0772 – 0.0449 0.0178

ITQ 0.3190NN 0.1664 0.2699 0.1999 – 0.0881 0.0317

SH 0.3269NN 0.1141 0.2635 0.1413 – 0.2235 0.0709

PCA 0.3332NN 0.1093 0.2540 0.1679 0.0605 0.1217 0.0359

SKLSH 0.1066NN 0.0070 0.0714 0.0200 – 0.0229 0.0148

Table 4.19: AUPRC on the SIFT1M dataset with a hashcode length of 32 bits. NN/HH

indicates a statistically significant increase/decrease (Wilcoxon, p < 0.01), whichever

baseline has the highest AUPRC.

model for nearest neighbour search that leverages a supervisory signal for threshold

placement. Given the impressive gains in retrieval effectiveness I believe there to be

a fruitful research avenue in investigating new fully supervised or semi-supervised

scalar-quantisation models for hashing.

4.4 Conclusions

In this chapter a new quantisation algorithm was introduced for converting real-valued

projections resulting from a low-dimensional projection function into binary hashcodes

for the purpose of nearest neighbour search. The quantisation algorithm extended the

popular and widely used single bit quantisation (SBQ) method in two important direc-

tions: firstly, one or more thresholds were permitted per projected dimension, instead

of the limiting assumption of SBQ in which only a single threshold is allocated; and

secondly, the position of the threshold(s) along each projected dimension were opti-

mised using a semi-supervised criterion rather than assuming a threshold placement

at zero (for mean centered data) was optimal. My semi-supervised objective function

combined two valuable signals in a complementary manner: neighbourhood informa-

tion arising from the input feature space as encoded by a data-point adjacency matrix

and neighbourhood information captured by the low-dimensional projection function

itself in the form of a projected dimension. I argued that the maximisation of this

semi-supervised objective was computationally intractable to achieve in a brute-force

manner due to the large search space of possible thresholds. This motivated the ex-

ploration of two non-deterministic stochastic search methods, evolutionary algorithms



4.4. Conclusions 159

Table 4.20: Left-most column: Cat query image. Top row: ITQ+NPQ top 10 retrieved

images, precision: 0.5. Bottom row: ITQ+SBQ top 10 retrieved images, precision:

0.1. Shaded cells indicate true positives.

Table 4.21: Left-most column: Car query image. Top row: ITQ+NPQ top 10 retrieved

images, precision: 0.7. Bottom row: ITQ+SBQ top 10 retrieved images, precision:

0.5.

Table 4.22: Left-most column: Bird query image. Top row: ITQ+NPQ top 10 retrieved

images, precision: 0.6. Bottom row: ITQ+SBQ top 10 retrieved images, precision:

0.4.

Table 4.23: Left-most column: Horse query image. Top row: ITQ+NPQ top 10

retrieved images, precision: 0.4. Bottom row: ITQ+SBQ top 10 retrieved images,

precision: 0.1.
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and simulated annealing, both tailored for the threshold optimisation task. In my ex-

perimental evaluation relaxing previously ingrained assumptions (single unoptimised

threshold per projected dimension) proved to be critical for improving the quality of

the binary hashcodes and therefore of the retrieval effectiveness resulting from using

those hashcodes for nearest neighbour search. To the best of my knowledge the quan-

tisation model introduced in this chapter is the first scalar quantisation algorithm for

hashing-based ANN search that introduces a scheme for semi-supervised threshold

placement.

The main experimental findings in this chapter were nine-fold and are summarised

hereunder:

• The literature standard method of splitting a dataset (Chapter 3, Section 3.5) into

training/testing/validation splits led to a near identical retrieval effectiveness to

the improved dataset splitting strategy for all considered baselines and datasets.

The results supporting this claim can be found in Section 4.3.3.5 and Tables

4.8-4.9.

• Optimising the position of one or more thresholds per projected dimension al-

ways yields a higher retrieval effectiveness than the equivalent number of stati-

cally placed threshold(s). This claim is validated by Tables 4.8-4.19 in Sections

4.3.3.5-4.3.3.8.

• Quantising LSH projections with a single optimised threshold per projected di-

mension generally gives a higher retrieval effectiveness than using two or more

thresholds. Quantitative results relating to this claim can by found in Sections

4.3.3.5-4.3.3.6 and Tables 4.8-4.11.

• PCA projections always give a higher retrieval effectiveness when multiple (two

or more) thresholds are allocated per projected dimension compared to a single

threshold. Supporting results can be found in Section 4.3.3.6 and Table 4.12.

• For those projections, such as PCA, that benefit from multiple thresholds I found

the Manhattan Hashing Quantisation (MHQ) codebook (natural binary code) and

Manhattan distance ranking strategy for hashcode comparison to be more effec-

tive than the Double Bit Quantisation (DBQ) codebook and the vanilla binary

(0/1) codebook with Hamming distance. Supporting results can be found in Sec-

tion 4.3.3.8 and Tables 4.17-4.19.
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• My multiple threshold quantisation algorithm that positions thresholds by op-

timising the semi-supervised objective of Equation 4.6 always yields the high-

est retrieval effectiveness (as measured by area-under-the-precision-recall curve)

out of all considered baseline quantisation algorithms and for a wide selection

of popular data-dependent projection functions. Leveraging a supervisory signal

for threshold placement is critical for maximising retrieval effectiveness. Sup-

porting results can be found in Section 4.3.3.8 and Tables 4.17-4.19.

• Iterative Quantisation (ITQ) significantly outperformed the competing data-depen

dent (unsupervised) projection functions of Spectral Hashing (SH) and Principal

Components Analysis Hashing (PCAH) for all three datasets and across all con-

sidered hashcode lengths. Supporting results can be found in Section 4.3.3.8 and

Tables 4.17-4.19.

• The training time of my multi-threshold quantisation algorithm is an order of

magnitude faster than the HQ algorithm of Liu et al. (2011) and commensurate

with the k-means based MHQ algorithm of Kong et al. (2012). NPQ is therefore

significantly more effective than the state-of-the-art quantisation model (MHQ),

while maintaining a training time that is also indistinguishable from MHQ. This

claim is validated by the results in Section 4.3.3.4 and Table 4.6.

• Evolutionary algorithms provide a more effective method of stochastic search

for threshold optimisation than simulated annealing when learning more than a

single threshold per projected dimension (T > 1). This result is demonstrated in

Section 4.3.3.3.

For the Computer Vision practitioner who is perhaps most interested in maximis-

ing image retrieval effectiveness in his or her end-application, this chapter could be

summarised with the recommendation to use the Iterative Quantisation (ITQ) projec-

tion function (Gong and Lazebnik (2011)) coupled with the proposed multi-threshold

quantisation model (NPQ) with a setting of T = 3 thresholds per projected dimension

(Moran et al. (2013a)). This configuration substantially outperformed the other pro-

jection function/quantisation model combinations I considered in my experiments. I

further note that my quantisation algorithm is not limited to improving the accuracy of

nearest neighbour search. As touched upon briefly in Chapter 2, Section 2.5.5 NPQ

could be used, for example, in discretising attributes for use in general machine learn-

ing models such as Naı̈ve Bayes. This particular investigation, however, is left for
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future research.

Despite the substantial gains in retrieval effectiveness observed across the board I

did notice some potential limitations of the introduced quantisation algorithm that mo-

tivates further research. A particularly limiting assumption was that the same allocation

of thresholds should be assigned to all projected dimensions for the same projection

function, and furthermore that this threshold quantity (denoted by T ) should be deter-

mined a-priori by the user. In my experimental evaluation I found that different pro-

jection functions preferred different allocations of thresholds: from a single threshold

per projected dimension for LSH to multiple (2+) thresholds per projected dimension

for PCA projections. This finding motivates further exploration in Chapter 5 of novel

data-driven schemes for automatically discovering the optimal number of thresholds

for each projected dimension for a particular projection function, rather than assum-

ing (as I did in this chapter) that the allocation should be uniform and identical for all

projected dimensions.



Chapter 5

Learning Variable Quantisation

Thresholds

The research presented in this Chapter has been previously published in Moran et al.

(2013b).

5.1 Introduction

In Chapter 4, I introduced a new multi-threshold quantisation algorithm for hashing-

based approximate nearest neighbour (ANN) search. This semi-supervised quanti-

sation model optimised the position of one or more thresholds along each projected

dimension by fusing affinity information on data-point pairs arising from both the high

dimensional input feature space and the lower-dimensional projected feature space.

The intuitive objective of the algorithm was to position the quantisation thresholds so

that the projections for related data-points end up in the same thresholded regions and

the projections of dissimilar data-points fall within different regions. Each thresholded

region was associated with a unique bitcode from a single or multi-bit binary code-

book. To quantise the projection of a data-point I compared the projected value to the

quantisation thresholds to pinpoint the appropriate thresholded region and assigned the

corresponding bitcode of that region to the data-point. By repeating this procedure for

the remaining projected dimensions I was able to build up a K-bit binary hashcode for

each of the data-points. The experimental analysis demonstrated that a significant in-

crease in retrieval effectiveness could be achieved from both optimising the positioning

of the thresholds to preserve as many must-link and cannot-link relationships between

the data-points as possible, and additionally for certain projection functions (such as

163



164 Chapter 5. Learning Variable Quantisation Thresholds

PCA), allocating more than a single threshold per projected dimension. The exper-

imental results also suggested that the optimal threshold allocation (T ∈ Z+) varied

according to the specific hash function responsible for generating the low-dimensional

projections. For example, LSH was generally shown to prefer a single threshold al-

location (T = 1) to each projected dimension whereas PCA projections benefited sig-

nificantly from a multiple-threshold allocation in which, for example, three thresholds

(T = 3) were allocated to each dimension.

In the previous chapter the quantity of thresholds T allocated per projected di-

mension was decided a-priori and remained the same for all K projected dimensions

arising from a specific projection function. In this chapter I expand upon the find-

ing that the threshold allocation is projection function specific by relaxing assumption

A2 outlined in Chapter 1. To this end I argue that the allocation of thresholds should

vary per projected dimension, rather than being kept uniform across projected dimen-

sions. I further contend that the optimal variable allocation can effectively be found by

computing a measure of the neighbourhood preserving quality of each projection and

assigning more thresholds to those projected dimensions that better conserve the pair-

wise relationship between data-points in the low-dimensional projected space. In other

words I argue that retrieval effectiveness can be further increased by learning a vari-

able allocation of thresholds Tk ∈ Z+ for each projected dimension yk ∈ RN where the

allocation is informed by the quality of the projection. In this chapter I keep with the

general theme of this thesis and advocate a data-driven approach to learning a variable

threshold allocation subject to a specified threshold budget. To the best of my knowl-

edge the research described in this chapter was the first to introduce and formulate the

variable quantisation threshold learning problem in the context of hashing-based ANN

search (Moran et al. (2013b)).

The remainder of this chapter is structured as follows: in Section 5.2 I introduce

two data-driven algorithms that learn a variable allocation of quantisation thresholds

across projected dimensions for a specific projection function. In Section 5.3 I evaluate

the two variable threshold quantisation models on their ability to generate effective

binary hashcodes for image retrieval. Finally, in Section 5.4 I summarise the main

contributions of this chapter and present conclusions arising from the experimental

evaluation.
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5.2 Variable Quantisation Threshold Allocation

5.2.1 Problem Definition

The problem definition in this chapter is broadly similar to the definition given in

the previous chapter (Chapter 4, Section 4.2.1) but with the additional requirement to

learn an appropriate number of thresholds for each projected dimension. Concretely

the objective in this chapter is to learn a set of thresholds tk = [tk1, tk2, . . . , tkTk ] where

tki ∈ R and tk1 < tk2 . . . < tkTk for each of the K projected dimensions
{

yk ∈ RN}K
k=1

while also finding the optimal allocation of thresholds {Tk ∈ Z+}K
k=1 to each of the

K projected dimensions, subject to a total threshold budget ∑
K
k=1 log2(Tk + 1) = K

and Tk ∈ {0,1,3,7,15}. A threshold budget, or equivalently a bit budget, is required

because we wish to extract the maximum retrieval effectiveness from as short a hash-

code as possible. Short hashcodes (< 128 bits) are particularly useful because they

save both time and memory when retrieving nearest neighbours, as compared to much

longer hashcodes (� 128 bits) or the original high-dimensional feature vectors. In a

similar manner to Chapter 4 the quality of the resulting quantisation will be judged

by applying the computed hashcodes to the task of query-by-example image retrieval.

This threshold allocation problem is computationally difficult given the upper bound

of T K
max possible allocations of thresholds, where Tmax ∈ Z+ is the maximum number

of thesholds that can be allocated to any given projected dimension. This space of

threshold allocations is impossible to search exhaustively therefore necessitating the

introduction of more efficient search algorithms to solve the variable threshold alloca-

tion problem. It is the specification and evaluation of these algorithms which forms the

focus of Section 5.2.2.

5.2.2 Algorithms for Variable Threshold Allocation

In this section I introduce two novel algorithms for learning an allocation of thresh-

olds for each projected dimension based on a numerical measure of the quality of a

projected dimension. In Section 5.2.2.1, I describe how this novel quality measure is

based on counting the number of pairwise constraints between data-points that are con-

served in a projected dimension thresholded with Tk thresholds. This quality measure

is the Fβ-measure computed on the data-point adjacency matrix S ∈ {0,1}Ntrd×Ntrd and

constitutes a minor adaptation of my multi-threshold quantisation objective function

first introduced in Chapter 4. Having defined and motivated this measure of projected
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dimension quality I then introduce two algorithms, dubbed Variable Bit Quantisation

(VBQ), for efficiently solving the combinatorial search problem of finding the opti-

mal threshold allocation across projected dimensions. The first algorithm I propose

is framed as a Binary Integer Linear Program (BILP) (Section 5.2.2.3) that seeks to

allocate thresholds in such a way so as to maximise the cumulative Fβ-measure across

all projected dimensions subject to an upper bound on the total permissible number

of thresholds that can be allocated. The BILP is solved using standard branch-and-

bound search. My alternative threshold allocation algorithm is a greedy approach that

reallocates quantisation thresholds (Section 5.2.2.4) from lower quality (i.e. low Fβ-

measure) projected dimensions to projected dimensions that are deemed to be of a

higher quality (i.e. higher Fβ-measure). This greedy algorithm has a similar effect to

the branch-and-bound solution in seeking a threshold allocation which maximises the

cumulative Fβ-measure. I compare the effectiveness and efficiency of both threshold

allocation algorithms in my experimental evaluation in Section 5.3.

5.2.2.1 Judging Projection Quality: Fβ-Measure Scoring Function

In this section I argue that counting the number of true nearest neighbours that fall

within the same thresholded regions (true positives, TPs), the number of non-nearest

neighbours that fall within the same regions (false positives, FPs) and the number of

true nearest neighbours that fall within different thresholded regions (false negatives,

FNs) is an effective measure of projected dimension quality1. In a similar manner to

the multi-threshold quantisation algorithm introduced in Chapter 4, the TPs, FPs and

FNs are derived from data-point adjacency graph S ∈ {0,1}Ntrd×Ntrd , with Si j = 1 if

data-points xi,x j are true nearest neighbours, and Si j = 0 otherwise. By quality I refer

to the locality preserving ability of a projected dimension which is simply the ability to

faithfully preserve the neighbourhood relationship between the data-points. For exam-

ple, if two data-points are close by in the original feature space then their projections

should ideally remain within close proximity along the projected dimension, and vice-

versa for more distant data-points. If the projections of nearest neighbours are close

by then they are more likely to fall within the same thresholded region of the projected

dimension and therefore receive the same bit(s). I contend that this hypothetical pro-

jected dimension should be deemed to be of high quality as the bits generated from

1An unsupervised measure such as variance would also be a possible candidate for measuring the
quality of a projected dimension. My threshold allocation algorithms presented in Sections 5.2.2.3-
5.2.2.4 could also conceivably be used with variance as the allocation signal. I leave investigation of
variance to future work.
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the dimension are likely to be similar for many nearest neighbours and dissimilar for

non-nearest neighbours, exactly the criteria for building effective hashcodes for image

retrieval.

I propose in this section to combine the TPs, FPs and FN counts using the well-

known Fβ-measure metric from the field of Information Retrieval (IR). I previously

touched on the Fβ-measure in Chapter 3, Section 3.6.1 in the context of evaluating

unranked sets of retrieved images. The Fβ-measure is the weighted harmonic mean of

recall (R) and precision (P) (Rijsbergen (1979)) which I present again in Equation 5.1

for reading convenience

Fβ =
(1+β2)PR

β2P+R

=
(1+β2)T P

(1+β2)T P+β2FN +FP

(5.1)

The parameter β∈R+ specifies the contribution from the precision and recall. Set-

ting β < 1 in Equation 5.1 weights precision higher than recall, and vice-versa for for a

setting of β > 1. I find in my experimental evaluation in Section 5.3 that it is important

to correctly set β when computing a threshold allocation from the Fβ-measure scores.

The TPs, FPs and FNs for Equation 5.1 are computed in an identical fashion to Chap-

ter 4. To recapitulate, I first build an indicator matrix Pk ∈ {0,1}Ntrd×Ntrd for projected

dimension yk ∈ RN that specifies the data-point pairs (xi,x j) that fall within the same

thresholded regions of the projected dimension yk ∈ RN (Equation 5.2).

Pk
i j =

1, if ∃γ s.t. tkγ ≤ (yk
i ,y

k
j)< tk(γ+1)

0, otherwise.
(5.2)

Recall that [tk1 . . . tkT ] denotes the T thresholds partitioning the kth projected dimension.

The true positives (TP), false negatives (FN) and false positives (FP) are computed

using Equations 5.3-5.5.

T P =
1
2 ∑

i j
Pi jSi j =

1
2
‖P◦S‖1 (5.3)

FN =
1
2 ∑

i j
Si j−T P =

1
2
‖S‖1−T P (5.4)
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FP =
1
2 ∑

i j
Pi j−T P =

1
2
‖P‖1−T P (5.5)

With these definitions the Fβ-measure for a particular thresholding of an arbitrary

projected dimension yk can be specified in matricial form as given in Equation 5.6

Fβ(tk) =
(1+β2)‖P◦S‖1

β2‖S‖1 +‖P‖1
(5.6)

In Chapter 4, Section 4.3.3.2 I found that it is optimal to set the interpolation param-

eter between the supervised (Fβ-measure) and unsupervised terms to α = 1, for hash-

code lengths up to 128 bits, when using the Manhattan hashing quantisation codebook.

In this chapter I therefore do not interpolate the Fβ-measure with an unsupervised term

as I did in Equation 4.6 in Chapter 4. Investigating the benefit, or otherwise, of inter-

polation with an unsupervised signal in the context of variable threshold allocation is

left to future work.

In this chapter my objective is to find both, the optimal number of thresholds to

allocate to each projected dimension, and the optimal placement of those thresholds.

The possible quantity of thresholds for each dimension Tk is constrained by the Man-

hattan quantisation codebook to be within the finite set Tk ∈ [0,1,3,7,15]. I argue that

projected dimensions with a higher locality preserving quality should be given a larger

allocation of the available thresholds so that the neighbourhood structure captured by

that dimension can be maximally exploited. To grade the quality of a threshold allo-

cation I find the optimal position of the thresholds by maximising Equation 5.6 using

evolutionary algorithms (EA). The resulting Fβ-measure, relating to the optimal posi-

tion of the Tk thresholds as found by the EA, is then used as the indicator of projected

dimension quality. Importantly once the optimal threshold positions are computed they

do not have to be re-optimised in order to perform the threshold allocation. This offline

training procedure will yield five Fβ-measure scores per projected dimension, one for

each threshold quantity Tk ∈ [0,1,3,7,15].

The Fβ-measure scores are then used by my variable threshold allocation algorithm

to compute the threshold allocation that yields the highest cumulative Fβ-measure sub-

ject to a fixed threshold allocation budget. In doing my contention is that the Fβ-

measure varies widely for each possible threshold quantity Tk ∈ [0,1,3,7,15] and that

there is a unique quantity of thresholds that provides an overall greatest Fβ-measure
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for a given projected dimension. In addition I argue that the value of the maximum

Fβ-measure is higher for projected dimensions that are more effective at preserving the

pairwise constraints between data-points in the adjacency matrix S. If this hypothesis

is correct then the optimised Fβ-measure will most likely provide an effective signal

for threshold allocation in a way that assigns a greater proportion of the thresholds to

those projected dimensions that respect the locality structure encoded in the adjacency

graph S.

Figure 5.1 provides a further intuition as to why assigning a projected dimension a

threshold quantity Tk that maximises Equation 5.6 might be expected to lead to an ef-

fective multi-threshold quantisation. In this toy example I show a two-dimensional

(2D) input feature space in which data-points are represented by coloured shapes.

Those data-points with the same shape and colour are nearest neighbours in the 2D

plane. Two hyperplanes h1 ∈ R2,h2 ∈ R2 are shown partitioning the space into four

regions. The hyperplanes h1 ∈R2,h2 ∈R2 have normal vectors w1 ∈R2,w2 ∈R2, re-

spectively. On the bottom diagram in Figure 5.1, I show the resulting projected dimen-

sions y1 ∈ R2,y2 ∈ R2 obtained by projecting the data-points onto the normal vectors.

The value of Equation 5.6 for projected dimension y2 with β = 1 is at the maximum

value (F1 = 1). Observing the quantised regions we see that all nearest neighbours are

located beside each other and are not partitioned by any threshold. This can be deemed

a perfect quantisation of the projected dimension because all nearest neighbours will be

assigned the same hashcode. This fact is highlighted by the high value of Equation 5.6.

Furthermore we observe that three thresholds is the minimal quantity of thresholds in

this contrived example that will lead to a perfect quantisation, with either more (T > 3)

or less thresholds (T < 3) receiving a lower Fβ-measure score. The opposite is the case

for projected dimension y1. Given the high mixing of the data-points no thresholds do

just as well in this situation as one or more thresholds. The inability of this hyperplane

to clump together related data-points along the projected dimension is highlighted by

a low Fβ-measure. In this case the corresponding hyperplane (h1) should ideally be

pruned and the allocation of thresholds distributed to the more effective hyperplane

(h2).

5.2.2.2 A Link to the Laplacian Score

My application of the Fβ-measure to allocate thresholds to projected dimensions is in

some senses acting as a filter-based feature selection score that has been constructed

specifically for hashing-based ANN search in which multiple thresholds are used for
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Figure 5.1: Intuition behind the application of the Fβ-measure as a means of grading

the quality of a quantisation resulting from an assignment of a given number of thresh-

olds. I set β = 1 for the purposes of this example. The top diagram illustrates a 2D

plane in which data-points (indicated by the coloured shapes) are embedded. The dia-

gram below illustrates the projection of the data-points onto the normal vectors w1,w2.

Projected dimension y2 can be perfectly quantised with 3 thresholds. In the case of

data-points a,b both end up within the same region. This is not the case for projected

dimension y1 which is much more difficult to quantise due to related data-points ending

up much farther away from each other along the dimension. The reader is guided to

Section 5.2.2.1 for a further and fuller description.

quantisation. By viewing my algorithm under the lens of feature selection I can draw

an interesting parallel to the Laplacian score (He et al. (2005)), a popular supervised

feature selection score which originated in the field of Machine Learning. The Lapla-

cian score is a filter-based feature selection metric which can be applied independent of

a classifier, the latter bond being a requirement of wrapper-based algorithms. Briefly
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Laplacian Score is reminiscent of the Laplacian Eigenmap which I discussed in detail

in Chapter 2, Section 2.6.4.4 in the context of the Self Taught Hashing (STH) model.

The Laplacian Eigenmap seeks a low dimensional projection of a set of data-points in

a way that preserves the pairwise relationships between those data-points as encoded

in the adjacency graph S. Data-points that are neighbours according to the adjacency

graph (Si j = 1) should end up close together when projected into the low-dimensional

space. Laplacian Score further develops this key idea into a feature selection metric

that assigns lower (lower is better) scores to features that are related (Si j = 1) and which

are also closer together along the projected dimension, that is the distance (yk
i − yk

j)
2

between the projections of data-points xi,x j is low (Equation 5.7)

Lk = ∑
i j

(yk
i − yk

j)
2Si j

var(yk)
(5.7)

where Lk is the Laplacian score of the kth dimension and var(yk) computes the vari-

ance of the dimension yk ∈ RN , that is var(yk) = 1/Ntrd ∑
Ntrd
i=1 (y

k
i −µ)2, and µ denotes

the mean of the projected dimension. The Laplacian score is minimised for features

that respect the graph structure, while also having a large variance and therefore pre-

sumably high representational power. In a different manner to the Laplacian Score,

my application of the Fβ-measure explicitly takes into account how many true pairs

end up within the same thresholded regions but does not account for the closeness of

their corresponding projections.

5.2.2.3 Threshold Allocation via Branch-and-Bound

Having defined the metric I use to grade the quality of a projected dimension in Sec-

tion 5.2.2.1 I will now introduce my first algorithm that leverages the resulting quality

scores to learn an effective distribution of thresholds across K projected dimensions.

As I argued in Section 5.2.2.1 the Fβ-measure scores per hyperplane (hk), per threshold

count (Tk ∈ [0,1,3,7,15]) are an effective signal for threshold allocation as more infor-

mative hyperplanes tend to have higher Fβ-measures for a higher number of thresholds.

I hypothesise that seeking the threshold allocation that maximises the total Fβ-measure

as accumulated across all K projected dimensions, subject to a threshold budget, is

a suitable objective for optimisation. Unfortunately this combinatorial optimisation

problem is NP-hard which can be immediately deduced with analogy to the binary

knapsack problem, a classic problem in combinatorial optimisation (Dantzig (1957)).

The binary knapsack problem involves selecting a number of items to place into a
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knapsack that maximises the total value of the items while adhering to a limit on the

total weight. An item can only be chosen for inclusion once, hence the binary nature

of the problem (0 is exclude from knapsack, 1 is include in knapsack). The inherent

difficulty of this problem stems from this integrality constraint. This is exactly my

threshold allocation problem in which an “item” is one or more thresholds for a di-

mension, the “weight” is the threshold quantity for that dimension and the value is the

Fβ-measure for that number of thresholds when positioned optimally along the pro-

jected dimension. By drawing a parallel to the task in this way I can benefit from the

rich literature that has already been established on approximately solving the binary

knapsack problem (Martello and Toth (1990)). My first solution has indeed been in-

spired in this manner and involves framing the learning objective as a binary integer

linear program (BILP).

To construct a BILP appropriate for my purposes I firstly collate the Fβ-measure

scores per hyperplane, per threshold count in a matrix F ∈ R(Bmax+1)×K with elements

Fbk which represent the accuracy that results from allocating 2b− 1 thresholds to di-

mension k. In this case b ∈ {0, . . . ,Bmax} indexes the rows, with Bmax being the maxi-

mum number of bits allowable for any given hyperplane, and k ∈ {1 . . . ,K} indexes the

columns of the Fβ-measure matrix. Note the equivalence between thresholds and bits:

if we have Tk thresholds for a particular projected dimension this equates to an alloca-

tion of Bk = log2(T +1) bits for that dimension. The BILP uses F to find the threshold

allocation that maximises the cumulative Fβ-measure across the K hyperplanes (Equa-

tion 5.8)

max ‖F◦Z‖

subject to ‖Zc‖= 1 c ∈ {1 . . .K}

‖Z◦D‖ ≤ K

Z is binary

(5.8)

where ‖.‖ denotes the Frobenius L1 norm, ◦ the Hadamard (elementwise) product and

D ∈ Z(Bmax+1)×K
+ is a constraint matrix, with Dbh = b− 1, ensuring that the threshold

allocation remains within the bit budget B. I now give an intuitive overview of each

term in Equation 5.8:

• ‖F◦Z‖: This term computes the cumulative Fβ-measure score for bit allocation

specified by Z
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• ‖Zc‖ = 1: This constraint ensures that a specific number of bits selected from

the set b ∈ [0,1,2,3,4] is allocated to each hyperplane, with Bmax = 4. This

constraint also ensures that more than one value from this set cannot be allocated

to any single hyperplane.

• ‖Z◦D‖: This constraint enforces the bit allocation Z to be less than or equal to

the available bit budget K.

The BILP is solved using the off-the-shelf branch and bound optimisation al-

gorithm (Land and Doig (1960))2. The branch and bound algorithm is a common

workhorse for solving integer programming problems. Branch and bound enumerates

the entire space of candidate solutions but maintains tractability by discarding large

portions of the search space based on estimated lower and upper bounds on the quan-

tity being optimised. Describing the specifics of this solver is beyond the scope of this

thesis, however the reader is pointed to Brassard and Bratley (1996) for an introductory

overview. The output from the branch and bound BILP solver is an indicator matrix

Z ∈ {0,1}(Bmax+1)×K whose columns specify the optimal threshold allocation for a

given hyperplane, that is, Zbk = 1 if the BILP decided to allocate b bits (equivalently

2b− 1 thresholds) for the kth hyperplane, and zero otherwise. I compute the quality

score of a zero bit allocation by computing the Fβ-measure on a projected dimension

with an allocation of zero thresholds. Example input and output from the branch and

bound algorithm for the toy problem in Figure 5.1 are given in matrices F,D,Z below

(in this example, Bmax = 2 and K = 2). The indicator matrix Z is output by the branch

and bound solver as the best feasible solution found subject to the problem constraints.


F k1 k2

b0 0.25 0.25

b1 0.35 0.50

b2 0.40 1.00




D

0 0

1 1

2 2




Z

1 0

0 0

0 1


Notice how the indicator matrix Z specifies an assignment of 0 bits (0 thresholds)

for hyperplane h1 and 2 bits (3 thresholds) for hyperplane h2 as this yields the highest

cumulative F1-measure (1.25) across the K projected dimensions while also meeting

the required threshold budget. This result accords with our intuition in how the thresh-

olds should be allocated in the toy example of Figure 5.1. The BILP as framed in

2Specifically I use the bintprog Matlab solver with default parameters.
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Equation 5.8 is therefore a principled method for both selecting a discriminative sub-

set and allocating an appropriate quantity of thresholds to those hyperplanes subject

to a fixed overall threshold budget. The computational time complexity of solving the

BILP using branch and bound has exponential (O(2(Bmax+1)K) time complexity in the

worst-case (Lawler and Wood (1966)), although in practice the tree search is actually

very efficient. In general I find that the branch and bound cost is negligible in com-

parison to the dominant training time cost of computing the (Bmax + 1)K Fβ-measure

scores in the matrix F which is O(TmaxN2
trdF +KN2

trd), with Ntrd denoting the num-

ber of training data-points, F the number of objective function evaluations (Equation

5.6) and Tmax = K ∑
Bmax
b=1 2b−1. I will now introduce an alternative bit allocation algo-

rithm that improves upon the computational time complexity of the branch-and-bound

solution by eliminating the dependence on Bmax.

5.2.2.4 Greedy Threshold Allocation Algorithm

The branch-and-bound solution presented in Section 5.2.2.3 is dominated by the com-

putation of the (Bmax + 1)K Fβ-measure scores taking O(TmaxN2
trdF + KN2

trd) time.

In my second contribution of this chapter I introduce a novel greedy algorithm for

threshold allocation that reduces this computational time complexity to O(TgdyN2
trdF +

KN2
trd), where Tgdy� Tmax and is independent of Bmax. This algorithm performs the

same task as the BILP but is greedy and hence it is expected to be faster and simpler.

This algorithm is based on a simple and intuitive idea, namely the redistribution of

thresholds at each iteration from lower quality (low Fβ-measure scores) hyperplanes

to higher quality (higher Fβ-measure scores) hyperplanes while adhering to the spec-

ified threshold budget. I use a new notation in this section to indicate the number of

bits assigned per projected dimension. Rather than use an indicator matrix Z as in

Section 5.2.2.3, I unroll Z as a vector of bit counts z ∈ ZK
+, which will make the ex-

position of the algorithm somewhat easier. For example zh = 3 if we have allocated

3 bits (23− 1 = 7 thresholds) to the hth hyperplane. I initialise zh = 1,∀h so at the

start of the algorithm we have allocated one threshold per hyperplane. The matrix of

Fβ-measures F ∈ R(Bmax+1)×K is computed in the same manner as for the binary inte-

ger linear program (BILP) based solution outlined in Section 5.2.2.3. To recapitulate,

to compute Fbh I position 2b−1 thresholds along the hth projected dimension to max-

imise Equation 5.6. The quantisation threshold positioning is found using evolutionary

algorithms as outlined in Chapter 4, Section 4.2.3.2. Element Fbh of matrix F is then

set to the maximum Fβ-measure arising from the optimal threshold configuration dis-



5.2. Variable Quantisation Threshold Allocation 175

covered by the stochastic search. Crucially, however, I do not compute all (Bmax+1)K

Fβ-measure scores at once as for the branch-and-bound solution. Rather the greedy

algorithm permits a more efficient on-demand computation of the Fβ-measure scores.

I initialise the F matrix by computing the Fβ-measure score for B = 0,1,2 bits, re-

quiring O(3K) computations. Having initialised F, I learn the optimal bit allocation z
through threshold redistribution. In the first iteration this procedure involves finding a

projected dimension that would “most benefit” (largest delta in Fβ-measure) from hav-

ing its bit allocation increased by one unit and the projected dimension that would “suf-

fer least” (smallest delta in Fβ-measure) from having a bit subtracted from its bit alloca-

tion. To determine the projected dimension that should have a bit added to its allocation

I simply search for the projected dimension hmax where hmax = argmaxh(F2,h−F1,h).

Intuitively the projected dimension that has the greatest increase in Fβ-measure be-

tween its Fβ-measure for its current allocation of 1 bit and its Fβ-measure for a poten-

tial allocation of 2 bits, should be assigned that additional 1 bit. Having allocated an

additional bit to projected dimension hmax we have now allocated K+1 bits, 1 bit over

the maximum bit quota of K. To respect the quota I remove a bit from the hyperplane

which has the lowest difference between its Fβ-measure at a bit allocation of 1 and its

Fβ-measure for a bit allocation of 0 bits.

More formally we wish to find hyperplane hmin where hmin = argminh(F1,h−F0,h).

In allocating 0 bits to hmin we have effectively discarded that hyperplane and eliminated

it from further consideration. Note that once a hyperplane has 0 bits or Bmax bits as-

signed the count for that hyperplane forever remains fixed at those values. By adding a

bit to the hyperplane that contributes the greatest increase in Fβ-measure while remov-

ing a bit from the hyperplane that loses the least Fβ-measure I greedily approximate a

maximisation of the cumulative Fβ-measure across all K hyperplanes. The algorithm

proceeds in this manner until we reach a point where the maximum increase in Fβ-

measure is lower than the minimum decrease in Fβ-measure, which indicates that there

is no more benefit from redistributing thresholds amongst the K projected dimensions.

On each of these subsequent steps post initialisation of the F matrix, the computa-

tionally expensive operation of computing the Fβ-measure needs only to be computed

once per step namely for that hyperplane that was recently promoted to have the max-

imum current number of bits. A pseudocode version of the algorithm is presented in

Algorithm 8.

This greedy threshold allocation algorithm has a training time complexity charac-

terised by O(TgdyN2
trdF +KN2

trd) and a threshold allocation time complexity of O(1),
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Algorithm 8: GREEDY THRESHOLD ALLOCATION ALGORITHM

Input: Projected dimensions
{

yk ∈ RN}K
k=1, the maximum number of bits per

dimension Bmax ∈ [1,2,3,4], Fβ-measure scores F ∈ R(Bmax+1)×K

Output: Optimal allocation of thresholds to projected dimensions z ∈ ZK
+

1 Set Fmax
β

= ∞, Fmin
β

= 0

2 Set z = 1K // Initalise bit counts to 1

3 while Fmax
β

> Fmin
β

do

4 hmin = argminh(Fzhh−Fzh−1h)

5 Fmin
β

= Fzhminhmin
−Fzhmin−1hmin

6 hmax = argmaxh(Fzh+1h−Fzhh)

7 Fmax
β

= Fzhmax+1hmax−Fzhmax hmax

8 if Fmax
β

> Fmin
β

then

9 zhmax = zhmax +1 // Increment bit count for hyperplane hmax

10 if zhmax = Bmax then
11 F•hmax = NaN // hmax cannot be chosen again

12 end
13 zhmin = zhmin−1 // Decrement bit count for hyperplane hmin

14 if zhmin = 0 then
15 F•hmin = NaN // hmin cannot be chosen again

16 end

17 end

18 end
19 return z

where Tgdy� Tmax and Tmax = K ∑
Bmax
b=1 2b− 1. The training time complexity is inde-

pendent of Bmax, and so the greedy threshold learning algorithm is expected to be faster

at learning than the branch-and-bound solution presented in Section 5.2.2.3. The rea-

soning for this is as follows: prior to the execution of the algorithm only the first three

rows of matrix F ∈ R(Bmax+1)×K need be initialised, relating to a bit allocation of 0, 1

and 2 bits for each of the K available hyperplanes. The total number of Fβ-measure

computations for this particular initialisation is of O(3K). I contend that only O(K)

additional Fβ-measure computations are then required for the learning step. The reason

for this is that VBQbound needs only to compute the Fβ-measure once per subsequent

iteration. This Fβ-measure is computed for the hyperplane that was most recently (i.e.
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at the previous iteration) promoted to have two or more bits, as this will be the only

hyperplane for which the Fβ-measure is unknown for an additional (+1) bit over its

current allocation. Furthermore, the algorithm needs only to perform this computation

less than K times as there are only K available bits. The greedy algorithm therefore

needs only O(K) Fβ-measure computations, independent of the Bmax term, and we can

therefore expect a lower learning time compared to the branch-and-bound algorithm

introduced in Section 5.2.2.3. Having just scored the hyperplanes for differing thresh-

old quantities in the learning step, the threshold allocation step is straightforward as

we simply use the allocation specified at the end of the final iteration. The threshold

allocation time complexity of this algorithm is therefore O(1). A comparison between

the learning and allocation runtimes of my proposed greedy and branch-and-bound

algorithms are presented in Section 5.3.3.4.

5.3 Experimental Evaluation

5.3.1 Experimental Configuration

In this section I will experimentally test my two variable threshold quantisation algo-

rithms introduced in Section 5.2. The experimental setup will be almost identical to the

literature standard configuration used to evaluate my multi-threshold quantisation algo-

rithm in Chapter 4, Section 4.2 (Kong et al. (2012); Kong and Li (2012a,b); Kulis and

Darrell (2009); Raginsky and Lazebnik (2009); Gong and Lazebnik (2011)). Specifi-

cally my task will be query-by-example image retrieval with the experimental param-

eters shown in Table 5.1. As a baseline I will compare against my multi-threshold

quantisation model (NPQ) introduced in Chapter 4. The NPQ model was shown to

significantly outperform competing scalar quantisation models in the literature (MHQ,

DBQ, SBQ) that assign a uniform quantity of thresholds across projected dimensions.

I structure the experiments in this chapter to answer the following two main hy-

potheses:

• H1: Allocating a variable number of thresholds can yield a higher retrieval ef-

fectiveness than a uniform allocation of thresholds (NPQ).

• H2: Branch-and-bound (V BQbound) finds a threshold allocation that leads to a

significantly higher retrieval effectiveness than the greedy threshold allocation

algorithm (VBQgreedy).
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Parameter Setting Chapter Reference

Groundtruth Definition ε-NN Chapter 3, Section 3.3

Evaluation Metric AUPRC Chapter 3, Section 3.6.3

Evaluation Paradigm Hamming Ranking Chapter 3, Section 3.4

Random Partitions 10 Chapter 3, Section 3.5

Number of Bits (K) 16-128 Chapter 2, Section 2.4

Table 5.1: Configuration of the main experimental parameters for the results presented

in this chapter.

Method # Thresholds/dim Encoding Ranking Strategy

VBQ Variable NBC Manhattan distance

NPQ 3 NBC Manhattan distance

Table 5.2: Parametrisation of the quantisation models studied in this chapter.

Hypothesis H1 will examine whether a variable threshold allocation can yield a

higher retrieval effectiveness than a uniform assignment. Hypothesis H2 will confirm

whether the sub-optimal search strategy of the greedy approach results in an inferior

threshold allocation compared to branch-and-bound.

In order to abstract from the effect of the codebook and the hashcode ranking strat-

egy I parametrise all quantisation models in this chapter to use the Manhattan Hashing

Quantisation (MHQ) codebook with the Manhattan distance as the hashcode ranking

strategy (Table 5.2)3. Furthermore to ensure easy replication of my results by inter-

ested researchers the experiments in this chapter will be carried out on the standard

LabelMe, CIFAR-10 and NUS-WIDE image collections as described in Chapter 3,

Section 3.2.1. In a similar manner to my evaluation in Chapter 4, I follow previously

accepted procedure in the literature (Kong et al. (2012), Kong and Li (2012a)) and

randomly select Nteq = 1,000 data points as testing queries (Xteq ∈ RNteq×D), with the

remaining points (Xdb ∈ RNdb×D) being used as the database upon which to learn and

test the hash functions according to either the literature standard or improved dataset

splitting strategy. A further breakdown on the specific dataset splits I use in this chapter

are shown in Tables 5.3-5.4.
3The reader is guided to Chapter 2, Section 2.5.4 for an overview of this codebook and hashcode

ranking strategy.
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Partition LABELME CIFAR-10 NUS-WIDE

Test queries (Nteq) 1,000 1,000 1,000

Validation queries (Nvaq) 1,000 1,000 1,000

Validation database (Nvad) 10,000 10,000 10,000

Training database (Ntrd) 2,000 2,000 10,000

Test database (Nted) 8,000 46,000 247,648

Table 5.3: Improved splitting strategy partition sizes for the experiments in this chapter.

This breakdown is based on the splitting strategy introduced in Chapter 3, Section 3.5.2.

There is no overlap between the data-points across partitions.

Partition LABELME CIFAR-10 NUS-WIDE

Test queries (Nteq) 1,000 1,000 1,000

Validation queries (Nvaq) 1,000 1,000 1,000

Validation database (Nvad) 10,000 10,000 10,000

Training database (Ntrd) 2,000 2,000 10,000

Test database (Nted) 21,000 59,000 268,648

Table 5.4: Literature standard splitting strategy partition sizes for the experiments in

this chapter. This breakdown is based on the splitting strategy introduced in Chapter 3,

Section 3.5.1.

5.3.2 Parameter Optimisation

To set the hyperparameters of my model, I conduct a grid search for the best fit-

ting β, Bmax hyperparameters over the the values β ∈ {0.5,1,2,5,10} and Bmax ∈
{1,2,3,4}. This grid search is performed on the held out validation dataset (Xvaq ∈
RNvaq×D, Xvdb ∈RNvdb×D), selecting the parameter combination that maximises valida-

tion dataset AUPRC. As the NPQ model introduced in Chapter 4 has a free parameter

β for the Fβ-measure term I also optimise this parameter for NPQ on the validation

portion of the dataset. I refer to the optimised NPQ model as NPQopt in my result

tables. For VBQ, in all experiments the thresholds and threshold allocation are learnt

on the training database (Xtrd ∈ RNtrd×D). The learnt thresholds are then subsequently

used to quantise the testing dataset projections (Xteq ∈ RNteq×D, Xtdb ∈ RNted×D). The

same procedure is used to learn the thresholds for the NPQ and NPQopt baselines. The

reported AUPRC figures for the test dataset are the average over ten random dataset
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splits as explained in Chapter 3, Section 3.5. The Wilcoxon signed rank test (Wilcoxon

(1945)) is used to determine the statistical significance of the retrieval results. In this

case, when comparing system A to system B, a pair of AUPRC values arising from a

retrieval run on the current fold forms the unit of the significance test. In all presented

result tables, NN/HH indicates a statistically significant increase/decrease (Wilcoxon,

p< 0.01) over NPQopt , while N/H indicates a statistically significant increase/decrease

(Wilcoxon, p < 0.05) over NPQopt .

5.3.3 Experimental Results

5.3.3.1 Experiment I: Effect of the β and Bmax hyperparameters

The VBQbound and VBQgreedy models have two hyperparameters that need to be set

on a held-out validation dataset: β ∈ {0.5,1,2,5,10} that determines the importance

given to precision versus recall in Equation 5.6, and Bmax ∈ {1,2,3,4} that indicates

the maximum number of bits that can be allocated per projected dimension. Figure 5.2

(a) plots the optimal value of Bmax at 32 bits on CIFAR-10 for five data-independent

and dependent projections functions: LSH, PCA, SKLSH, SH and ITQ. The optimal

value of the Bmax parameter varies between each of these different projection func-

tions. Projection functions such as PCA, which produce hyperplanes of widely differ-

ent neighbourhood preserving quality, benefit a greater maximum number of bits that

can be allocated to the small subset of high quality hyperplanes, thereby boosting their

contribution to the construction of the hashcodes. ITQ on the other hand attempts to

make the quality of the K hyperplanes equal by rotating the input feature space such

that the variance captured by each hyperplane is approximately balanced. In this case

there is no subset of very high quality hyperplanes that should attract the majority of

the available bit budget and therefore the Bmax parameter in this case is quite intuitively

set to Bmax = 1.

Figure 5.2 (b) shows the variation in β for SKLSH and PCA projections across each

random dataset split. I observe that β has a larger variance for SKLSH projections

with the preferred setting falling between β ∈ [0.5,5], while for PCA projections β

appears more stable with β ∈ [1,2] generally appearing optimal across most random

dataset splits. This latter observation is a consequence of the widely differing partitions

induced by the randomly sampled SKLSH hyperplanes compared to the deterministic

setting of the PCA hyperplanes across each random dataset split. The variance in β,

particularly for SKLSH, suggests that for some partitionings of the input feature space
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Figure 5.2: Figure (a) shows the optimal value of the Bmax parameter per projection

function. Figure (b) shows the variability of the β parameter per random dataset split for

LSH and PCA projections. Results were obtained for the CIFAR-10 dataset at 32 bits.

it is more detrimental to separate pairs of similar images in different quantised regions

(β > 1), compared to placing dissimilar images in the same region, and vice-versa for

β < 1.

5.3.3.2 Experiment II: Variable versus Uniform Threshold Allocation

In this experiment I will study the primary hypothesis (H1) of this chapter, namely

that a variable threshold allocation adapted to specific hyperplanes will yield a higher

retrieval effectiveness for nearest neighbour search compared to a uniform allocation

of thresholds. To examine this hypothesis I will compare both variable threshold allo-

cation algorithms (VBQbound , VBQgreedy) against the strong baseline of NPQ, my own

multi-threshold quantisation model (NPQ) introduced in Chapter 4. NPQ assigned a

uniform number of thresholds to every projected dimension irrespective of the differing

locality preserving qualities of the corresponding hyperplanes. I also explore the effect

of tuning the NPQ β∈{0.5,1,2,5,10} parameter in this chapter as it could conceivably

result in an added boost in retrieval effectiveness. This optimised variant is referred to

as NPQopt in all experiments. Comparing directly to NPQ will therefore tease apart

the effect of an informed variable allocation of thresholds. To ensure a meaningful

comparison VBQ, NPQ and NPQopt are constrained to have an identical amount of

supervision, namely Ntrd = 2,000 for CIFAR-10 and LabelMe and Ntrd = 10,000 for
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Quantisation Model

VBQbound VBQgreedy NPQ NPQopt

LSH 0.2035 (0.2105) 0.2176 (0.2169)N 0.1621 (0.1662) 0.1742 (0.1744)

ITQ 0.3278 (0.3229) 0.3354 (0.3349)HH 0.3917 (0.3898) 0.3947 (0.3943)

SH 0.2549 (0.2546)NN 0.2299 (0.2284) 0.1834 (0.1871) 0.2044 (0.2038)

PCA 0.2712 (0.2707) 0.2739 (0.2728)NN 0.1660 (0.1683) 0.1833 (0.1834)

SKLSH 0.1830 (0.1827) 0.1832 (0.1831)NN 0.1063 (0.1088) 0.1070 (0.1179)

Table 5.5: AUPRC on the CIFAR-10 dataset with a hashcode length of 32 bits. The

quantisation algorithms listed on the first row are used to quantise the projections from

the hash functions in the first column. NN/HH indicates a statistically significant in-

crease/decrease (Wilcoxon, p < 0.01) over NPQopt . N/H indicates a statistically signif-

icant increase/decrease (Wilcoxon, p < 0.05) over NPQopt .

the larger NUS-WIDE dataset4.

(a) LSH, PCA, SH, SKLSH Projections Quantised with Variable Thresholds

In this section I will examine the retrieval results obtained from quantising LSH,

PCA, SH and SKLSH projections with a variable threshold allocation. The variable

threshold quantisation results for ITQ projections are presented in the next section.

The query-by-example image retrieval results for this section are presented in Tables

5.5-5.7 for a hashcode length of 32 bits on the CIFAR-10, LabelMe and NUS-WIDE

image datasets. In addition, Figures 5.3-5.5 present the retrieval results for hashcodes

of length 16-128 bits for both PCA and SKLSH projections across the three considered

datasets.

The retrieval results presented in Tables 5.5-5.7 suggest that a variable allocation of

thresholds (VBQbound , VBQgreedy) generally outperforms a uniform allocation (NPQ,

NPQopt) for the four considered projection functions. For example, for SKLSH projec-

tions on CIFAR-10, VBQbound achieves a 71% relative increase in AUPRC compared

to NPQopt . This increase in retrieval effectiveness is statistically significant based on

a Wilcoxon signed rank test (p < 0.01). The results from quantising PCA projections

with variable thresholds are also particularly encouraging. For example, on the CIFAR-

10 image dataset VBQbound obtains a statistically significant 48% relative increase at

4These settings of Ntrd for CIFAR-10 and NUS-WIDE were found to be optimal in Chapter 4, Section
4.3.3.1.
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Figure 5.3: AUPRC versus hashcode length on CIFAR-10 for PCA (Figure (a)) and

SKLSH (Figure (b)) projections. Retrieval results are shown for VBQbound and NPQopt .

Bars represent the standard error of the mean.

32 bits compared to the uniform threshold allocation of NPQopt for PCA projections.

The gain in retrieval effectiveness for SKLSH and PCA projections are also observed

on the LabelMe (Table 5.6) and NUS-WIDE (Table 5.7) datasets. Furthermore, in Fig-

ures 5.3-5.5 it is readily apparent that this boost in retrieval effectiveness for PCA and

SKLSH projections is maintained for both shorter (< 32 bits) and longer (> 32 bits)

hashcodes. The same observation is made for PCA and SKLSH projections on the

LabelMe (Figure 5.4) and NUS-WIDE datasets (Figure 5.5).

In contrast, the retrieval results for SH and LSH projections are less consistent

across the three image datasets. Significant gains in retrieval effectiveness are found

for LSH across the CIFAR-10 and LabelMe datasets, but not for the NUS-WIDE

dataset. Similarity, for SH I observe a statistically significant increase in effectiveness

for CIFAR-10 and NUS-WIDE, but not for the LabelMe dataset. This result suggests

that a variable allocation of thresholds is not always guaranteed to give a performance

boost, and in some cases appears to be projection and dataset specific. The gain in

AUPRC for Spectral Hashing (SH) is perhaps slightly surprising given that this projec-

tion function itself allocates more bits to high variance directions in the feature space5.

The fact that VBQbound and VBQgreedy can, in some cases, extract a further gain in re-

trieval performance suggests that there is additional scope for improvement in retrieval

effectiveness over and above the variable bit allocation mechanism of SH.
5The reader is referred to Chapter 2, Section 2.6.3.2 for an overview of Spectral Hashing (SH).
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Quantisation Model

VBQbound VBQgreedy NPQ NPQopt SBQ

LSH 0.2155N 0.2118 0.1810 0.1787 0.1574

ITQ 0.3077HH 0.3014 0.3658 0.3821 0.2822

SH 0.2500 0.2487 0.2471 0.2581 0.0901

PCA 0.2975 0.3043NN 0.2151 0.2306 0.0515

SKLSH 0.2108NN 0.2043 0.1311 0.1443 0.0355

Table 5.6: AUPRC on the LabelMe dataset with a hashcode length of 32 bits. NN/HH

indicates a statistically significant increase/decrease (Wilcoxon, p< 0.01) over NPQopt .

N/H indicates a statistically significant increase/decrease (Wilcoxon, p < 0.05) over

NPQopt

Lastly, comparing the optimised variant of my NPQ model (NPQopt) to the un-

optimised variant (NPQ) in Tables 5.5-5.7 I note that there is a small boost in retrieval

effectiveness across the three considered datasets. This result suggests that β = 1 is

generally a suitable setting for NPQ, and varying β is only necessary for VBQ when

using the Fβ-measure as the basis for computing an optimal threshold allocation across

projected dimensions. Furthermore, the results in Table 5.5 indicate that there is no

significant difference between the AUPRC scores resulting from the literature stan-

dard and improved splitting strategies outlined in Chapter 3, Section 3.5. This latter

observation agrees with the wealth of similar findings presented in Chapter 4, Section

4.3.3.5.

In conclusion, based on these results, I can confirm my primary hypothesis (H1)

that a variable allocation of thresholds can indeed be beneficial to the effectiveness of

nearest neighbour search using many different projection functions, both of the data-

dependent and independent variety. The results in this section strongly suggest that

my supervised scoring metric (the Fβ-measure) is effective at downweighting the con-

tribution of ineffective hyperplanes to the computation of the hashcode ranking metric

(Manhattan distance). The downweighting is achieved by allocating a low number of

thresholds (or none) to these more ineffective projected dimensions, which in turn will

reduce the amount of bits contributed from these dimensions to the hashcode for a

data-point.
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Figure 5.4: AUPRC versus hashcode length on LabelMe for PCA (Figure (a)) and

SKLSH (Figure (b)) projections. Retrieval results are shown for VBQbound and NPQopt .

Bars represent the standard error of the mean.

(b) ITQ Projections Quantised with Variable Thresholds

ITQ is the only projection function on which a variable allocation of thresholds

fails to achieve an increase in retrieval effectiveness over a uniform allocation with my

multi-threshold quantisation model (NPQ) presented in Chapter 4. In fact, when com-

pared to NPQ, both VBQbound and VBQgreedy appear to hurt retrieval effectiveness

when quantising ITQ projections (18% decrease in AUPRC versus NPQopt). Recall

from my review in Chapter 2, Section 2.6.3.3 that ITQ rotates the input feature space

to balance the variance captured by the K hyperplanes. The assumption made by ITQ

is that hyperplanes capturing a low amount of the variance in the input feature space

generate poor quality bits as they generally fail to clump related data-points close to-

gether along a projected dimension. By rotating the input feature space the variance

captured becomes more balanced across the K hyperplanes and each corresponding

bit therefore generally has an equal quality. I conjecture that the rotation performed by

ITQ is removing part of the signal relied upon by my variable threshold allocation algo-

rithms, namely a high degree of difference between the locality preserving qualities of

the K hyperplanes. Recall that my variable threshold allocation algorithms specifically

seek out informative hyperplanes in order to allocate those hyperplanes proportionally

more thresholds than the more uninformative hyperplanes. With this signal evidently

all but removed the variable threshold allocation struggles to improve beyond a uni-

form multi-threshold allocation (NPQ). The fact that VBQbound and VBQgreedy exhibit
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Quantisation Model

VBQbound VBQgreedy NPQ NPQopt SBQ

LSH 0.5119 0.4970 0.4238 0.4507 0.2961

ITQ 0.4438HH 0.4438 0.5130 0.5226 0.4842

SH 0.3323NN 0.3251 0.1965 0.1970 0.0232

PCA 0.3741NN 0.3621 0.2178 0.2340 0.0516

SKLSH 0.4505 0.4675NN 0.2650 0.2798 0.0310

Table 5.7: AUPRC on the NUS-WIDE dataset with a hashcode length of 32 bits. NN/HH

indicates a statistically significant increase/decrease (Wilcoxon, p< 0.01) over NPQopt .

a lower AUPRC than NPQ can be explained by the different allocations of thresholds

made by the algorithms. In the case of NPQ I manually specified an allocation of

three thresholds (2 bits) per projected dimension and therefore K/2 of the available

hyperplanes were discarded. On the other hand, VBQbound and VBQgreedy chose to

allocate only one threshold (1 bit) per projected dimension and therefore retained all

K of the available hyperplanes, which is clearly not optimal in this case. Allocation of

thresholds based of Fβ-measure maximisation is therefore not perfectly correlated with

maximisation of AUPRC.

(c) Examining the Bit Allocations of VBQbound

Finally, it is interesting to examine the specific allocation of bits (thresholds) made

by VBQbound . I show in Figure 5.6 the bit allocation assigned by VBQbound to each

of the 32 hyperplanes generated by the PCA and SKLSH projection functions. In

Figure 5.6a I rank the PCA projected dimensions in descending order of variance, so

that the first projected dimension has the highest overall variance, the second projected

dimension exhibits the second highest variance and so forth. It is clear that the higher

variance PCA hyperplanes (1-10) garner the vast proportion of the available bit budget

(equivalently thresholds). This result suggests that those hyperplanes that capture the

highest variance in the input feature space are also effective at preserving the pairwise

relationships between data-points encoded in the adjacency matrix S. Nevertheless,

I also note that lower variance hyperplanes also attract a proportion of the available

bits (12, 14, 19, 22), which suggests that variance is not perfectly correlated with

neighbourhood preservation. This latter fact is not surprising given that variance is

a quantity computed in an unsupervised manner, independent of any knowledge on
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Figure 5.5: AUPRC versus hashcode length on NUSWIDE for PCA (Figure (a)) and

SKLSH (Figure (b)) projections. Retrieval results are shown for VBQbound and NPQopt .

Bars represent the standard error of the mean.

the true data-point relationships, whereas my Fβ-measure explicitly seeks out the most

locality preserving hyperplanes using supervision from the adjacency matrix S. In

Figure 5.6b I show the allocation for the SKLSH projected dimensions. In contrast to

PCA, the bit budget is more evenly allocated across the 32 projected dimensions with

a large proportion of the dimensions attracting one bit each with a smaller number of

hyperplanes attracting two bits compared to PCA. This result is quite intuitive if we

consider that SKLSH draws the hyperplanes randomly within the input feature space.

An attractive property of my variable threshold algorithms is the pruning that is

performed on hyperplanes that exhibit a low locality preservation. Notice in Figure

5.6a that 18 out of 32 (56%) of the available PCA hyperplanes have been discarded

(assigned 0 bits). This sparse solution is a form of dimensionality reduction that may

be particularly advantageous to end-applications where there is limited memory to

store potentially high dimensional and dense hyperplane normal vectors (for example,

in embedded systems).

5.3.3.3 Experiment III: Branch-and-Bound versus Greedy Allocation

In this section I examine the second and final hypothesis of this chapter, namely

that finding a threshold allocation using a branch-and-bound search (VBQbound) leads

to a higher retrieval effectiveness than the greedy threshold redistribution algorithm

VBQgreedy. The retrieval results on CIFAR, LabelMe and NUS-WIDE are shown in
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Figure 5.6: The bit allocation assigned by VBQbound for PCA (Figure (a)) and SKLSH

projections (Figure (b)).

Tables 5.5-5.7. I conduct a Wilcoxon signed rank test to determine whether the dif-

ference in the AUPRC values for VBQbound and VBQgreedy obtained over ten random

dataset splits is significant. On the CIFAR-10 dataset for all considered projection

functions (ITQ, PCA, LSH, SH, SKLSH) I find that the difference between the AUPRC

achieved by both algorithms is not significant with p < 0.01. I find a similar result on

the LabelMe and NUS-WIDE datasets for all considered projection functions. Taken

together these results suggest that I cannot refute the null hypothesis and therefore I

am not able to confirm hypothesis H2 based on the experiments conducted in this sec-

tion. From an efficiency standpoint this is an encouraging finding because it means we

can benefit from the substantially faster training and allocation time of the VBQgreedy

model while attaining a retrieval effectiveness that is statistically indistinguishable to

the more computationally expensive VBQbound .

5.3.3.4 Experiment IV: Evaluation of Training Time

In this last experiment I will examine the training time of my variable threshold allo-

cation models and compare the computational cost to the multi-threshold quantisation

algorithm introduced in Chapter 4. The timing results in seconds are given in Table

5.8. I break the computation time into the time taken to learn the thresholds and the

time taken to compute the threshold allocation. The multi-threshold quantisation al-

gorithm (NPQ) introduced in Chapter 4 attains the lowest training time, which is not

unexpected given it only learns thresholds for one particular threshold quantity (T ) and
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Threshold Learning Time (s) Threshold Allocation Time (s)

VBQbound O(TmaxN2
trdF +KN2

trd) 42.6 O(2(Bmax+1)K) 0.134

VBQgreedy O(TgdyN2
trdF +KN2

trd) 30.0 O(1) 0.001

NPQ O(K
′
T N2

trdF) 3.60 – –

Table 5.8: Threshold learning and allocation timings for the proposed models against

NPQ. Time (seconds) taken at 32 bits (CIFAR-10, LSH) to grade the hyperplanes

(learning thresholds) and the time then taken to solve the threshold allocation prob-

lem (threshold allocation). Tmax = K ∑
Bmax
b=1 2b−1 is an expression for the total number

of thresholds, with K
′
T � Tgdy� Tmax, where the factor Tgdy depends on the specific

choices made by the greedy algorithm during a particular run. K
′
= bK/Bc denotes

the number of hyperplanes used to generate K-bits for NPQ, with a constant allocation

of B bits per projected dimension. Ntrd denotes the number of training data-points, F

the number of objective function evaluations (Equation 5.6). The timing results were

recorded on an otherwise idle Intel 2.7GHz, 16Gb RAM machine and averaged over

10 random dataset partitions. All models are implemented in the same software stack

(Matlab).

has no need to learn the allocation. In terms of threshold allocation time the VBQgreedy

threshold allocation algorithm (Section 5.2.2.4) is two orders of magnitude faster than

the binary integer linear program (VBQbound). Threshold learning is 30% faster for

VBQgreedy compared to VBQbound due to the greedy on-demand computation of the

Fβ-measure scores which ensures that there is no wasted computation.

5.4 Conclusions

In this chapter I have proposed two new algorithms for learning a variable allocation

of quantisation thresholds per projected dimension. The intuition behind these quan-

tisation algorithms was that the locality preserving quality of the hashing hyperplanes

tends to vary widely within the input feature space. My central argument was that

those hyperplanes that are better at maintaining the neighbourhood structure between

the data-points should attract a higher quantity of the available thresholds, and vice-

versa for lower quality hyperplanes. The quantity of thresholds assigned to a given

projected dimension dictates how finely that dimension is quantised, with a greater

allocation of thresholds contributing to a much less granular partitioning of the pro-
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jected dimension. I argued in this chapter that the level of granularity, or equivalently

the number of thresholds assigned per projected dimension, was an important factor

in the ultimate retrieval effectiveness of the generated hashcodes. Quantising a pro-

jected dimension with a high locality preserving power with too few thresholds will

run the risk of grouping together many unrelated data-points in the same quantised

regions, therefore leading to a high number of false positives. To capitalise on the ad-

ditional structure available in the higher quality projected dimensions, a higher number

of thresholds should ideally be assigned to that dimension so that as many related data-

points fall within the same quantised regions while minimising the number of unrelated

data-points in the same regions. However, a quantisation of too fine a granularity may

also result in a high degree of false negatives, that is many true nearest neighbours

falling within different quantised regions. My contention was that there is a sweet spot

for the number of thresholds that minimises the number of false positives and false

negatives for a given projected dimension.

To learn the optimal number of thresholds I made two key contributions in this

chapter: firstly in Section 5.2.2.1, I proposed the Fβ-measure as a metric for grading

the neighbourhood preserving quality of the projected dimensions and, secondly, in

Sections 5.2.2.3-5.2.2.4 I introduced two new algorithms that used this scoring func-

tion to compute an allocation of thresholds subject to a total threshold budget. The

variable threshold allocation algorithms tackled this NP-hard optimisation problem

using two different strategies. My first proposed algorithm formulated the allocation

problem as a binary integer linear programme (BILP) which was solved using branch

and bound (Section 5.2.2.3). My alternative allocation algorithm greedily redistributed

thresholds from the lowest quality hyperplanes to the highest quality hyperplanes (Sec-

tion 5.2.2.4). To the best of my knowledge the research in this chapter is the first to

introduce and solve the variable threshold allocation problem in the context of hashing-

based ANN search.

I evaluated the proposed variable threshold quantisation algorithms in an extensive

set of image retrieval experiments against the state-of-the-art baseline model intro-

duced in Chapter 4. The key findings from the experimental evaluation were three-

fold:

• Allocating a variable number of quantisation thresholds per projected dimension

using the Fβ-measure as an indicator of hyperplane quality was shown, for cer-

tain projection functions, to lead to higher quality hashcodes and a significantly

higher retrieval effectiveness compared to a uniform allocation of thresholds.
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Section 5.3.3.2 and Tables 5.5-5.7 present the experimental results that support

this claim.

• There is no significant difference (Wilcoxon signed rank test, p < 0.01) in re-

trieval effectiveness between a branch-and-bound based algorithm for solving

the threshold allocation and a greedy threshold redistribution algorithm. The lat-

ter allocation algorithm is however two orders of magnitude faster at threshold

allocation time and 28% faster at threshold learning. The quantitative results

supporting this claim are presented in Section 5.3.3.4 and Table 5.8.

• There is no significant difference (Wilcoxon signed rank test, p < 0.01) between

the retrieval results originating from the literature standard and improved dataset

splitting strategies first outlined in Chapter 3, Section 3.5. This result accords

with similar findings from my experiments in Chapter 4. Section 5.3.3.2 and

Table 5.5 presents the results that validate this claim.

To the Computer Vision practitioner, the findings of this chapter hint at the follow-

ing recommendations, dependent on whether an eigendecomposition is possible on the

dataset of interest:

• If it is computationally tractable to compute a PCA projection on the dataset then

a rotation of the feature space (ITQ) followed by the uniform multiple threshold

quantisation algorithm of Chapter 4 leads to the overall highest retrieval effec-

tiveness.

• If computationally constrained to other projection functions, such as LSH/SKLSH,

then a variable threshold quantisation is highly advantageous to retrieval effec-

tiveness compared to a uniform allocation. It is most likely intractable to com-

pute PCA on the large high-dimensional datasets prevalent in real-world nearest

neighbour search scenarios, and so this use-case of being constrained to random

projections is perhaps the most common. To learn the thresholds and allocation

the greedy approach (VBQgreedy) is the most efficient while still maintaining

attractive accuracy.

In this chapter and the previous chapter, I have studied the process of scalar quan-

tisation for hashing-based ANN search in considerable detail, proposing a set of new

quantisation algorithms that were found to significantly improve hashcode quality and

the resulting effectiveness of query-by-example image retrieval. In Chapter 6 I will
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now turn my attention to the related problem of projection function learning which

fractures the input feature space with a set of K hyperplanes in a way that attempts to

maximise the number of true nearest neighbours that fall within the same polytope-

shaped regions of the space.



Chapter 6

Learning the Hashing Hypersurfaces

The research presented in this Chapter has been previously published in Moran and

Lavrenko (2015a) and Moran and Lavrenko (2015b).

6.1 Introduction

In Chapters 1-2 I previously discussed how the generation of similarity preserving

hashcodes involves two main steps carried out sequentially: low-dimensional projec-

tion followed by binary quantisation. In Chapters 4 and 5 I then introduced two novel

data-driven quantisation algorithms for converting real-valued projections into binary

hashcodes. In most cases both of these data-driven models were shown to achieve a

significantly higher retrieval effectiveness than the commonly used data-independent

single bit quantisation (SBQ) algorithm and a host of more recently proposed data-

dependent quantisation algorithms. Having argued the validity of this dissertation’s

thesis for the quantisation operation I will now turn my attention in this chapter to the

low-dimensional projection function.

Recall from my review of previous related research in Chapter 2 how Locality Sen-

sitive Hashing (LSH), a seminal algorithm for solving the ANN search problem, par-

titions the input feature space with K randomly drawn hyperplanes which are selected

independent of the distribution of the data. Data-points are projected onto the normal

vectors to these K hyperplanes and the subsequent real-valued projections quantised to

form a K-bit hashcode. The central argument in this chapter is that this randomised pro-

jection leads to a sub-optimal space partitioning. By relaxing assumption A3 outlined

in Chapter 1, I hypothesise that a significantly higher retrieval effectiveness can be

achieved by learning task-specific hashing hypersurfaces. This hypothesis is inspired

193
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by previous research in the learning to hash literature which has presented convincing

evidence as to the benefits of inducing a data-dependence into the low-dimensional

hashing projection function. These recently proposed data-dependent projection func-

tions were reviewed in detail in Chapter 2, Sections 2.6.3-2.6.4 and will form a strong

set of baselines for the novel contributions I make in this chapter. I introduce a new

supervised projection function dubbed Graph Regularised Hashing (GRH) which op-

erations in three steps. In the first step the proposed projection function leverages

the principle of graph regularisation (Diaz (2007)) which smooths the distribution of

binary bits so that neighbouring data-points, as indicated by the adjacency graph, are

much more likely to be assigned identical bits than non-neighbouring data-points. This

concept is reminiscent of the well-known Cluster Hypothesis of Information Retrieval

(IR) which states that “closely associated documents tend to be relevant to the same

requests” (Rijsbergen (1979)). In the second step the regularised bits are then used as

targets for a set of binary classifiers that separate opposing bits with maximum margin.

In the final step the training data-points are relabeled with updated hashcodes using

the learnt hyperplanes. Iterating these three steps permits the hashing hypersurfaces

to evolve into positions within the input feature space that better separate opposing

bits versus a purely random LSH partitioning. I show in Figure 6.1 a t-SNE visuali-

sation (van der Maaten and Hinton (2008)) of an embedding creating by my proposed

algorithm on the CIFAR-10 dataset (Krizhevsky and Hinton (2009)). This diagram

illustrates how the proposed supervised projection function is able to group together

related images within the projected space.

In one of the foremost contributions of this thesis I further show how to extend the

proposed projection function to learn hashing hypersurfaces that can generate effective

hashcodes for similar data-points existing in two different feature spaces, for example

an image and a document that both describe a tiger in a jungle setting. This latter

contribution effectively brings the computational advantages of hashing-based ANN

search to the plethora of multi-modal datasets in existence in the modern data rich

world, datasets which are entirely out-of-reach for conventional unimodal projection

functions such as LSH.

In the experimental evaluation I demonstrate a host of new and previously unex-

pected results arising from examining the effectiveness and efficiency of this super-

vised projection function. Most notably the projection function is able to out-perform

a large swath of state-of-the-art supervised and unsupervised data-dependent projec-

tion functions using linear hypersurfaces (hyperplanes) and without the need to solve
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Method Data-Dependent Supervised Scalable Effectiveness

LSH X Low

SH X Low

STH X X Medium

BRE X X Medium

ITQ+CCA X X Medium

KSH X X High

GRH X X X High

Table 6.1: Comparison of the projection function introduced in this chapter (GRH) ver-

sus the most closely related projections functions from the literature. All of the baselines

were previously reviewed in Chapter 2.

a computationally expensive eigenvalue problem. This property is one of the main

bottlenecks that severely hamper the scalability of many previously proposed data-

dependent projection functions for hashing. The properties of my proposed algorithm

(GRH) as rated against closely related research along the four dimensions of data-

dependence, supervision, scalability and effectiveness is given in Table 6.1. To the

best of my knowledge the research presented in this chapter introduces one of the first

known supervised projection functions that has the desirable properties of being both

effective and scalable, a true rarity in the literature.

The remainder of this chapter is structured in the following manner: in Section 6.2

I give an overview of the problem definition and then introduce my unimodal graph

regularised projection function that integrates graph regularisation into a multi-step

iterative hash function learning framework. The algorithm overview is subsequently

followed in Section 6.3 with a comprehensive set of experiments designed to measure

both the retrieval effectiveness and efficiency of the projection function on the now

familiar task of query-by-example image retrieval. I conclude this first part of the

chapter in Section 6.4 with a summary of the contributions and a discussion on the

main experimental findings. I then show how to extend this unimodal model to cross-

modal hashing in Section 6.5. This is followed in Section 6.6 by a set of experiments

designed to compare the model to prior-art. The chapter is concluded in Section 6.8 by

summarising the main contributions.
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Figure 6.1: t-SNE visualisation of a subset of the CIFAR-10 image dataset (20,000 im-

ages). Image positions are computed using a 2-dimensional t-SNE projection (van der

Maaten and Hinton (2008)) of a 32-dimensional embedding produced by the non-linear

variant of my graph regularised projection function. Clusters of semantically related im-

ages are readily evident such as horses (bottom), airplanes (top right) and dogs (top

left). Image best viewed in colour and ideally with a zoom tool on the electronic PDF

version of the thesis.
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6.2 A Graph Regularised Projection Function

6.2.1 Problem definition

The problem definition in this chapter is similar to the definitions given in Chapter 4

and Chapter 5 but with the emphasis now placed on learning the K hashing hyperplanes{
hk ∈ RD}K

k=1 with normal vectors
{

wk ∈ RD}K
k=1 rather than on the setting of the

quantisation thresholds. To recapitulate the problem setup: we are given a dataset of

N points X = [x1. . .xN ]
ᵀ, where each point xi is a D-dimensional vector of real-valued

features. My goal again is to represent each item with a binary hashcode bi ∈ {0,1}K

consisting of K bits. In this chapter my aim is to learn the hashing hyperplanes in a

way that the hashcodes bi,b j generated by those hyperplanes will be have a low Ham-

ming distance for neighbouring points xi,x j. As before, the neighbourhood structure

between the data-points in the input feature space is encoded in a binary adjacency

matrix S, where Si j = 1 if points xi and x j are considered neighbours, and Si j = 0

otherwise.

6.2.2 Overview of the approach

My proposed projection function iteratively performs three steps: (A) regularisation,

where we make the Ntrd hashcodes {b1. . .bNtrd} more consistent with the adjacency

matrix S∈RNtrd×Ntrd ; (B) partitioning, where we learn a set of hypersurfaces {h1. . .hK}
that subdivide the space RD into regions that are consistent with the hashcodes. These

hypersurfaces are needed to efficiently compute the hashcodes for testing points x ∈
RD, where we have no affinity information available. (C) Prediction, in which the

learnt hyperplanes are used to generate updated hashcodes for the training data-points.

I initialise the hashcodes {b1. . .bNtrd} by running the points {x1. . .xNtrd} through any

existing unsupervised or supervised projection function, such as LSH (Indyk and Mot-

wani (1998)) or ITQ+CCA (Gong and Lazebnik (2011))1. I then iterate the three steps

in a manner reminiscent of the EM algorithm (Dempster et al. (1977)): the regularised

hashcodes from step A adjust the hypersurfaces in step B, and these surfaces in turn

generate new hashcodes in Step C which are then passed into step A. The algorithm

is run for a fixed number of iterations (M). Further details on Steps A,B,C of the

algorithm are provided in Sections 6.2.3-6.2.5.

1LSH and ITQ+CCA were reviewed in Chapter 2, Section 2.4 and 2.6.4.1, respectively.
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6.2.3 Step A: Regularisation

I take a graph-based approach to regularising the hashcodes. The nodes of the graph

correspond to the points {x1. . .xNtrd} and S plays the role of an adjacency matrix: I

insert an undirected edge between nodes xi and x j if and only if Si j = 1. Each node xi

is annotated with K binary labels, corresponding to the K bits of the hashcode bi. Our

aim is to increase the similarity of the label sets at the opposite ends of each edge in

the graph. I achieve this by averaging the label set of each node with the label sets of

its immediate neighbours. This is similar to the score regularisation method of Diaz

(2007) and the label propagation algorithm of Zhu and Ghahramani (2002), although

my update equation is slightly different.

Figure 6.2 illustrates my approach. On the top I show a graph with 8 nodes {a. . .h}
and edges showing the nearest-neighbour constraints. Each node is annotated with 3

labels which reflect the initial hashcode of the node (zero bits are converted to labels

of −1). On the bottom of Figure 6.2 I show the effect of label propagation for nodes

c and e (which are immediate neighbours). Node e has initial labels [+1,−1,−1]

and 3 neighbours with the following label sets: c:[+1,+1,+1], f :[+1,+1,+1] and

g:[+1,+1,−1]. I aggregate these four sets and look at the sign of the result to obtain

a new set of labels for node e: sgn[+1+1+1+1
4 , −1+1+1+1

4 , −1+1+1−1
4 ] = [+1,+1,−1].

Note that the second label of e has become more similar to the labels of its immediate

neighbours. Formally, I regularise the labels via the following equation:

Bm← sgn
(
α SD−1Bm−1 +(1−α)B0

)
(6.1)

This equation effectively diffuses bits over the image-image similarity graph S.

Here m ∈ [1, . . . ,M], where M is the maximum number of iterations, S is the adjacency

matrix and D is a diagonal matrix containing the degree of each node in the graph2.

B ∈ {−1,+1}Ntrd×K represents the labels assigned to every node at the previous step

of the algorithm, B0 indicates the labels at iteration 0, namely as initialised by LSH

or ITQ+CCA, α ∈ [0,1] is a scalar smoothing parameter and sgn represents the sign

function, modified so that sgn(0)=−1. The hashcodes at the current iteration Bm are

set to be a convex combination of the hashcodes at the previous iteration Bm−1 and the

initialised hashcodes (B0).
2D−1 has the effect of L1-normalising the rows of S.
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Figure 6.2: The regularisation step. Nodes represent data-points and arcs represent

neighbour relationships. The 3-bit hashcode assigned to a given node is shown in the

boxes. Top: The original hashcode assignment at initialisation. Bottom: The hashcode

update for nodes c and e.
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6.2.4 Step B: Partitioning

At the end of step A, each point xi has K binary labels {−1,+1}. I use these labels

to learn a set of hypersurfaces {h1. . .hK}. Each surface hk ∈ RD will partition the

space RD into two disjoint regions: positive and negative. The positive region of hk

should envelop all points xi for which the k’th label was +1; while the negative region

should contain all the xi for which Bik = −1. For simplicity, I restrict the discussion

to linear hypersurfaces (hyperplanes) in this section, but a non-linear generalisation

is straightforward via the kernel trick (Bishop (2006)). In particular, I discuss how

my model can be transformed into a non-linear hash function in Section 6.3.3.8, and I

compare the performance of linear and non-linear boundaries in Section 6.3.

A hyperplane is defined by the normal vector wk ∈ RD and a scalar bias tk ∈ R.

Its positive region consists of all points x for which wᵀ
k x+ tk > 0. I position each

hyperplane hk to maximise the margin, i.e. the separation between the points xi that

have Bik=−1 and those that have Bik=+1. I find the maximum-margin hyperplanes

by independently solving K constrained optimisation problems:

for k = 1. . .K : min ||wk||2 +C ∑
Ntrd
i=1 ξi,k

s.t. Bik(wk
ᵀxi + tk)≥ 1−ξi,k for i = 1. . .Ntrd (6.2)

Here ξik > 0 are slack variables that allow some points xi to fall on the wrong side of

the hyperplane hk; and C ∈R+ is a parameter that allows us to trade off the size of the

margin 1
||wk|| against the number of points misclassified by hk. I solve the optimisation

problem in equation (6.2) using liblinear Fan et al. (2008) and libSVM Chang and

Lin (2011) for linear and non-linear hypersurfaces respectively.

Figure 6.3 illustrates step B for linear hypersurfaces. On the top I show the hy-

perplane h1 that partitions the points a. . .h using their first label as the target. Nodes

a,b,c,d have the first label set to −1, while e, f ,g,h are labelled as +1. The hyper-

plane h1 is a horizontal line, equidistant from points c and e: this provides maximum

possible separation between the positives and the negatives. No points are misclas-

sified, so all the slack variables ξi,1 are zero. The bottom of Figure 6.3 shows the

maximum-margin hyperplane h2 that partitions the points based on their second label.

In this case, perfect separation is not possible, and ξi,2 is non-zero (nodes g and d are

on the wrong side of h2).
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Figure 6.3: The partitioning step. In this stage, the regularised hashcodes are used to

re-position the hashing hyperplanes. Top: First bit of hashcode. Bottom: Second bit.
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6.2.5 Step C: Prediction

In the third step the estimated hyperplane normal vectors {w1. . .wK} are used to re-

label the data-points:

Bik = sgn(wk
ᵀxi + tk) for i={1. . .Ntrd} and k={1. . .K} (6.3)

The effect of this step is that points which could not be classified correctly will now

be relabelled to make them consistent with all hyperplanes. For example, the second

label of node g in Figure 6.3 will change from−1 to +1 to be consistent with h2. These

new labels are passed back into step A for the next iteration of the algorithm. After the

last iteration, I use the hyperplane normal vectors {w1. . .wK} to predict hashcodes for

new instances x: the k’th bit in the code is set to 1 if wᵀ
k x+ tk > 0, otherwise it is zero.

6.2.6 Algorithm Specification

Algorithm 9 presents the pseudo-code for my graph regularised projection function. In

Line 1 the hashcodes for the Ntrd training data-points are initialised in matrix B with

an existing projection function such as LSH or ITQ+CCA. In Line 2, hashcode bits

that are 0 are converted to −1. The main loop of the algorithm is shown in Line 4

which is repeated for M iterations. Line 5 is the regularisation step in which hashcodes

in B are made more similar to their neighbours as specified by the affinity matrix S.

Line 6 is the start of the loop that learns the K new hyperplanes for each bit position,

by training K SVM classifiers using the regularised bits in B as training labels (Line

8). The learnt hyperplanes are used to update the hashcode bits in Line 11. At the end

of the M iterations, the learnt hyperplanes
{

wk ∈ RD}K
k=1, {tk ∈ R}K

k=1 can be used

to generate the hashcodes for novel data-points (Line 13). Figure 6.4 illustrates the

operation of GRH on a synthetic dataset consisting of three clusters

6.2.7 Computational Complexity

If we let Ntrd denote the number of training data-points then the graph regularisation

step is of O(N2
trdK). Training a linear SVM takes O(NtrdDK) time (Joachims (2006))

while prediction (test time) is O(NtrdDK). Therefore linear GRH is O(MN2
trdK) for M

iterations. Typically the adjacency matrix S is sparse3, Ntrd�N and K is small (≤ 128

bits) thereby ensuring that the linear variant of GRH is scalable to large datasets. The

3For example, around 10% of the entries in S are non-zero for the CIFAR-10 dataset.
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Algorithm 9: GRAPH REGULARISED HASHING (GRH)

Input: Dataset X ∈ RNtrd×D, adjacency matrix S ∈ {0,1}Ntrd×Ntrd , degree matrix

D ∈ Z+, interpolation parameter α ∈ [0,1], number of iterations M ∈ Z+

Output: Hyperplanes {w1. . .wK}, biases {t1. . .tK}
1 Initialise B0 ∈ {0,1}Ntrd×K via LSH or ITQ+CCA from X
2 B0 = sgn(B0− 1

2)

3 B = B0

4 for m← 1 to M do
5 B = sgn

(
αSD−1B+(1−α)B0

)
6 for k← 1 to K do
7 bk = B(:,k)
8 Train SVMk with bk as labels, training dataset Xtrd ∈ RNtrd×D

9 Obtain hyperplane wk and bias tk

10 end
11 Bik = sgn(wᵀ

k xi + tk) for i={1. . .Ntrd} and k={1. . .K}
12 end
13 return

{
wk ∈ RD}K

k=1, {tk ∈ R}K
k=1

non-linear variant using radial basis function kernels can be learnt on larger datasets by

computing the kernel using a small subset of anchor data-points, in a similar manner

to Supervised Hashing with Kernels (KSH)4. The projection function developed in this

chapter is agnostic to the type of classifier used to learn the hypersurfaces. A possible

future extension of the algorithm would involve scaling to a large-scale streaming data

scenario, such as event detection in Twitter (Osborne et al. (2014)). In this case an

online passive aggressive classifier (Crammer et al. (2006)) would be capable of incre-

mentally updating the hypersurfaces in a computationally scalable fashion. I discuss

avenues for possible future work in more detail in Chapter 8.

6.3 Experimental Evaluation

6.3.1 Experimental Configuration

In my experimental evaluation I adhere closely to related work so that the results in

this chapter are directly comparable to previously published research. As discussed

4See Chapter 2, Section 2.6.4.3 for an overview of KSH.



204 Chapter 6. Learning the Hashing Hypersurfaces

Figure 6.4: Synthetic toy example illustrating the operation of my graph regularised

projection function. The toy dataset consists of 6,000 data-points clustered into three

distinct clusters. The data-points in each cluster are of the same class as each other

(out of three possible classes), and therefore each cluster should ideally end up in its

own bucket (region). The dashed lines indicate the two hyperplane normal vectors pro-

duced by Locality Sensitive Hashing (LSH). In this case many data-points from different

classes (clusters) end up in the same bucket (mAP=0.6803). GRH refines the two LSH

hyperplanes to produce the hyperplane normal vectors shown with the solid lines. In

this case, the data-points from the three different classes are almost all in their own

bucket (mAP=0.9931).

in Chapter 3 the particular sub-field of hashing that pertains to supervised projection

functions maintains a standard evaluation paradigm that differs from that of the quan-

tisation literature to which I contributed in Chapters 4-5. The main points of differen-

tiation are the use of human assigned class labels to define the groundtruth (Chapter

3, Section 3.3.2) and mean average precision (mAP) as the evaluation metric (Chap-

ter 3, Section 3.6.4). If a query image and a retrieval image share a class in common

then they are regarded as true nearest neighbours (Liu et al. (2012), Gong and Lazeb-

nik (2011)). The Hamming ranking evaluation paradigm (Chapter 3, Section 3.4.1) is

used to rank database data-points with respect to the queries for the purposes of com-
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Parameter Setting Chapter Reference

Groundtruth Definition Class labels, ε-NN Chapter 3, Sections 3.3.1, 3.3.2

Evaluation Metric mAP, PR Curve, AUPRC Chapter 3, Section 3.6

Evaluation Paradigm Hamming Ranking Chapter 3, Section 3.4.1

Random Partitions 10 Chapter 3, Section 3.5

Number of Bits (K) 16-64 Chapter 2, Section 2.4

Table 6.2: Configuration of the main experimental parameters for the results presented

in this chapter.

puting the retrieval metrics. I follow previous research and mostly use this evaluation

strategy (class label-based groundtruth, mAP, Hamming ranking) to evaluate my graph

regularised projection function on the labelled CIFAR-10 and NUS-WIDE datasets. In

addition to this I also explore the effectiveness of my model on the large SIFT1M im-

age dataset with metric-based groundtruth, that is, groundtruth generated by computing

ε-NN’s. The exact specification of my evaluation setup is detailed in Table 6.2.

The CIFAR-10 and NUS-WIDE datasets both come associated with manually as-

signed class labels that determine which images in both collections are semantically

related. The NUS-WIDE dataset is one of the largest labelled image datasets that I

am aware of in the learning to hash literature and both image datasets have been ex-

tensively used in related hashing research (Liu et al. (2012, 2011); Kulis and Grauman

(2009)). For CIFAR-10 and NUS-WIDE, I carefully follow previous work in con-

structing my set of queries and training/database subsets shown in Tables 6.3-6.4. I

randomly sample 100 images (CIFAR-10, NUS-WIDE) from each class to construct

my testing queries Xteq ∈RNteq×D. The remaining images form the database of images

to be ranked Xted ∈RNted×D in accordance to the selected dataset splitting strategy (im-

proved or literature standard) as detailed in Chapter 3, Section 3.5. I randomly sample

Ntrd = 100/500 images per class from the database (Xdb ∈ RNdb×D) to form the train-

ing dataset (Xtrd ∈ RNtrd×D) which is used to learn the hash functions. The validation

dataset (Xvaq ∈ RNvaq×D, Xvad ∈ RNvad×D) is created by sampling 100 (CIFAR-10) or

500 (NUS-WIDE) images per class from the database (Xdb ∈ RNdb×D). For SIFT1M,

which does not have class labels, I follow the experimental procedure for metric-based

groundtruth outlined in Chapter 4, Section 4.3.1.

To ascertain the retrieval effectiveness of my projection function I will segment

the experimental evaluation into six different hypotheses which can be directly tested
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Partition CIFAR-10 NUS-WIDE SIFT1M

Test queries (Nteq) 1,000 2,100 1,000

Validation queries (Nvaq) 1,000 2,100 1,000

Validation database (Nvad) 10,000 10,000 10,000

Training database (Ntrd) 1,000 10,500 10,000

Test database (Nted) 47,000 171,134 978,000

Table 6.3: Improved splitting strategy partition sizes for the experiments in this chapter.

This breakdown is based on the splitting strategy introduced in Chapter 3, Section 3.5.2.

There is no overlap between the data-points across partitions.

against prior-art:

• H1: Hyperplanes learned in a supervised manner give a higher retrieval effec-

tiveness than randomly generated hyperplanes.

• H2: Supervised hyperplanes attain a higher retrieval effectiveness than hyper-

planes learnt with an unsupervised matrix factorisation.

• H3: Regularising hashcodes over a data affinity graph is more effective than a

Laplacian Eigenmap (LapEig) embedding for learning effective similarity pre-

serving hashcodes.

• H4: A supervised initialisation of my model with ITQ+CCA results in a higher

retrieval effectiveness compared to an unsupervised initialisation through LSH.

• H5: Learning non-linear hashing hypersurfaces with my model gives a higher

retrieval effectiveness than learnt linear hypersurfaces (hyperplanes).

• H6: Learning non-linear hashing hypersurfaces with my graph regularised pro-

jection function gives a higher retrieval effectiveness than the state-of-the-art

supervised projection functions.

The experimental results arising from testing these hypotheses are presented in

Section 6.3.3. In my experiments I compare the proposed graph regularised projection

function to a wide selection of strong baselines cutting across all three major branches

of the hashing projection field: data-independent, unsupervised data-dependent, su-

pervised data-dependent. The supervised data-dependent methods I compare to are

Supervised Hashing with Kernels (KSH) (Liu et al. (2012)), Binary Reconstructive
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Partition CIFAR-10 NUS-WIDE SIFT1M

Test queries (Nteq) 1,000 2,100 1,000

Validation queries (Nvaq) 1,000 2,100 1,000

Validation database (Nvad) 10,000 10,000 10,000

Training database (Ntrd) 1,000 10,500 10,000

Test database (Nted) 59,000 193,734 999,000

Table 6.4: Literature standard splitting strategy partition sizes for the experiments in

this chapter. This breakdown is based on the splitting strategy introduced in Chapter 3,

Section 3.5.1.

Embedding (BRE) (Kulis and Grauman (2009)), Self Taught Hashing (STH) (Zhang

et al. (2010b)) and Iterative Quantisation (ITQ) with a supervised CCA embedding

(ITQ+CCA) (Gong and Lazebnik (2011)). The unsupervised data-dependent pro-

jection functions include Anchor Graph Hashing (AGH) (Liu et al. (2011)), Spectral

Hashing (SH) (Weiss et al. (2008)) and PCA-Hashing (PCAH) (Wang et al. (2012)).

The data-independent methods are Locality Sensitive Hashing (LSH) (Indyk and Mot-

wani (1998)) and Shift Invariant Kernel Hashing (SKLSH) (Kulis and Darrell (2009)).

All of these projection functions were previously reviewed in detail in Chapter 2, Sec-

tion 2.4 and Section 2.6. I use the standard single bit quantisation (SBQ) described

in Chapter 2, Section 2.5.1 to binarise the projections from all projection functions in

this chapter. In Chapter 7 I explore the benefit of using NPQ and VBQ introduced in

Chapters 4-5 to quantise the projections arising from GRH.

6.3.2 Parameter Optimisation

The algorithm has four meta-parameters: the number of iterations M ∈Z+, the amount

of regularisation α ∈ [0,1], the flexibility of margin C ∈ R+, and the surface curva-

ture γ ∈ R+, which arises for non-linear hypersurfaces based on radial-basis func-

tions (RBFs). I optimise all meta-parameters via grid search on the held-out validation

dataset (Xvaq ∈ RNvaq×D,Xvad ∈ RNvad×D) (Moran and Lavrenko (2015a)). Unless oth-

erwise stated in the relevant experiment I tune these parameters using the following

strategy in all subsequent experiments: firstly holding the SVM parameters constant at

their default values (C = 1, γ = 1.0), I perform a grid search over M ∈ {1,2 . . .19,20}
and α ∈ {0.1,0.2, . . . ,0.9,1.0}, selecting the overall configuration that leads to the

highest validation dataset mAP. For a given α, to determine a suitable value for M, I
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Figure 6.5: Learning curves for CIFAR-10 (Figure (a)) and NUS-WIDE (Figure (b)) as

the number of training data-points Ntrd is increased.

stop the sweep when the validation dataset mAP falls for the first time, and set M to be

the number of the penultimate iteration. I then hold M and α constant at their optimised

values, and perform a coarse logarithmic grid search over γ∈ {0.001,0.01,0.1,1,10.0}
and C ∈ {0.01,0.1,1,10,100}. I equally weigh both classes (-1 and 1) in the SVM. To

constrain computation time on NUS-WIDE I learn a low-rank linearisation RBF SVM

with a default 300 k-means landmarks using the budgetedSVM library5.

6.3.3 Experimental Results

6.3.3.1 Evaluation of Amount of Supervision (Ntrd)

In this first experiment I will examine how the maximum validation dataset mAP

achieved by my graph regularised projection function varies as the number of su-

pervisory data-points in the adjacency matrix S are gradually increased. To generate

the learning curves I tune the parameters of my model as detailed in Section 6.3.2,

while keeping the flexibility of margin of the linear SVM set to C = 1.0. The learn-

ing curves for both the CIFAR-10 and NUS-WIDE datasets are shown in Figure 6.5.

Both curves exhibit the expected trend of increasing mAP as I give more supervision

to the model. For both image collections the validation dataset mAP increases rapidly

up until Ntrd = 5,000 before undergoing a gentler increase as Ntrd is further increased

beyond 5,000 data-points. This experiment suggests that the majority of the perfor-

5http://www.dabi.temple.edu/budgetedsvm/

http://www.dabi.temple.edu/budgetedsvm/
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mance can be obtained with a relatively small amount of supervision totaling around

or below 2-10% of the total image collection size. I arrived at a broadly similar con-

clusion for my multi-threshold quantisation algorithm in Chapter 4. The need for only

a small amount of supervision bodes well for the scalability of my projection function.

I measure the training and testing time of the model in the next experiment (Section

6.3.3.2). Even though the mAP on CIFAR-10 is clearly maximised for Ntrd = 5,000,

to accord with the literature (Liu et al. (2012)), I select Ntrd = 1,000 for CIFAR-10,

Ntrd = 10,500 for NUS-WIDE and Ntrd = 10,000 for SIFT1M throughout this chapter.

6.3.3.2 Evaluation of Training Time

I will now measure the training time of the supervised projection function. In a simi-

lar way to the semi-supervised quantisation algorithms introduced in Chapters 4-5 my

projection model requires an offline training phase in which to learn the hashing hy-

perplanes
{

wk ∈ RD}K
k=1. Once the hyperplanes are learnt the encoding (test) stage of

the linear variant of my algorithm is as fast as any other baseline including LSH: we

simply take the dot product of the data-point feature representation with the K hyper-

planes and quantise the resulting projections. In this experiment I use the linear variant

of my algorithm as initialised with LSH. In Table 6.5 I present the training and testing

times in seconds for my algorithm (GRH) and two competitive supervised projection

functions proposed in the literature (KSH and BRE). I observe that the linear variant

of GRH is competitive in training and testing time to the baseline projection functions.

Train Complexity Time (s) Test Complexity Time (s)

GRH O(MNtrdDK +MSK) 8.01 O(NteqDK) 0.03

KSH O(KNtrdC+KC3) 74.02 O(NteqDC+NteqCK) 0.10

BRE O(KNtrdC+KNtrd logNtrd) 227.84 O(NteqDC+NteqCK) 0.37

Table 6.5: Training and testing time on the CIFAR-10 dataset (seconds), stated as

an average across all 1,000 queries over 10 independent runs. The results for the

linear variant of GRH (GRHlin,lsh) are shown. The timing results were recorded on

an otherwise idle Intel 2.7GHz, 16Gb RAM machine. All models are implemented in

the same software stack (Matlab). For CIFAR-10: D = 512,C = 300,M = 4,Ntrd =

1,000,K = 32,Nteq = 1,000 (queries) and S is the number of non-zero elements in

the data-point adjacency matrix S. S is typically 10% of N2
trd for CIFAR-10 with the

class-based groundtruth.
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For example on CIFAR-10 at 32 bits, GRHlin,lsh with four iterations (M = 4) requires

only 11% of the training time of KSH and only 3.5% of BRE while crucially exhibiting

a prediction (testing) time that is approximately an order of magnitude lower than both

baselines.

BRE is particularly expensive at training time requiring substantially more compu-

tation than my own model and the KSH baseline. The reason for this disparity is the

coordinate descent optimisation algorithm employed by BRE to update the hashing

hyperplanes during the learning procedure. As touched upon in my review of BRE in

Chapter 2, Section 2.6.4.2, BRE attempts to optimise an objective function involving

the sign function making it non-differentiable and therefore gradient descent inapplica-

ble. Instead coordinate descent is used to update each element of each hyperplane indi-

vidually during an iteration making the optimisation much less efficient. In my review

in Chapter 2, I hinted at three ways in which this discrete optimisation can be relaxed:

performing a coordinate descent directly in the discrete hashcode space, dropping the

sign function (“spectral relaxation”) or using the multi-step iterative scheme design

pattern in which the hyperplanes and hashcodes are optimised individually, while keep-

ing the other fixed. KSH implements the gradient descent method and my contribution

is an example of the iterative multi-step approach. Given the timing results, I conclude

that relaxing the NP-hard discrete optimisation problem leads, as might be expected,

to a more computationally efficient training time. I examine the retrieval effectiveness

arising from these different flavours of optimisation in Section 6.3.3.9.

6.3.3.3 Effect of the Interpolation Parameter α and Iterations M

The interpolation parameter α in Equation 6.1 determines the proportion of regularised

bits from the previous iteration and the initialised bits at iteration 0 that are used to

compute the regularised hashcodes at the current iteration. Adjusting α in the range

[0,1] determines how much weight we place on smoothing the bits using the image

adjacency graph compared to maintaining a consistency with the initial hashcodes. In

some sense this parameter is reminiscent of the interpolation parameter used in the

multiple threshold quantisation model introduced in Chapter 4 in which an interpola-

tion was made between a supervised and unsupervised signal. In that chapter I found

the supervised signal to be much more important in general than the unsupervised

signal for the purposes of effective hashcode generation. In this section I conduct a

similar investigation for the α parameter in the context of my graph regularised pro-

jection function. I also jointly examine the effect of the number of iterations M since
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Figure 6.6: CIFAR-10 validation mAP at 32 bits versus iterations (M) and the setting of

the interpolation parameter α. GRH is parameterised with a linear kernel and an LSH

initialisation. The setting of α is more important to final retrieval effectiveness than the

value of M.

the optimal setting of both parameters is likely to be tied given their existence within

the central optimisation loop of my algorithm. To isolate the effect of α and M only, I

keep the linear SVM flexibility of margin set to C = 1.0 throughout this experiment.

In Figure 6.6 I present a set of results that illustrate how the retrieval effective-

ness on the CIFAR-10 validation dataset is influenced by the setting of the α and M

parameters. To create the validation dataset I reserved a randomly selected propor-

tion of the CIFAR-10 dataset to form the validation dataset queries (Xvaq ∈ RNvaq×D,

Nvaq = 1,000) and validation dataset database (Xvad ∈RNvad×D, Nvad = 10,000) against

which those queries were run. I observe that the retrieval effectiveness appears to de-

pend largely on the setting of α, and less so on the number of iterations M. The highest

validation mAP is achieved with α = 0.9 in the case of this particular random valida-

tion dataset split. This result agrees with expectations in that it is much more important

to smooth the bits with the adjacency graph than it is to maintain a consistency with

the initialised hashcodes B0.

Given that the optimal α may vary depending on the random split of the dataset,

on the hashcode length and on the manner of initialisation (LSH or ITQ+CCA), I

conducted further experiments to verify the preferred setting of the parameter on the
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Figure 6.7: Box plots displaying the variation in the α value (Figure (a)) and the number

of iterations (M) (Figure (b)) across different hashcode lengths. Results are for the

CIFAR-10 dataset with an ITQ+CCA embedding.

CIFAR-10 dataset. To do so I swept α ∈ [0.1,0.2,0.3, . . . ,0.9,1.0] over five random

validation dataset splits (Xvaq, Xvad) and found the value of α that yielded the max-

imum validation dataset mAP for each split. This procedure was repeated for four

different hashcode lengths K ∈ [16,32,48,64] and for two different initialisation meth-

ods (LSH and ITQ+CCA). For an LSH initialisation of the hashcodes, I found the

minimum and maximum value of α to be 0.9 and 1.0 respectively, with a modal value

of α = 1.0. The situation is rather different when I initialise my model with a super-

vised ITQ+CCA embedding (Figure 6.7a). In this case much lower values of α are

frequently optimal (modal value of α = 0.6) thereby placing more weight on the ini-

tialised hashcodes during the optimisation procedure. This finding is quite intuitive

given that the supervised embedding generally provides a much better initialisation

point for the optimisation than hashcodes generated from a random spatial partition-

ing. Nevertheless, in both cases (LSH and ITQ+CCA), I find that the median α value

is always above 0.5 thereby giving a greater proportion of the weight to the supervisory

signal.

I now explore the preferred setting of the number of iterations (M) in more detail.

In a similar manner to my exploration of the α parameter I form five different random

validation dataset splits (Xvaq, Xvad). For each of those five validation datasets I find

the value of iteration number at which the validation mAP first falls. The preferred

value of M is then set to be the number of the previous iteration. I repeat this pro-
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cedure for four different hashcode lengths (16, 32, 48 and 64 bits). In general, I find

that the best setting of M for CIFAR-10 is always found to be between 1-5 iterations

with a median of 2 iterations for all considered hashcode lengths and both methods

of initialisation (LSH or ITQ+CCA). In Figure 6.7b I illustrate this by showing the

box plot depicting the variation in M for an ITQ+CCA initialisation. The fact that the

optimisation reaches the highest validation mAP within a low number of iterations is

encouraging from an efficiency standpoint and is in fact one reason the training time

of my iterative model is a fraction of that exhibited by comparable baselines (Section

6.3.3.2).

6.3.3.4 Experiment I: Learnt Hyperplanes versus Random Hyperplanes

In this experiment I compare the graph regularised projection function against two

well-known randomised projection functions that both draw the hashing hyperplanes

randomly within the input feature space. My baselines are Locality Sensitive Hashing

(LSH) and Shift Invariant Kernel Hashing (SKLSH) both of which were reviewed in

Chapter 2, Section 2.4.1 and Section 2.6.2.1, respectively. SKLSH and the inner prod-

uct similarity version of LSH both draw K hyperplanes randomly from a zero mean unit

variance multidimensional Gaussian distribution. The distribution of the input data is

therefore not considered during the spatial partitioning of the input feature space, with

both algorithms depending on an asymptotic guarantee that as the number of hashcode

bits is increased the desired similarity will be preserved in the generated hashcodes. In

this section I contest that this random partitioning of the input feature space does not

lend itself well to the generation of compact and discriminative hashcodes for image

retrieval.

CIFAR-10 (Experiment I)

16 bits 32 bits 64 bits

LSH 0.1290 (0.1327) 0.1394 (0.1403) 0.1525 (0.1531)

SKLSH 0.1145 (0.1174) 0.1199 (0.1182) 0.1269 (0.1270)

GRHlin,lsh 0.2149 (0.2137)NN 0.2443 (0.2427)NN 0.2460 (0.2445)NN

Table 6.6: mAP on the CIFAR-10 image dataset for GRH and the LSH and SKLSH

baselines. lin: linear kernel, lsh: LSH initialisation. NN/HH indicates a statistically

significant increase/decrease (Wilcoxon, p < 0.01) over LSH. The improved splitting

strategy result is shown in brackets.
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NUS-WIDE (Experiment I)

16 bits 32 bits 48 bits 64 bits

LSH 0.3837 0.3883 0.3863 0.3879

SKLSH 0.3724 0.3755 0.3734 0.3827

GRHlin,lsh 0.4928NN 0.4971NN 0.5023NN 0.5065NN

Table 6.7: mAP for the NUS-WIDE dataset. lin: linear kernel, lsh: LSH initialisation.

NN/HH indicates a statistically significant increase/decrease (Wilcoxon, p < 0.01) over

LSH.

SIFT1M (Experiment I)

16 bits 32 bits 48 bits 64 bits

LSH 0.0273 0.1051 0.2023 0.2524

GRHlin,lsh 0.0388N 0.1569NN 0.2980NN 0.3860NN

Table 6.8: AUPRC for the SIFT1M dataset. lin: linear kernel, lsh: LSH initialisation.

NN/HH indicates a statistically significant increase/decrease (Wilcoxon, p < 0.01) over

LSH. N/H indicates a statistically significant increase/decrease (Wilcoxon, p < 0.05)

over LSH.

In Tables 6.6-6.8 and Figure 6.8 I present the performance achieved by my own

method (GRHlin,lsh) and the two considered baselines (LSH, SKLSH) on the CIFAR-

10, NUS-WIDE and SIFT1M image collections. The parameters of my model (M,α,C)

are optimised in accordance with the procedure outlined in Section 6.3.2. On all three

datasets I observe that my graph regularised projection function decisively outperforms

both baselines across all considered hashcode lengths yielding the highest overall per-

formance in each case. For example, at a hashcode length of 32 bits on CIFAR-10,

my algorithm for learning the hashing hyperplanes achieves a considerable 75% in-

crease in mAP compared to LSH. The precision recall curve for GRH dominates those

of LSH and SKLSH at all recall levels (Figure 6.8a). A similar pattern is found on

the larger NUS-WIDE dataset, where at 32 bits GRH both attains a 28% increase in

mAP (Table 6.7) and dominates at all levels of recall (Figure 6.8b), and the SIFT-1M

dataset with metric-based supervision (Table 6.8). I confirm my first hypothesis (H1)

that learnt hyperplanes can achieve a higher retrieval effectiveness with compact hash-

codes than randomly placed hyperplanes. I note that this experimental result accords

with the wealth of evidence presented in the supervised projection function literature
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Figure 6.8: Precision recall curves for the CIFAR-10 dataset (Figure (a)) and the NUS-

WIDE dataset ((b)) for a hashcode length of 32 bits. Results are for Experiment I.

as to the higher effectiveness of learnt hyperplanes versus random hyperplanes (Liu

et al. (2012), Gong and Lazebnik (2011)). A selection of qualitative results comparing

the top ten ranked images for LSH and GRHlin,lsh are presented in Tables 6.9-6.12.

Finally, it is apparent in Table 6.6 that the mAP figures resulting from the literature

standard and improved splitting strategies described in Chapter 3, Section 3.5 are effec-

tively similar and importantly do not change the ranking of the algorithms (from best

to worst). This finding corroborates my earlier results in Chapters 4-5 in which I also

found that there was no significant difference between the results obtained from both

methods of splitting the dataset into testing and database partitions. In this chapter I

will again therefore only report the retrieval results arising from the literature standard

dataset splitting strategy.

6.3.3.5 Experiment II: Supervised versus Data-Dependent (Unsupervised) Hy-

perplane Learning

In the previous experiment I found that hashcodes generated from hyperplanes that

were learnt based on class labels were more effective than those derived from ran-

domly generated hyperplanes. In this experiment I will compare hyperplanes learnt

with a supervisory signal to hyperplanes that are learnt using an unsupervised matrix

factorisation such as a Laplacian Eigenmap (LapEig) or Principal Components Analy-

sis (PCA). In my review in Chapter 2, Section 2.6.3 I described four projection func-

tions for hashing that all leveraged a matrix factorisation to learn hyperplanes: PCAH,
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Table 6.9: Left-most column: Truck query image. Top row: GRH top 10 retrieved

images, precision: 0.8. Bottom row: LSH top 10 retrieved images, precision: 0.4.

Shaded cells indicated true positives.

Table 6.10: Left-most column: Boat query image. Top row: GRH top 10 retrieved

images, precision: 0.5. Bottom row: LSH top 10 retrieved images, precision: 0.0.

Table 6.11: Left-most column: Deer query image. Top row: GRH top 10 retrieved

images, precision: 0.5. Bottom row: LSH top 10 retrieved images, precision: 0.0.

Table 6.12: Left-most column: Bird query image. Top row: GRH top 10 retrieved

images, precision: 0.7. Bottom row: LSH top 10 retrieved images, precision: 0.4.
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CIFAR-10 (Experiment II)

16 bits 32 bits 48 bits 64 bits

PCAH 0.1322 0.1291 0.1256 0.1234

SH 0.1306 0.1296 0.1346 0.1314

ITQ 0.1631 0.1699 0.1732 0.1743

AGH 0.1616 0.1577 0.1599 0.1588

GRHlin,lsh 0.2149NN 0.2443NN 0.2433NN 0.2460NN

Table 6.13: mAP on the CIFAR-10 image dataset. lin: linear kernel, lsh: LSH initialisa-

tion. NN/HH indicates a statistically significant increase/decrease (Wilcoxon, p < 0.01)

over ITQ.

SH, ITQ and AGH. Three of these methods (ITQ, SH, PCAH) leverage PCA to learn a

set of hyperplanes that capture the maximum variance in the input feature space, while

two of those (ITQ, SH) then further attempt to balance the variance across hyperplanes

by rotating the data (ITQ) or assigning more bits to higher variance hyperplanes (SH).

The importance of exploiting the more reliable higher variance hyperplanes was dis-

cussed in detail in Chapter 5 in the context of my own variable threshold quantisation

algorithm. In contrast, AGH instead leverages the Laplacian Eigenmap dimensional-

ity reduction method to learn data-dependent hyperplanes. In this experiment I will

discover how these unsupervised dimensionality reduction methods compare against

hashing hyperplanes that are learnt based on a supervisory signal. I hypothesise that

supervision is critical to retrieval effectiveness and that relying on an unsupervised sig-

nal such as variance to learn discriminative hyperplanes is sub-optimal. Note as for all

projection functions in this chapter I use single bit quantisation (SBQ) to binarise the

projections.

The experimental results are presented in Table 6.13 for the CIFAR-10 dataset and

in Table 6.14 for the NUS-WIDE dataset. Across both datasets and all considered

hashcode lengths I see that hashcodes generated from hyperplanes learnt with a super-

visory signal (GRHlin,lsh) significantly (Wilcoxon signed rank test, p < 0.01) outper-

form hashcodes learnt from a matrix factorisation (PCAH, SH, ITQ, AGH). I confirm

hypothesis H2 and conclude from these experimental results that it is critical to in-

tegrate a degree of supervision into a hashing projection function so as to maximise

retrieval effectiveness.
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NUS-WIDE (Experiment II)

16 bits 32 bits 48 bits 64 bits

PCAH 0.3890 0.3863 0.3829 0.3804

SH 0.3734 0.3751 0.3760 0.3751

ITQ 0.4112 0.4136 0.4148 0.4164

AGH 0.3820 0.3809 0.3782 0.3767

GRHlin,lsh 0.4928NN 0.4971NN 0.5023NN 0.5065NN

Table 6.14: mAP on the NUS-WIDE image dataset. lin: linear kernel, lsh: LSH initiali-

sation. NN/HH indicates a statistically significant increase/decrease (Wilcoxon signed

rank test, p < 0.01) over ITQ.

6.3.3.6 Experiment III: Graph Regularisation versus Laplacian Eigenmap (LapEig)

Embedding

In this experiment, I am interested in isolating the effect of the graph regularisation

component of my model. Recall from Section 6.2.3 that in Step A of the algorithm

the hashcodes at the current iteration are smoothed (regularised) over the image ad-

jacency graph encoded in the matrix S ∈ {0,1}Ntrd×Ntrd . I hypothesise that this graph

regularisation component is the critical factor in the effectiveness of my projection

function. To investigate this hypothesis I compare directly to the Self Taught Hash-

ing (STH) model of Zhang et al. (2010b). In Chapter 2, Section 2.6.4.4, I reviewed

STH in detail. To summarise, STH first projects the training data-points into a lower K

dimensional space using the Laplacian Eigenmap (LapEig) dimensionality reduction

technique. LapEig takes as input an adjacency graph encoding the pairwise relation-

ship between the training data-points and attempts to construct an embedding space in

which data-points close by in S are close by in the embedding space. The STH model

then binarises the resulting Laplacian eigenvectors to form Ntrd K-bit hashcodes, one

hashcode for each of the Ntrd training data-points. The bits of the hashcodes are sub-

sequently used as the labels to learn K binary SVM classifiers, the weight vectors of

which form the hashing hyperplanes. The STH baseline is therefore the most closely

related projection function to my own model. The main difference between STH and

my own model lies in the use of LapEig and graph regularisation to maintain the neigh-

bourhood structure, respectively. By directly comparing both models on the task of

image retrieval I can therefore measure which method of maintaining the neighbour-

hood structure between the data-points is more effective, namely graph regularisation
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CIFAR-10 (Experiment III)

16 bits 32 bits 48 bits 64 bits

STHlin 0.1713 0.1848 0.1806 0.1891

GRHlin,lsh 0.2149NN 0.2443NN 0.2433NN 0.2460NN

Table 6.15: mAP on the CIFAR-10 image dataset. lin: linear kernel, lsh: LSH initialisa-

tion. NN/HH indicates a statistically significant increase/decrease (Wilcoxon, p < 0.01)

over STH.

or LapEig.

To ensure a fair comparison between both models I use the same data-point adja-

cency graph S ∈ {0,1}Ntrd×Ntrd ,Ntrd = 1,000 for both STH and my own model. I also

tune the linear SVM parameters of STH in the same way I tune the linear SVM param-

eters of my own model (Section 6.3.2). The retrieval results from this experiment are

shown in Tables 6.15-6.16 and in Figure 6.9. It is clear that my own model incorpo-

rating the graph regularisation component achieves consistently better retrieval effec-

tiveness across both image datasets. Regularising hashcodes over an adjacency graph

is therefore much more effective at learning hyperplanes for the purposes of hashing-

based ANN search than is applying a LapEig dimensionality reduction. Furthermore,

as STH also uses SVMs trained with hashcodes as targets, this result demonstrates

that the gain realised by my model is not simply due to the use of SVMs for hyper-

plane learning. These findings, coupled with that in the previous experiment (Section

6.3.3.5), effectively negates the need for using a matrix factorisation to learn data-

dependent hashcodes, a considerable computational bottleneck in the current breed of

data-dependent hashing models. To the best of my knowledge this is the first time that

a result of this nature has been reported in the learning to hash literature.

NUS-WIDE (Experiment III)

16 bits 32 bits 48 bits 64 bits

STHlin 0.4470 0.4593 0.4656 0.4629

GRHlin,lsh 0.4928NN 0.4971NN 0.5023NN 0.5065NN

Table 6.16: mAP on the NUS-WIDE image dataset. lin: linear kernel, lsh: LSH initialisa-

tion. NN/HH indicates a statistically significant increase/decrease (Wilcoxon, p < 0.01)

over STH.
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Figure 6.9: Precision recall curves for the CIFAR-10 dataset (Figure (a)) and the NUS-

WIDE dataset (Figure (b)) for a hashcode length of 32 bits. Results are for Experiment

III.

6.3.3.7 Experiment IV: Supervised versus Unsupervised Initialisation

The graph regularised projection function requires an initial set of hashcodes B0 ∈
{0,1}Ntrd×Ntrd to be used as an initialisation point for the optimisation. Any exist-

ing hash function, data-independent or dependent, can be used in this context. In

this experiment I seek to understand the effect on retrieval effectiveness arising from

the method of hashcode initialisation. I hypothesise that a supervised initialisation

will yield a higher retrieval effectiveness than an unsupervised initialisation due to the

better starting point in weight space. To this end, I select LSH as a representative

data-independent projection function and ITQ+CCA as a data-dependent projection

function for hashcode initialisation. Note the number of GRH iterations M is opti-

mised separately for both modes of initialisation on the held-out validation dataset,

and therefore may not be identical. The retrieval results arising from these two modes

of initialisation are shown in Table 6.17 for CIFAR-10 and Table 6.18 for NUS-WIDE.

For CIFAR-10 the supervised initialisation (GRHlin,cca) yields a significantly higher

retrieval effectiveness (Wilcoxon signed rank test, p < 0.01) than the unsupervised

initialisation (GRHlin,lsh) for 16, 48 and 64 bits, but not for 32 bits (Table 6.17). On

this particular dataset the manner of initialisation therefore gives a significant, albeit

relatively small boost to the final retrieval performance of my algorithm. I can there-

fore confirm hypothesis H4 and that supervised initialisation can have a positive effect
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CIFAR-10 (Experiment IV)

16 bits 32 bits 48 bits 64 bits

GRHlin,lsh 0.2149 0.2443 0.2433 0.2460

GRHlin,cca 0.2403NN 0.2508 0.2596NN 0.2643NN

Table 6.17: mAP on the CIFAR-10 image dataset. lin: linear kernel, lsh: LSH initialisa-

tion, cca: ITQ+CCA initialisation. NN denotes statistical significance (Wilcoxon signed

rank, p < 0.01) versus GRHlin,lsh.

NUS-WIDE (Experiment IV)

16 bits 32 bits 48 bits 64 bits

GRHlin,lsh 0.4928 0.4971 0.5023 0.5065

GRHlin,cca 0.4969 0.4985 0.5027 0.5000

Table 6.18: mAP on the NUS-WIDE image dataset. lin: linear kernel, lsh: LSH initiali-

sation, cca: ITQ+CCA initialisation.

on retrieval effectiveness. On the NUS-WIDE dataset, the manner of initialisation has

no significant effect as observed in Table 6.18. It is comforting that the majority of

the observed performance on this dataset can be achieved with a random LSH initial-

isation, thereby allowing one to avoid an initialisation based on an expensive matrix

factorisation.

6.3.3.8 Experiment V: Non-Linear Hypersurfaces versus Linear Hypersurfaces

The semantic relationship between images is likely to be complex and highly non-

linear in the input feature space. Linear hypersurfaces due to their restriction to form-

ing planes in the feature space may not provide as good a partitioning of the space

compared to non-linear hypersurfaces that have a greater degree of freedom. My model

maintains the flexibility of using either linear or non-linear hypersurfaces to partition

the input feature space. In this experiment I hypothesise, due to the enhanced flexibility

of the induced decision boundaries, that non-linear hypersurfaces will lead to a higher

retrieval effectiveness than hyperplanes (linear hypersurfaces). Recall from Chapter 2

that linear hash functions employing hyperplanes as a means of spatial partitioning are

by far the most common hash functions in the learning to hash literature. I contend

that the greater flexibility exhibited by non-linear hypersurfaces is more likely to lead

to a better spatial partitioning of the data in which more related data-points fall within
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the same regions. Given that data-points within the same enclosed regions formed by

the non-linear hypersurfaces will have the same hashcodes, I therefore expect a higher

retrieval effectiveness to arise from a more refined spatial partitioning. I perform a set

of experiments in this section to test this claim.

To learn non-linear hypersurfaces I simply replace the linear kernel in the dual form

of the SVM with a non-linear radial basis function (RBF) kernel6. The standard dual

formulation of the SVM is specified in Equation 6.4 (Bishop (2006))

arg minα

Ntrd

∑
i=1

αi−
1
2

Ntrd

∑
i, j

BikB jkαiα jxᵀi x j

subject to 0≤ αi ≤C i ∈ {1 . . .Ntrd}
Ntrd

∑
i=1

αiBik = 0

(6.4)

The inner product (xᵀi x j) an be replaced by a non-linear kernel such as the radial

basis function (RBF) kernel given in Equation 6.5

κ(xi,x j) = exp(−γ‖xi−x j‖2) (6.5)

where γ ∈ R+ is the kernel bandwidth parameter controlling the width or extent of

the kernel within the feature space. The ease with which my projection function can

be transformed from a linear to a non-linear model is a useful advantage compared

to previous work. The power of the RBF kernel comes from the use of the “kernel

trick” (Bishop (2006)) to implicitly map the input data to a higher dimensional feature

space RD′ (D′� D) in which the data is more likely to be linearly separable by linear

decision boundaries. These hyperplanes in the higher dimension space form complex

non-linear decision boundaries (hypersurfaces) in the original feature space RD. Figure

6.10 illustrates the differences in the spatial partitionings possible through linear and

non-linear hypersurfaces on the CIFAR-10 dataset. The non-linear hash function can

then be specified as in Equation 6.6.

hk(xi) = sgn(
Ntrd

∑
j=1

αiBikκ(xi,x j)) (6.6)

This is by no means the first time a kernelised hash function has been reported

in the literature. For example, Liu et al. (2012) introduced a non-linear hash func-

tion that exhibited exemplary performance on image retrieval tasks, while Zhang et al.
6Other SVM kernels such as the polynomial kernel can easily be incorporated in my model in a

similar fashion. I leave investigation of these additional kernels to future work.
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Linear Hypersurfaces Non-Linear Hypersurfaces

Figure 6.10: The differences between the decision boundaries induced by linear hy-

persurface (left) and non-linear hypersurfaces (right) on a 2D PCA projection of the

CIFAR-10 dataset with 10 classes. Data-points and their classes are indicated by the

coloured dots. Regions are coloured according to the predicted class for that region,

and γ = 0.07 for the RBF kernel. This illustration is simply a 2D slice of the origi-

nal 512 dimensional feature space. The data-points therefore may not be classed into

the region within which they appear to lie within the 2D space as they are unlikely

to lie on the plane spanned by the two PCA principal components. This example is

inspired by a similar example presented at: http://scikit-learn.org/stable/

auto_examples/plot_kernel_approximation.html (URL accessed on 24/3/16).

(2010a) made a non-linear extension to their Self Taught Hashing model first described

in Zhang et al. (2010b). I compare my non-linear kernelised hash function to this

model (KSH) in Section 6.3.3.9, and for the moment I focus on determining whether

or not more complex decision boundaries translate to enhanced retrieval effectiveness

for hashing-based ANN search.

I note here a significant downside to the use of non-linear hashing hypersurfaces:

the substantial increase in the time required to encode novel data-points. For the linear

hypersurfaces we need only perform K dot products, one for each of the K hyperplanes

giving an O(KD) time complexity. For the non-linear hypersurfaces this increases to

O(NtrdD), raising a serious question regarding the scalability of the non-linear model

to large-scale datasets. Recent research within the machine learning literature has pro-

posed new models for mitigating the computational complexity of learning non-linear

hypersurfaces on large datasets. For example, Zhang et al. (2012) introduce the Low-

rank Linearisation SVM (LLSVM) that only computes distances between the novel

data-point and C k-means centers rather than the full Ntrd training data-points giving

http://scikit-learn.org/stable/auto_examples/plot_kernel_approximation.html
http://scikit-learn.org/stable/auto_examples/plot_kernel_approximation.html


224 Chapter 6. Learning the Hashing Hypersurfaces

CIFAR-10 (Experiment V)

16 bits 32 bits 48 bits 64 bits

GRHlin,cca 0.2403 0.2508 0.2596 0.2643

GRHrb f ,300,cca 0.2718NN 0.2895NN 0.3026NN 0.3130NN

GRHrb f , f ull,cca 0.2991NN 0.3122NN 0.3252NN 0.3350NN

Table 6.19: mAP on the CIFAR-10 image dataset. lin: linear kernel, lsh: LSH initial-

isation, 300: landmark (approximate) RBF with 300 centers, f ull: standard RBF. NN

denotes statistical significance (Wilcoxon signed rank, p < 0.01) versus GRHlin,cca.

.

an encoding (prediction) time complexity of O(CD). This approach is reminiscent of

Anchor Graph Hashing (AGH) and Supervised Hashing with Kernels (KSH), both of

which reduce the number of pairwise comparisons by condensing the training dataset

into C k-means centroids. See Chapter 2, Section 2.6.3.4 and Section 2.6.4.3 for further

detailed information on AGH and KSH. In this section, unless otherwise indicated, I

use the budgetedSVM implementation of the LLSVM with C = 300 k-means centers

(landmarks) to learn non-linear hashing hypersurfaces on the CIFAR and NUS-WIDE

datasets. This model variant is denoted as GRHrb f ,300,cca. Furthermore, on the smaller

CIFAR-10 dataset I also investigate the retrieval effectiveness that is possible if I use

the full Ntrd ×Ntrd kernel matrix. This model is indicated as GRHrb f , f ull,cca in Table

6.19.

In Tables 6.19-6.20 I present the experimental results comparing the linear and non-

linear versions of my model. In each case I initialise the hashcodes with ITQ+CCA

and set the parameters of both models on the validation dataset (Xvaq, Xvad) using

the search strategy detailed in Section 6.3.2. I observe on the CIFAR-10 dataset that

the non-linear models (GRHrb f ,300,cca, GRHrb f , f ull,cca) significantly (Wilcoxon signed

rank test, p < 0.01) outperform the linear variant (GRHlin,cca) across hashcode lengths

of 16-64 bits. For example, at 32 bits GRHrb f , f ull,cca attains a 24% relative increase

in mAP on CIFAR-10 versus GRHlin,cca. No significant difference, however, is found

between the linear and non-linear variant on the NUS-WIDE dataset. The result on

the CIFAR-10 dataset supports my hypothesis (H5) that the greater flexibility of the

non-linear hypersurfaces can result in more discriminative hashcodes for the purposes

of hashing-based ANN search. To conclude, even though I found that the linear variant

of my model has significantly lower retrieval effectiveness than the non-linear variant,
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NUS-WIDE (Experiment V)

16 bits 32 bits 48 bits 64 bits

GRHlin,cca 0.4969 0.4985 0.5027 0.5000

GRHrb f , f ull,cca 0.4996 0.5144 0.5217 0.5269

Table 6.20: mAP on the NUS-WIDE image dataset. lin: linear kernel, cca: ITQ+CCA

initialisation.

I am encouraged that the mAP achieved by the linear version is nevertheless compet-

itive, achieving roughly 80% of the mAP of the non-linear variant on CIFAR-10 and

and indistinguishable performance on NUS-WIDE. This suggests we can still maintain

the attractive scalability of the linear learner while sacrificing a modicum of accuracy.

If spare CPU cycles are available and the highest retrieval accuracy is important, my

model can be used with non-linear hypersurfaces in a very straightforward manner to

further enhance effectiveness.

6.3.3.9 Experiment VI: Comparing to state-of-the-art Supervised Projection Func-

tions

I have so far established that hyperplanes learnt using a degree of supervision can

significantly outperform data-dependent (unsupervised) projection functions that rely

on a matrix factorisation (AGH, PCA, ITQ) and projection functions that randomly

partition the input feature space (LSH, SKLSH). In this final experiment I now compare

my model to state-of-the-art fully supervised projection functions: Supervised Hashing

with Kernels (KSH), Binary Reconstructive Embedding (BRE), ITQ+CCA and Self

Taught Hashing (STH) all learnt using an identical level of supervision as my own

model. These projection functions were reviewed in Chapter 2, Section 2.6.4. KSH,

BRE and STH can be further configured to learn non-linear hypersurfaces in a similar

manner to my own model and so the learning capacity of the baselines are now on

a similar footing. To ensure a fair comparison between the kernelised models (BRE,

KSH and GRHrb f ) I configure all three models to use C = 300 k-means anchor points

to compute the kernel. In this section I will therefore gain an insight into the effect of

the style of optimisation framework on the resulting retrieval effectiveness.

Recall from Chapter 2, Section 2.6.4 that there are effectively three options when

learning the hashing hypersurfaces: retain the sign function in the optimisation frame-

work and attempt to learn directly within the discrete hashcode space, drop the sign
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CIFAR-10 (Experiment VI)

16 bits 32 bits 48 bits 64 bits

ITQ+CCA 0.2015 0.2130 0.2208 0.2237

STHrb f 0.2352 0.2072 0.2118 0.2000

BRErb f 0.1659 0.1784 0.1904 0.1923

KSHrb f 0.2496 0.2785 0.2849 0.2905

GRHrb f ,300,cca 0.2718NN 0.2895N 0.3026NN 0.3130NN

GRHrb f , f ull,cca 0.2991NN 0.3122NN 0.3252NN 0.3350NN

Table 6.21: mAP on the CIFAR-10 image dataset. rb f : radial basis function kernel,

cca: ITQ+CCA initialisation. NN denotes statistical significance (Wilcoxon signed rank,

p < 0.01) versus KSHrb f . N denotes statistical significance (Wilcoxon signed rank,

p < 0.05) versus KSHrb f .

function and optimise a continuous surrogate or employ an iterative multi-step scheme.

BRE employs the first strategy relying on coordinate descent to update the hyperplanes,

while KSH uses the second optimisation strategy and performs gradient descent using

a continuous approximation to the hashcodes. In both cases BRE and KSH adjust the

hypersurfaces in an attempt to minimise the difference between the labels and the hash-

code distances. My model (and ITQ+CCA) is an example of the third option in which

the optimisation of the hascodes (Step A: regularisation) is separated from the updat-

ing of the hypersurfaces (Step B: partitioning). This multi-step strategy allows us to

neatly avoid directly optimising an NP-hard objective involving the non-differentiable

sign function.

In this experiment, I compare my model to the state-of-the-art supervised hashing

models on the task of image retrieval. To do so, I give all models the same amount of

supervision (Ntrd = 1,000 for CIFAR-10, Ntrd = 10,500 for NUS-WIDE) and parame-

terise each to learn non-linear hypersurfaces (for ITQ+CCA the latter is not possible).

The retrieval results arising from this experiment are shown in Table 6.21 for CIFAR-

10 and Table 6.22 for NUS-WIDE. I can make three claims from these results: firstly a

multi-step iterative scheme (GRH) can be much more effective (Wilcoxon signed rank

test, p < 0.01) than a coordinate descent procedure (BRE) across both datasets. Sec-

ondly it is encouraging that my proposed model significantly outperforms (Wilcoxon

signed rank test, p < 0.01,0.05) the state-of-the-art KSH model on the CIFAR-10

dataset across all hashcode lengths. The GRHrb f ,300,cca variant is parameterised with
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NUS-WIDE (Experiment VI)

16 bits 32 bits 48 bits 64 bits

ITQ+CCA 0.4268 0.4186 0.4161 0.4101

STHrb f 0.4320 0.4499 0.4322 0.4305

BRErb f 0.4476 0.4650 0.4736 0.4776

KSHrb f 0.4849 0.4912 0.4976 0.5018

GRHlin,cca 0.4969 0.4985 0.5027 0.5000

GRHrb f , f ull,cca 0.4996 0.5144 0.5217 0.5269

Table 6.22: mAP on the NUS-WIDE image dataset. rb f : radial basis function kernel,

cca: ITQ+CCA initialisation.

C = 300 k-means anchor points, which is an identical to the number of anchor points

used by KSH. For example, at 32 bits on CIFAR-10, GRHrb f , f ull,cca realises a 12%

relative increase in mAP over the state-of-the-art KSH model, while GRHrb f ,300,cca

achieves a 4% increase. I note, however, that there is no significant difference be-

tween either my linear (GRHlin,cca) or RBF parameterised models (GRHrb f ,1200,cca)

and KSH on the larger NUS-WIDE dataset (Table 6.22). The former result is impact-

ful, as the linear model (GRHlin,cca) is much faster at training and prediction time than

KSH (Section 6.3.3.2), but maintains the same level of accuracy on NUS-WIDE.

Finally my model does not explicitly enforce properties E3 and E4 of an effective

hashcode as outlined by Weiss et al. (2008) and reviewed in Chapter 2, Section 2.6.1.

Recall that property E3 targets the efficiency of the bits and how they ideally should

present a balanced partition of the input feature space so that not all N data-points end

up in the same bucket. Property E4, on the other hand, specifies that bits should not be

redundant and that a good hashing model should therefore learn bits that are pairwise

independent. ITQ+CCA learns hyperplanes that are pairwise orthogonal which is a

relaxed version of the pairwise independence property, and the method also approxi-

mately preserves property E3 due to the variance maximisation (Wang et al. (2012)).

Other projection functions (PCAH, ITQ, AGH) I compared to in Section 6.3.3.5 also

learn orthogonal hyperplanes courtesy of a matrix factorisation. This result suggests

further experimentation to determine whether enforcing constraints E3,E4 is in fact

necessary when learning effective hash functions. I leave this study to future work.



228 Chapter 6. Learning the Hashing Hypersurfaces

6.4 Discussion

In the first part of this chapter I introduced a new unimodal supervised projection func-

tion for hashing-based ANN search (Section 6.2). The hashing model is centered upon

a three step iterative algorithm inspired by the Expectation-Maximisation (EM) algo-

rithm of Dempster et al. (1977). Before running the model, I initialise a set of K-bit

hashcodes for the training data-points by using an existing fingerprinting scheme such

as Locality Sensitive Hashing (LSH). In the first step the model regularises (smooths)

these training dataset hashcodes over a data-point affinity graph that specifies which

training data-points are deemed similar and dissimilar according to human assigned

judgments (Section 6.2.3). This first step has the effect of updating the hashcode for a

data-point to be the average of the hashcodes of its nearest neighbours (before binari-

sation). The second step of the algorithm learns a set of K binary classifiers to predict

the training dataset hashcodes with maximum margin (Section 6.2.4). This second step

learns K hyperplanes that partition the input feature space in a manner that is consis-

tent with the regularised hashcodes at that step. In other words, the learnt hyperplanes

should be able to encode the training dataset to give hashcodes that are similar if not

identical to the regularised hashcodes. As these hashcodes were previously regularised

in Step A according to a graph built out of supervisory information, in this way we

are indirectly able to infuse a degree of supervision into the hyperplane learning pro-

cedure. The learnt hyperplanes are then used to re-label the training dataset points

with updated hashcodes which has the effect of flipping the bits of those data-points

that could not be correctly classified in the second step (i.e. data-points that fell on the

wrong side of one or more hyperplanes) (Section 6.2.5). These relabeled hashcodes

are then fed back into the first step ready for the next iteration. These steps are then

repeated for a fixed number of iterations. This three step procedure neatly allowed us

to avoid an NP-hard optimisation problem involving the sign function. To the best of

my knowledge the model presented in this chapter is the first projection function for

hashing-based ANN search that uses graph regularisation as a means of integrating

supervision into hyperplane learning.

In an extensive series of experiments on the task of query-by-example image re-

trieval I demonstrated the benefit of my approach. The evaluation of the algorithm was

broken down into six hypotheses that were designed to isolate the effect of different

aspects of the model. The findings resulting from the six experiments are highlighted

below:
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• Learnt hyperplanes result in more effective hashcodes than randomly placed

hyperplanes. I found a significantly higher retrieval effectiveness arising from

hashcodes generated from learnt hyperplanes versus those hashcodes generated

from data-independent projection functions such as LSH and SKLSH. Random

hyperplanes run the risk of partitioning regions of the space dense in related data-

points, whereas learnt hyperplanes can be more effectively positioned based on

supervision. Quantitative results supporting this claim can be found in Section

6.3.3.4, Tables 6.6-6.8.

• Hyperplanes learnt using supervision generate more effective hashcodes than hy-

perplanes learnt using an unsupervised but data-dependent matrix factorisation

such as PCA or the Laplacian Eigenmap. This claim is supported by the results

in Section 6.3.3.5, Tables 6.13-6.14.

• Regularising hashcodes over a data-point affinity graph is a more effective method

of integrating supervision into the process of hyperplane learning than a Lapla-

cian Eigenmap dimensionality reduction. Results relating to this claim are pre-

sented in Section 6.3.3.6, Tables 6.15-6.16.

• Initialising hashcodes with a supervised embedding can yield a higher retrieval

effectiveness than a random initialisation. Nevertheless, a random initialisation

resulted in an impressive, albeit lower, retrieval effectiveness compared to a su-

pervised initialisation on both of the considered image datasets (CIFAR-10 and

NUS-WIDE). Relevant results are presented in Section 6.3.3.7, Tables 6.17-6.18.

• Non-linear hypersurfaces induced by the radial basis function (RBF) kernel pro-

vide a more effective partitioning of the input feature space compared to linear

hypersurfaces (hyperplanes). The complex non-linear decision boundaries cre-

ated by the RBF kernel ensure more related data-points end up within the same

partitioned regions of the input feature space. The more effective partitioning

ultimately led to more discriminative hashcodes and a higher observed retrieval

effectiveness, at the expense of efficiency. Relevant results are presented in Sec-

tion 6.3.3.8, Tables 6.19-6.20.

While I am encouraged with the retrieval performance of my graph regularised pro-

jection function I note that it is currently restricted to unimodal hashing in which both

the query and database are encoded with the same feature descriptor (e.g. GIST Oliva
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and Torralba (2001)). As argued in Chapter 2, Section 2.6.5 many modern datasets are

multi-modal in nature, being associated with multiple different feature descriptors. It

would be particularly useful if I could pose a query encoded using one feature descrip-

tor (e.g. TF-IDF for a textual query) and match the query against a database encoded

with another feature descriptor (e.g. GIST of images). I show in Section 6.5 how my

projection function can be extended to obtain a state-of-the-art cross-modal projec-

tion function which generates similar binary hashcodes for similar data-points in two

different modalities.

6.5 Extending the Model to Cross Modal Hashing

As touched upon in my review of previously related research in Chapter 2, the major-

ity of existing hashing research has focused on generating binary codes for data-points

within the same modality (feature space), for example, a text query executed against a

database consisting of textual documents. However, it is frequently the case that sim-

ilar data-points exist in different modalities, for example a Wikipedia page discussing

Einstein and an associated image of the scientist. An interesting research question is

whether an effective hashing scheme can be constructed to learn hashcodes that are

also similar across disparate modalities - in this case the Einstein Wikipedia article

will ideally be assigned a similar hashcode to the relevant embedded image. Hashing

methods that effectively bridge the cross-modal gap will enable hashing-based ANN

search to be expanded to cross-modal datasets.

In this section I show how it is possible to extend my unimodal graph regularised

projection function introduced earlier in this chapter to hash data-points in two dif-

ferent modalities. Cross-modal hashing research has undoubtedly received increased

interest over the past several years due to the recent emergence of large freely available

cross-modal datasets from sources such as Flickr7 (Kumar and Udupa (2011); Bron-

stein et al. (2010); Zhen and Yeung (2012); Song et al. (2013); Rastegari et al. (2013)).

Existing cross-modal hashing schemes seek to jointly preserve the within-modality and

between-modality similarities of related data-points in a shared Hamming space. As I

discussed in Chapter 2, Section 2.6.5 this requirement is frequently solved by learning

two sets of K hyperplanes that partition each input feature space into buckets in a man-

ner that yields similar hashcodes for similar data-points both within and across the two

modalities.
7http://www.flickr.com

http://www.flickr.com
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6.5.1 Problem Definition

Let C = {(ai,vi) : i = 1. . .Ntrd} denote a collection of Ntrd annotated images. Each

image is represented by two components: the annotation ai, and the visual descriptor

vi. The annotation ai is a vector over textual features. Visual descriptor vi is a vector of

real-valued visual features. Our goal is to learn a pair of hash functions f ,g that map

annotations and visual descriptors into binary hashcodes consisting of K bits. I impose

two constraints on my hash functions: (i) the annotation hashcode f (ai) should be

similar to the visual hashcode g(vi) of the same image so that both feature descriptors

will end up in the same hashtable bucket; and (ii) the annotation hashcodes f (ai) and

f (a j) should be similar whenever images i and j are considered neighbours. The

neighbourhood structure for the collection is dictated by an affinity matrix S, where

Si j = 1 indicates that i and j are neighbours, and Si j = 0 indicates they are not.

6.5.2 Overview of the Approach

My cross-modal graph regularised projection function is based on the unimodal graph

regularised projection function introduced in Section 6.2. That projection function was

restricted to a single modality, while in this section I propose an extension that learns

a pair of hash functions across two separate modalities: text annotations ai and visual

descriptors vi. The hash functions f ,g are based on K hyperplanes each: {w1. . .wK}
for the space of words and {u1. . .uK} for the space of visual features. The hyperplane

w j is used to assign the j’th bit in the annotation hashcode, while u j determines the

j’th bit in the visual hashcode. I initialise all hyperplanes randomly using unimodal

LSH, and iteratively perform the following three steps: (1) Regularisation, where the

hashcodes {b1. . .bN} are made more consistent with the affinity matrix S and (2) Par-
titioning, where we adjust the hyperplanes w j,u j to be consistent with the j’th bit of

the hashcodes from step (2). Adjusting the visual hyperplanes based on the annotation

bits is how I form the necessary cross-modal bridge8. (3) Prediction, the hyperplanes

{w1. . .wK} are then used to assign hashcodes {b1. . .bN} to the training images which

are then fed back into Step A ready for the next iteration. Pseudocode describing the

salient parts of my model is provided in Algorithm 10. The key difference between

GRH is shown on Lines 8-9, where the annotation space bits are used to learn hyper-

planes in the annotation and visual feature spaces.

8Adjusting the visual hyperplanes based on annotation bits, and annotation hyperplanes based on
visual bits is also possible, but is left to future work.
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I note here that my model bears some similarities with the Predictable Dual-View

Hashing (PDH) projection function of Rastegari et al. (2013). I covered PDH in

detail in Chapter 2, Section 2.6.5.4 and previously gave a pseudocode specification

of the PDH model in Algorithm 5 on page 88. In a nutshell PDH also employs

an Expectation-Maximisation (EM)-like iterative learning scheme with a max-margin

formulation to refine the positioning of the hashing hyperplanes within both feature

spaces. In contrast to my model, PDH integrates supervision into the hyperplane

learning by solely relying on initialising the hashcodes with Canonical Correlation

Analysis (CCA). I previously described CCA in detail as part of my description of

the ITQ+CCA model in Chapter 2, Section 2.6.4.1. CCA finds two sets of K hyper-

planes, one set of K hyperplanes for each feature space, that result in projections that

are maximally correlated for related data-points across the two modalities. PDH also

explicitly seeks to induce a pairwise independence between the hashcode bits through

the solution of a graph Laplacian eigenvalue problem after each iteration. In a different

manner to PDH, I do not seek to enforce bit independence and I also do not rely on

an initial CCA initialisation to integrate the supervisory signal into learning algorithm.

Instead my proposed cross-modal hashing model eliminates the need to solve either

eigenvalue system, relying on graph regularisation to enforce the data-point must-link

and cannot-link constraints. I show in this section that my model can reach a higher re-

trieval effectiveness than PDH while also maintaining the attractive advantage of being

more efficient at training time.

6.5.2.1 Initialisation

I start by assigning a K-bit binary hashcode bi ∈ RK to each training image i. Each of

the K bits in bi is based on a dot product between the image annotation ai ∈ RDx and

one of the hyperplanes
{

w1 ∈ RDx , . . .,wK ∈ RDx
}

:

bi = f (ai) = sgn
[
wᵀ

1ai . . .wᵀ
Kai
]

(6.7)

At test time, hashcodes of visual features g(vi) can be computed in the same manner,

but using the visual hyperplanes
{

u1 ∈ RDz, . . .,uK ∈ RDz
}

.

6.5.2.2 Step A: Regularisation

The aim of this step is to make the hashcodes more consistent with the affinity matrix

S. Specifically, whenever images i and j are neighbours, we would like the hashcodes
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Algorithm 10: REGULARISED CROSS MODAL HASHING (RCMH)
Input: Annotation descriptors Xtrd ∈ RNtrd×Dx , Visual descriptors

Ztrd ∈ RNtrd×Dz , adjacency matrix S ∈ {0,1}, degree matrix D ∈ Z+,

interpolation parameter α ∈ [0,1], number of iterations M ∈ Z+

Output: Hyperplanes {w1. . .wK}, {u1. . .uK}, biases {t1. . .tK}, {o1. . .oK}
1 Initialise B0 ∈ {0,1}Ntrd×K via LSH or ITQ+CCA from X
2 B0 = sgn(B0− 1

2)

3 B = B0

4 for m← 1 to M do
5 B = sgn

(
αSD−1B+(1−α)B0

)
6 for k← 1 to K do
7 bk = B(:,k)
8 Train SVMx

k with bk as labels, training dataset Xtrd ∈ RNtrd×Dx

9 Train SVMz
k with bk as labels, training dataset Ztrd ∈ RNtrd×Dz

10 Obtain hyperplanes wk,uk and biases tk,ok

11 end
12 Bik = sgn(wᵀ

k xi + tk) for i={1. . .Ntrd} and k={1. . .K}
13 end
14 return {wk}K

k=1 ,{uk}K
k=1, {tk}K

k=1, {ok}K
k=1

bi and b j to be similar in terms of their Hamming distance. I achieve this by inter-

polating the hashcode of image i with the hashcodes of all neighbouring images j for

which Si j = 1. This is computed using Equation 6.1 introduced in the context of my

unimodal projection function and repeated in Equation 6.8 for reading convenience.

I show this approach intuitively in Figure 6.11. Shown are five images a. . .e with

their initial hashcodes (K=2 bits for this example). The lines between images reflect

the neighbourhood structure encoded in the affinity matrix S. Image d has a hashcode

(−11), but its neighbours b,c,e have hashcodes (-1-1), (11) and (1-1) respectively. The

arrow beside the initial hashcode (-11) of image d shows the effect of Equation 6.8: its

hashcode changes to (1-1), which is more consistent with neighbouring hashcodes (on

average).

Bm← sgn
(
α SD−1Bm−1 +(1−α)B0

)
(6.8)
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Figure 6.11: Regularisation step: the hashcode for annotation node d is updated to be

more similar with its neighbours (c,b,e).

6.5.2.3 Step B: Partitioning

In this step I re-estimate the hyperplanes {w1. . .wK} and {u1. . .uK} to make them

consistent with the regularised hashcodes from Step A of the algorithm. For each bit

j = {1. . .K}, I treat the values
{

b1 j. . .bNtrd j
}

as the training labels. Specifically, if

bi j = 1 then the annotation vector ai constitutes a positive example for the hyperplane

w j, and the visual vector vi is a positive example for u j. If bi j =−1 then ai and vi are

negative examples for w j and u j. Each hyperplane is learned using liblinear Fan

et al. (2008) to maximise the margin between positive and negative examples. The ap-

proach is illustrated in Figure 6.12. I show five images a. . .e in two sets of coordinates:

the word space on the top and the visual feature-space on the bottom. Each image

is associated with a 2-bit hashcode, and each bit is used to learn a maximum-margin

hyperplane that bisects the corresponding space. For example, the first bit has value

−1 for images a,b and value 1 for images c,d,e, giving rise to hyperplanes w1 and u1,

shown as dark lines on the top and the bottom parts of Figure 6.12. Note that w1 and u1

look very different, because they are defined over two completely different modalities:

words on the top and visual features on the bottom. Similarly, the second bit results in

the hyperplanes w2 and u2.
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Figure 6.12: Partitioning step: hyperplanes are learnt in the annotation (top) and visual

(bottom) space using annotation bits as labels. Hyperplanes in both feature spaces are

positioned in such a way that nodes with the same letter are assigned the same bits in

both feature spaces.
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6.5.2.4 Step C: Prediction

In the final step of the current iteration the estimated hyperplane normal vectors for the

annotation space {w1. . .wK} are used to re-label the annotation data-points as given in

Equation 6.9

Bik = sgn(wᵀ
k xi + tk) for i={1. . .Ntrd} and k={1. . .K} (6.9)

6.5.3 Iteration and Constraints

I repeat steps A,B,C for a small number of iterations M. In this section, I briefly

describe how the steps enforce the two constraints I imposed on my hash functions in

Section 6.5.1. Constraint (i) is enforced in Step B of the algorithm, when I use the same

bit values bi j as targets for the word hyperplanes w j and visual hyperplanes u j. Any

image i will either be a positive example for both hyperplanes, or it will be negative for

both, so at test time we can expect wᵀ
j ai to yield the same bit value as uᵀ

j vi. Constraint

(ii) is enforced in Step A of my procedure, where the hashcode for image i is moved

towards the centroid hashcode of its neighbours. The centroid (before it is binarised)

is a point that minimizes aggregate Euclidean distance to the neighbours, so after Step

C hashcodes {b1. . .bNtrd} are expected to be more consistent with the neighbourhood

structure S.

6.6 Experimental Evaluation

6.6.1 Experimental Configuration

I evaluate the cross-modal projection function on two publicly available benchmark

datasets: Wiki and NUS-WIDE, both of which were described in Chapter 3, Section

3.2.2. As for my unimodal experiments the ground truth nearest neighbours are based

on the semantic labels supplied with both datasets, that is, if an image and a document

share a class in common they are regarded as true neighbours (Zhen and Yeung (2012);

Song et al. (2013)). Following previous work (Zhen and Yeung (2012); Song et al.

(2013)) I randomly select 20% (Wiki) and 1% (NUS-WIDE) of the data-points as

queries with the remainder forming the database over which my retrieval experiments

are performed. I also randomly sample 20% (Wiki) and 1% (NUS-WIDE) of the data-

points from the database (Xdb ∈ℜNdb×Dx , Zdb ∈ RNdb×Dz) to form the training dataset



6.6. Experimental Evaluation 237

Partition Wiki NUS-WIDE

Test queries (Nteq) 574 1,866

Validation queries (Nvaq) 574 1,866

Validation database (Nvad) 1,144 18,666

Training database (Ntrd) 574 1,866

Test database (Nted) 2,292 184,711

Table 6.23: Literature standard splitting strategy partition sizes for the experiments in

this chapter. This breakdown is based on the standard splitting strategy introduced in

Chapter 3, Section 3.5.1.

(Xtrd ∈ ℜNtrd×Dx , Ztrd ∈ RNtrd×Dz) to learn the hash functions. The exact division of

the datasets into the different partitions is given in Table 6.23. The improved splitting

strategy is not used here as it was found to have little effect on the retrieval results in

Section 6.3.3.4, Table 6.6.

My model is evaluated on two cross-modal retrieval tasks: 1) Image query vs. text

database: an image is used to retrieve the most related text in the text database; 2)

Text query vs. image database: a text query is used to retrieve the most similar images

from the image database. Retrieval effectiveness is again measured using the familiar

Hamming ranking evaluation paradigm: binary codes are generated for both the query

and the database items and the database items are then ranked in ascending order of

the Hamming distance. I use these ranked lists to compute mean average precision

(mAP) and all reported results are the average over ten random query/database parti-

tions. The parameter optimisation strategy is the same as described for my unimodal

projection function in Section 6.3.2. The experimental configuration used in this sec-

tion is summarised in Table 6.24 and is designed to be identical to previously published

cross-modal hashing research (Zhen and Yeung (2012), Song et al. (2013)) so that my

reported figures are directly comparable.

The baselines in my experimental evaluation constitute five state-of-the-art cross-

modal projection functions recently proposed in the learning to hash literature. Con-

cretely I compare my model to Cross View Hashing (CVH) (Kumar and Udupa (2011)),

Cross Modal Semi-Supervised Hashing (CMSSH) (Bronstein et al. (2010)), Co-Regul-

arised Hashing (CRH) (Zhen and Yeung (2012)), Inter-Media Hashing (IMH) (Song

et al. (2013)) and Predicable Dual-View Hashing (PDH) (Rastegari et al. (2013)). I

introduced and discussed these five baseline cross-modal hashing models in consider-
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Parameter Setting Chapter Reference

Groundtruth Definition Class labels Chapter 3, Section 3.3.2

Evaluation Metric mAP Chapter 3, Section 3.6.4

Evaluation Paradigm Hamming Ranking Chapter 3, Section 3.4

Random Partitions 10 Chapter 3, Section 3.5

Number of Bits (K) 24,48,64 Chapter 2, Section 2.4

Table 6.24: Configuration of the main experimental parameters for the cross-modal

hashing results.

able detail in my review in Chapter 2, Section 2.6.5. Taken together these five models

form a strong set of baselines for comparison.

6.6.2 Experimental Results

The cross-modal retrieval results are presented in Tables 6.25-6.26. I observe that

the proposed model (RCMH) outperforms the baseline projection functions on both

datasets and across all hashcode lengths. For example, for image-text retrieval, my

model outperforms the most strongly performing baseline (PDH) by a substantial 16%

relative mAP at 24 bits on the Wiki dataset and 9% on the NUS-WIDE dataset. I test

the statistical significance of the gains in mAP versus the PDH model using a Wilcoxon

signed rank test on the mAP scores resulting from each random test query/database

partition. This test highlights that my model is significantly better (p < 0.01) at both

text-image and image-text cross-modal retrieval than the second best model PDH. I

further present two example qualitative cross-modal retrieval results in Figures 6.13-

6.14.

The fact that my model achieves the highest retrieval effectiveness is an encourag-

ing result given that it is devoid of a computationally expensive eigendecomposition

step used by most baselines. GRH instead relies on regularising the hashcodes over an

adjacency graph to maintain the neighbourhood structure. This suggests yet again that

regularising hashcodes over an adjacency graph is more effective for hashing hypersur-

face learning than solving an eigenvalue problem. I previously presented evidence to

this effect in the context of my unimodal projection function in Section 6.3.3.6. Com-

pared to PDH, which has a training time complexity of O(MNtrdDxK +MNtrdDzK +

MKN2
trd), my model is O(MNtrdDxK +MNtrdDzK +MSK) . I compare the timing

results of two baselines (PDH, CMSSH) to my own model in Table 6.27. It is ap-
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Task Method
Hashcode Length

24 bits 48 bits 64 bits

Image Query
vs.
Text Database

CRH 0.1632 0.1752 0.1698

CVH 0.1570 0.1519 0.1538

CMSSH 0.1439 0.1501 0.1420

IMH 0.1881 0.1892 0.1897

PDH 0.2109 0.2186 0.2266

RCMH 0.2439NN 0.2463NN 0.2590NN

Text Query
vs.
Image Database

CRH 0.1266 0.1239 0.1267

CVH 0.1284 0.1176 0.1185

CMSSH 0.1119 0.1123 0.1124

IMH 0.1507 0.1514 0.1491

PDH 0.1790 0.1860 0.1902

RCMH 0.2066NN 0.1918NN 0.2201NN

Table 6.25: mAP scores for Wiki (T = 574). NN indicates statistical significance versus

PDH (Wilcoxon signed rank test, p-value < 0.01).

parent from these results that RCMH requires approximately 9% of the training time

of PDH and 7% of CMSSH, while having a similar sub-second prediction (encoding)

time. My proposed model is therefore both faster to train and achieves more accurate

nearest neighbour search results on cross-modal datasets compared to state-of-the-art

baselines.

6.7 Discussion

In the second part of this chapter I extended the unimodal projection function intro-

duced in Section 6.2 so that the model was able to assign similar hashcodes to similar

data-points existing in disparate feature spaces, namely textual annotations and visual

descriptors. Surprisingly the manner in which this cross-modal bridge was achieved

was relatively straightforward and involved only minor adjustments to the unimodal al-

gorithm. Specifically I retained the iterative multi-step scheme by firstly initialising the

annotation descriptor hashcodes using LSH (Section 6.5.2.1). In the first step I then

regularised these annotation hashcodes using the adjacency graph (Section 6.5.2.2).

The second step of the multi-step algorithm is the step in which I form the cross-modal
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Task Method
Hashcode Length

24 bits 48 bits 64 bits

Image Query
vs.
Text Database

CRH 0.3536 0.3539 0.3588

CVH 0.3397 0.3436 0.3412

CMSSH 0.3429 0.3386 0.3382

IMH 0.4022 0.4019 0.4040

PDH 0.4217 0.4245 0.4272

RCMH 0.4605NN 0.4719NN 0.4649NN

Text Query
vs.
Image Database

CRH 0.3495 0.3427 0.3481

CVH 0.3394 0.3435 0.3410

CMSSH 0.3429 0.3377 0.3492

IMH 0.3926 0.3960 0.3997

PDH 0.4053 0.4081 0.4096

RCMH 0.4325NN 0.4380NN 0.4350NN

Table 6.26: mAP scores for NUS-WIDE (T = 1866). NN indicates statistical signifi-

cance versus PDH (Wilcoxon signed rank test, p-value < 0.01).

Train Complexity Time Test Complexity Time

RCMH O(MNtrdDxK +MNtrdDzK +MSK) 0.336 O(NteqDK) 0.003

PDH O(M
′
NtrdDxK +M

′
NtrdDzK +M

′
KN2

trd) 3.715 O(NteqDK) 0.003

CMSSH O(KD2
xDz +KDxD2

z +KD2
z ) 5.172 O(NteqDK) 0.003

Table 6.27: Training and testing time (seconds) on the Wiki dataset at 24 bits. RCMH is

parameterised with M = 1,M
′
= 5 and Ntrd = 574,Nteq = 574,Dx = 128,Dz = 10. The

timing results were recorded on an otherwise idle Intel 2.7GHz, 16Gb RAM machine

and averaged over ten runs. All models are implemented in the same software stack

(Matlab).

bridge and it is here where the unimodal and cross-modal versions of my projection

function differ. This bridge was achieved by simply learning a second set of K binary

classifiers to predict the annotation hashcode bits using the visual descriptors as fea-

tures (Section 6.5.2.3). In this way the hypersurfaces in the visual feature space are

positioned to predict the annotation hashcode bits with maximum margin. When used

to generate hashcodes for the visual descriptors these visual hyperplanes are therefore

expected to generate hashcodes that are broadly consistent with the hyperplanes in
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the annotation feature space. In a set of experiments in Section 6.6.2, I demonstrated

that this was not only the case, but in fact my cross-modal adaptation of the graph

regularised projection function was shown to obtain state-of-the-art retrieval effective-

ness on standard image datasets and against a set of strong baseline hashing models.

Furthermore my model only required a fraction of the training time of competitive

baselines (Table 6.27). In my analysis of the experimental results I suggested that the

lack of an eigendecomposition step in my model was responsible for both the more

efficient training time and the higher observed retrieval effectiveness.

6.8 Conclusions

In this chapter I developed a new supervised projection function for hashing-based

ANN search (Section 6.2). In an extensive set of experiments, I demonstrated the effec-

tiveness of the model for unimodal query-by-image retrieval. In a second contribution

in Section 6.5, I then extended the model to hash cross-modal (text-image) data-points

that consisted of two distinct feature descriptors. Both the unimodal and cross-modal

variants of the algorithm consisted of two main steps performed iteratively. In the first

step, training dataset hashcode bits are set to be the average of their nearest neigh-

bours as defined by an adjacency graph. This step is known as graph regularisation

and formed a key part of the model proposed in this chapter given that it enforced the

important constraint that similar data points (as defined by the available supervision)

should have similar hashcodes. In comparison to previous research which tend to rely

on solving an eigenvalue system to integrate supervision into the hyperplane learning

procedure, I instead investigated the applicability of graph regularisation to achieve the

same objective. In the second step the regularised hashcodes form the labels for a set

of binary classifiers, which has the effect of evolving the positioning of the hashing

hypersurfaces to separate opposing bits (0,1) with maximum margin. Both steps are

repeated for a fixed number of iterations. The learnt hypersurfaces can then be used

to generate the hashcodes for novel query data-points. The proposed graph regularised

projection function combined simplicity of implementation, competitive training time

and state-of-the-art retrieval effectiveness both for unimodal and cross-modal appli-

cations. I believe these factors make the model one of the first supervised projection

functions for hashing that has the potential to scale to truly massive unimodal and

multi-modal datasets prevalent in the modern world.

In Chapter 7 I will demonstrate how the supervised projection function proposed
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Figure 6.13: Example cross-modal retrieval result using the model proposed in this

chapter. I pose an image query depicting a war scene and return the top five Wikipedia

articles deemed to be relevant by my model. In this case four out of five of the articles

are related to the theme of war (the Yellowstone fires are irrelevant to the query).
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Figure 6.14: Example of text illustration using the cross-modal hashing model proposed

in this chapter. I pose a text query regarding a member of the UK royal family (Mary of

Teck) and the model finds the best five images to illustrate the text. Three out of five of

the returned images are relevant to the general theme of royalty. The relevant images

depict the Marquess of Lorne, coins from the era of Claudius the Roman Emperor and

Jogaila Grand Duke of Lithuania.
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in this chapter can be combined with the multiple threshold learning algorithms in-

troduced in Chapters 4-5 to create one of the first hashing models for ANN search

that is capable of learning multiple quantisation thresholds and task-specific hashing

hypersurfaces. In effect this contribution transforms the hashcode generation pipeline

of projection followed by quantisation from a process that relies on randomness and

the associated asymptotic performance guarantees, to a pipeline that is now fully data-

adaptive and capable of adjusting both the thresholds and hypersurfaces to the distri-

bution of data.



Chapter 7

Learning Hypersurfaces and

Quantisation Thresholds

The research presented in this Chapter has been previously published in Moran (2016).

7.1 Introduction

In Chapter 1 I motivated this thesis by arguing how both steps of the hashcode gen-

eration pipeline, namely projection and quantisation, were readily amenable to im-

provement through data-driven learning of the hashing hypersurfaces and quantisation

thresholds. In Chapters 4-5 I focused my attention on improving the quantisation step

of the hashcode generation pipeline. I found that optimising the position of multiple

thresholds per projected dimension was more effective than placing a single threshold

by default at zero for mean centered data. In Chapter 6 I improved the projection step

by learning hashing hypersurfaces that were adapted to the distribution of the data. In

this latter case I found that learnt hypersurfaces fractured the input feature space in a

way that resulted in more true nearest neighbours falling within the same partitioned

regions compared to a purely random partitioning. In both cases I was encouraged

to find statistically significant increases in image retrieval effectiveness compared to

existing models that set both parameters independent of the data distribution. In this

chapter, I bring together and consolidate the main contributions of this dissertation by

performing two experiments. Firstly, in Section 7.2, I combine the multi-threshold

quantisation models of Chapters 4-5 with the graph regularised projection function of

Chapter 6 to form a hashing model that learns both the hashing hypersurfaces and mul-

tiple quantisation thresholds per projected dimension. I measure the performance of

245
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the combined model with respect to baselines that learn either parameter in isolation.

Secondly, in Section 7.3.3.2, I then appeal to the Computer Vision practitioner by con-

ducting an experiment which seeks to find the most effective combination of the novel

models introduced in this thesis for the task of image retrieval.

7.2 Learning Hypersurfaces and Thresholds

7.2.1 Problem Definition

In this chapter I depart from my earlier contributions by learning both the quantisa-

tion thresholds and the hashing hypersurfaces in the same model so that neighbouring

points xi ∈RD,x j ∈RD are more likely to have similar hashcodes bi ∈ {−1,1}K ,b j ∈
{−1,1}K .

7.2.2 Overview of the Approach

To achieve the learning objective outlined in Section 7.2.1. I take the most straight-

forward pipeline-based approach in this chapter. Specifically I couple both models

by quantising the projections generated by my supervised projection function intro-

duced in Chapter 6 using the multi-threshold quantisation models of Chapters 4-5.

The objective is to learn a set of K linear hypersurfaces1 {wk ∈ RD}K
k=1 and a set of

T quantisation thresholds tk = [tk1, tk2, . . . , tkT ] where tk ∈ R and tk1 < tk2 . . . < tkT for

each of the K projected dimensions
{

yk ∈ RNtrd
}K

k=1 produced by those hypersurfaces.

The K hyperplanes are learnt using Algorithm 9 which was presented on page 203 in

Chapter 6 while the T thresholds are optimised by maximising Equation 4.6 presented

on page 122 in Chapter 4. Equation 4.6 is maximised using Evolutionary Algorithms

which were found to be the best performing method of stochastic search for multiple

threshold optimisation in Chapter 4 Section 4.3.3.3.

More concretely the model is firstly run for M iterations, in which the following

three steps (A-C) are applied during each iteration:

• A) Regularisation: Regularise the hashcodes using Equation 7.1:

Bm← sgn
(
α SD−1Bm−1 +(1−α)B0

)
(7.1)

1I leave exploration of non-linear hypersurfaces induced by the radial basis function (RBF) kernel to
future work.
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Bm ∈ {−1,1}Ntrd×K are the hashcodes for the Ntrd training data-points at it-

eration m, the bits in B0 are initialised using any existing projection function

such as LSH or ITQ+CCA, α ∈ [0,1] is a scalar interpolation parameter, S ∈
{0,1}Ntrd×Ntrd is the adjacency matrix, D is a diagonal matrix containing the de-

gree of each node in the graph.

• B) Partitioning: Solve the following K constrained optimisation problems in

Equation 7.2:

for k = 1. . .K : min ||wk||2 +C ∑
Ntrd
i=1 ξik

s.t. Bik(w
ᵀ
k xi)≥ 1−ξik for i = 1. . .Ntrd (7.2)

wk ∈RD is the hyperplane normal vector, ξik ∈R+ are slack variables that allow

some points xi to fall on the wrong side of the hyperplane hk and C ∈ R+ is the

flexibility of margin.

• C) Prediction: Solve for the K projected dimensions
{

yk ∈ RNtrd
}K

k=1 by com-

puting the following Ntrd dot products in Equation 7.3:

yk
i = wᵀ

k xi for i={1. . .Ntrd} and k={1. . .K} (7.3)

Standard single bit quantisation (SBQ) is used to generate the updated hashcode

matrix Bm. Steps A-C are then repeated for M iterations, which is simply the

standard GRH algorithm outlined in Chapter 6, Section 6.2.

Having learnt the projections
{

yk ∈ RNtrd
}K

k=1 of the Ntrd data-points in Steps A-C, we

then quantise the projections by performing a multi-threshold quantisation using NPQ

(Chapter 4) in Step D:

• D) Quantisation: Quantise the K projected dimensions
{

yk ∈ RNtrd
}K

k=1 with

thresholds tk = [tk1, tk2, . . . , tkT ] learnt by optimising Jnpq(tk) in Equation 7.4:

Jnpq(tk) = α̂F1(tk)+(1− α̂)(1−Ω(tk)) (7.4)

where α̂ ∈ [0,1] is a scalar interpolation parameter. The resulting Ntrd bits

for projected dimension k are placed in the k-th column of matrix Bm and the

procedure repeated from Step A. Here T ∈ [1,3,7,15] is the number of thresh-

olds per projected dimension and F1(tk) is a supervised term that leverages the

neighbourhood structure encoded in S. More specifically, for a fixed set of
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(b) Regularisation step

Figure 7.1: In Figure (a) I show a toy 2D space in which I have initialised 2-bit hashcodes

for the data-points with LSH. In Figure (b) I show Step A of the model in which the

hashcodes are regularised over the adjacency matrix. Lines between points indicate a

nearest neighbour relationship. The hashcodes are updated as shown by the directed

arrows.

thresholds tk = [tk1 . . . tkT ], I define a per-projected dimension indicator matrix

Pk ∈ {0,1}Ntrd×Ntrd with the property given in Equation 7.5

Pk
i j =

1, if ∃γ s.t. tkγ ≤ (yk
i ,y

k
j)< tk(γ+1)

0, otherwise.
(7.5)

where the index γ ∈ Z spans the range: 0 ≤ γ ≤ T , and the scalar quantity T

denotes the total number of thresholds partitioning a given projected dimension.

Intuitively, matrix Pk indicates whether or not the projections (yk
i ,y

k
j) of any pair

of data-points (xi,x j) fall within the same thresholded region of the projected di-

mension yk ∈RNtrd . Given a particular instantiation of the thresholds [tk1 . . . tkT ],

the algorithm counts the number of true positives (TP), false negatives (FN) and

false positives (FP) across all regions (Equations 7.6-7.8).

T P =
1
2 ∑

i j
Pi jSi j =

1
2
‖P◦S‖1 (7.6)

FN =
1
2 ∑

i j
Si j−T P =

1
2
‖S‖1−T P (7.7)
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(b) Quantisation step

Figure 7.2: In Figure (a) I show the partitioning step (Step B) where linear hypersurfaces

are positioned to separate opposing bits (-1,1) with maximum margin. In Figure (b) right

I show Step D using the projections for hyperplane h1 as an example. The top-most

diagram shows the quantisation obtained with a threshold placed at zero. Point a is

on the wrong side of the threshold. The bottom diagram shows the result obtained

by optimising the threshold t1 to maximise pairwise F1. In this case the threshold is

shifted so that point a receives the same bits as its neighbours. NPQ therefore corrects

quantisation boundary errors committed by GRH: this is the crux of the contribution in

this chapter.

FP =
1
2 ∑

i j
Pi j−T P =

1
2
‖P‖1−T P (7.8)

where ◦ denotes the Hadamard (elementwise) product and ‖.‖1 is the L1 matrix

norm defined as ‖X‖1 = ∑i j |Xi j|. Intuitively TP is the number of positive pairs

that are found within the same thresholded region, FP is the proportion of neg-

ative pairs found within the same region, and FN are the proportions of positive

pairs found in different regions. The TP, FP and FN counts are combined using

the familiar set-based F1-measure (Equation 7.9):

F1(tk) =
2‖P◦S‖1

‖S‖1 +‖P‖1
(7.9)

Intuitively maximisation of Equation 7.9 encourages a clustering of the projected

dimension so that as many of the must-link and cannot-link constraints encoded

in the adjacency matrix S are respected. Jnpq is the optimisation objective of
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(a) Locality Sensitive Hashing (LSH)
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(b) Principal Component Analysis (PCA)

Figure 7.3: Distribution of projected values for two randomly chosen GRH projected

dimensions on the CIFAR-10 dataset. In Figure (a) GRH was initialised with LSH hash-

codes while in Figure (b) I initialised GRH with hashcodes computed by PCA. In both

cases the region of highest projected value density is around zero.

my multi-threshold quantisation algorithm which is defined in more detail in

Chapter 4, Section 4.2.2.

In Figures 7.1-7.2, I provide an intuitive overview of the algorithm with an example

two-dimensional example problem.

The question arises as to why we might expect learning the hypersurfaces and

thresholds within the same model to lead to enhanced retrieval effectiveness. In Fig-

ure 7.3 I show projected value histograms created by my graph regularised projection

function (GRH). It is clear that GRH projections tend to cluster around zero along each

projected dimension. Following a similar argument as for LSH and PCA projections

in Chapter 2 Section 2.5.1, I argue that placing a single threshold directly at zero along

a GRH projected dimension can be sub-optimal given that it may separate out many

true nearest neighbours on opposite sides of the threshold as this is the region of high-

est point density. In this chapter, I apply the experimental findings of Chapter 4 and

hypothesise that optimising the position of multiple thresholds based on the distribu-

tion of the data can mitigate this issue with quantisation boundary errors and boost

the retrieval effectiveness of GRH. To study this research question I therefore combine

GRH with the threshold learning algorithms presented in Chapters 4-5 (NPQ, VBQ)

and compare the resulting model to competitive baselines that learn either parameter

individually. I present my experimental results in Section 7.3.
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7.3 Experimental Evaluation

7.3.1 Experimental Configuration

The experiments in this section are directed towards answering the following single

hypothesis:

• H1: Learning the hashing hypersurfaces and multiple quantisation thresholds

as part of the same model can give a higher retrieval effectiveness than a model

which learns either the hypersurfaces or thresholds.

To answer this hypothesis I use an identical experimental setup to that employed

in Chapters 4-5. This experimental configuration is standard in the relevant literature

(Kong et al. (2012); Kong and Li (2012a,b); Kulis and Darrell (2009); Raginsky and

Lazebnik (2009); Gong and Lazebnik (2011)) and is shown in Table 7.1 for reading

convenience. Concretely I define the groundtruth nearest neighbours using the ε-NN

paradigm, that is if a data-point is within a radius of ε to the query then it is deemed to

be true nearest neighbour for the purposes of evaluation as explained in Chapter 3, Sec-

tion 3.3.1. Retrieval effectiveness is computed using the standard Hamming ranking

evaluation paradigm (Chapter 3, Section 3.4.1) and the area under the precision recall

curve (AUPRC) (Chapter 3, Section 3.6.3). Note that I am using a different groundtruth

definition (ε-NN) and main evaluation metric (AUPRC) compared to Chapter 6. This

means that the quantitative results in this Chapter and Chapter 6 are mostly not directly

comparable.

I test the model on the standard CIFAR-10 dataset introduced in Chapter 3, Section

3.2, and leave examination of the performance on other image datasets to future work.

To define the test queries (Xteq ∈RNteq×D) I randomly sample Nteq = 1,000 data points

with the remaining points forming the database (Xdb ∈ RNdb×D). The precise dataset

split is shown in Table 7.2. In all experiments the hypersurfaces and thresholds are

learnt on the training dataset (Xtrd ∈ RNtrd×D). These hypersurfaces and thresholds

are then used to quantise the test dataset projections (Xteq ∈ RNteq×D). The reported

AUPRC figures are computed using repeated random sub-sampling cross-validation

over ten independent runs. The Wilcoxon signed rank test (Smucker et al. (2007))

is used for measuring statistical significance. The unit of the significance test is a

pair of AUPRC values pertaining to the two systems under comparison and resulting

from a particular random split of the dataset. In all presented result tables the symbol
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Parameter Setting Chapter Reference

Groundtruth Definition ε-NN Chapter 3, Section 3.3.1

Evaluation Metric AUPRC Chapter 3, Section 3.6.3

Evaluation Paradigm Hamming Ranking Chapter 3, Section 3.4.1

Random Partitions 10 Chapter 3, Section 3.5

Number of Bits (K) 16-128 Chapter 2, Section 2.4

Table 7.1: Configuration of the main experimental parameters for the results presented

in this chapter.

Partition CIFAR-10

Test queries (Nteq) 1,000

Validation queries (Nvaq) 1,000

Validation database (Nvad) 10,000

Training database (Ntrd) 2,000

Test database (Nted) 59,000

Table 7.2: Literature standard splitting strategy partition sizes for the experiments in

the chapter. This breakdown is based on the splitting strategy introduced in Chapter 3,

Section 3.5.

NN/HH indicates a statistically significant increase/decrease with p < 0.01, while N/H

indicates a statistically significant increase/decrease with p < 0.05.

7.3.2 Parameter Optimisation

Several hyperparameters need to be set for the graph regularised projection function

(GRH) and the multiple threshold quantisation model (NPQ). For NPQ I use evolution-

ary algorithms with the number of individuals H set to 15 and the number of iterations

M set to 15 as was found to be optimal in Chapter 4, Section 4.3.3.3. The NPQ inter-

polation parameter α is set to α = 1 and I use three thresholds (T = 3) per projected

dimension and the Manhattan hashing codebook and hashcode ranking strategy (Chap-

ter 2, Section 2.5.4). For GRH, I set the number of iterations M ∈Z+, the interpolation

parameter α ∈ [0,1] and the flexibility of margin C ∈ R+ for the SVM by closely fol-

lowing the parameter setting strategy outlined in Chapter 6, Section 6.3.2. Specifically

the parameters are set on the held-out validation dataset Xvaq,Xvad . I set C = 1 and
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perform a grid search over M ∈ {1 . . .20} and α ∈ {0.1, . . . ,0.9,1.0}, selecting the set-

ting that gives the highest validation AUPRC. To find M, I stop the sweep when the

validation dataset AUPRC falls for the first time, and set M to be the number of the

penultimate iteration. Finally M and α are then held constant at their optimised values,

and C ∈ {0.01,0.1,1,10,100}. I equally weigh both classes (-1 and 1) in the SVM.

7.3.3 Experimental Results

7.3.3.1 Experiment I: Learning Hashing Hypersurfaces and Multiple Quantisa-

tion Thresholds

In this experiment I seek to answer hypothesis H1 as to whether combining the multiple

threshold quantisation algorithm from Chapter 4 with the graph regularised projection

function developed in Chapter 6 can be more effective than model either algorithm in

isolation. To answer this hypothesis I will follow the experimental setup in Chapter

4 and treat the graph regularised projection function (GRH) as a method for improv-

ing the projections of existing data-dependent and independent projection functions

such as LSH and PCA. I will therefore take the hashcodes produced by the existing

projection functions of LSH, PCA, ITQ, SH and SKLSH and use those bits as the

initialisation point for GRH in the training hashcode matrix B0
2. The results for the re-

trieval experiments on the CIFAR-10 image collection are shown in Table 7.3, Figures

7.4 (a)-(b) and Figures 7.5 (a)-(b).

In Table 7.3 it is clear that, apart from an ITQ initialisation, learning the hyper-

surfaces and thresholds as part of the same combined model (GRH+NPQ) yields the

highest retrieval effectiveness compared to learning the hypersurfaces (GRH+SBQ)

or the thresholds (NPQ, VBQ) independently, as I did in Chapter 6 and Chapters 4-5,

respectively3. For example, for LSH projections GRH+NPQ gains a relative increase

in AUPRC of 60% over NPQ and 28% over GRH+SBQ. Furthermore, the combina-

tion of GRH+NPQ outperforms an adaptive threshold allocation (VBQ) by a relative

margin of 27%. Each of these increases are found to be statistically significant using a

Wilcoxon signed rank test (p-value < 0.01). I am encouraged to find that the superior

retrieval effectiveness of GRH+NPQ is maintained when the hashcode length is var-

ied between 16-128 bits for both LSH, PCA, SKLSH and SH projections (Figure 7.4

(a)-(b), Figure 7.5 (a)-(b)). Based on these experimental results I confirm my primary
2Please refer to Chapter 2 Sections 2.4, 2.6.2 and Section 2.6.3 for an overview of LSH, PCA, ITQ,

SH and SKLSH
3I compare to the binary integer linear programme (BILP) variant of VBQ (VBQbil p) in this Chapter.
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Model

SBQ NPQ GRH+SBQ VBQ GRH+NPQ GRH+VBQ

LSH 0.0954 0.1621 0.2023 0.2035 0.2593NN 0.2420

ITQ 0.2669 0.3917NN 0.2558 0.3383 0.3670 0.3185

SH 0.0626 0.1834 0.2147 0.2380 0.2958 0.3003NN

PCA 0.0387 0.1660 0.2186 0.2579 0.2791 0.2897NN

SKLSH 0.0513 0.1063 0.1652 0.2122 0.2566NN 0.2334

Table 7.3: AUPRC on the CIFAR-10 dataset with a hashcode length of 32 bits. The

quantisation algorithms listed on the first row are used to quantise the projections from

the hash functions in the first column. NN indicates statistical significance (Wilcoxon

signed rank test, p < 0.01) when comparing NPQ and GRH+NPQ (or GRH+VBQ).

hypothesis (H1) that learning of the hypersurfaces and thresholds in the same combined

model can outperform a model which learns either the thresholds or the hypersurfaces,

but not both.

The fact that the retrieval effectiveness for PCA+GRH+NPQ does not tail off in

Figure 7.4 (b) as the hashcode length increases is a particularly significant finding.

In Chapters 4-5 I observed that PCA projections quantised with multiple thresholds

per projected dimension tend to approach a plateau in AUPRC with increasing hash-

code length. This observation is related to the more unreliable PCA hyperplanes with

low eigenvalue which tend to capture very little variance in the input feature space.

Using the normal vectors of those hyperplanes to generate hashcode bits is therefore

likely to add little to the overall retrieval effectiveness. In contrast, refining PCA hy-

perplanes with NPQ and GRH appears to entirely overcome this issue, yielding a re-

trieval effectiveness that continues to increase past a hashcode length of K = 128 bits.

PCA+GRH+NPQ is therefore an effective means of overcoming the imbalanced vari-

ance problem associated with PCA hyperplanes, an issue that has attracted significant

research effort in the learning to hash community (Weiss et al. (2008), Kong and Li

(2012b), Gong and Lazebnik (2011)).

In Chapter 5 I devised an algorithm (VBQ) that intelligently picked the most dis-

criminative subset of hyperplanes while simultaneously deciding how many thresholds

to allocate to those hyperplanes. The pertinent question in this Chapter is whether there

is an additive benefit obtainable from refining the PCA, LSH, SH and SKLSH hyper-

planes with GRH and then subsequently quantising those GRH projections with VBQ.
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Figure 7.4: Learning the hashing hypersurfaces and quantisation thresholds jointly

(GRH+NPQ) versus independently (GRH+SBQ, SBQ) over a haschode length of 16-

128 bits. Results are shown for LSH projections (Figure (a)) and PCA projections (Fig-

ure (b)).

The results in Table 7.3 confirm that an additive benefit does exist for these projec-

tions, namely GRH+VBQ has a significantly higher effectiveness than either VBQ or

GRH+SBQ alone when quantising PCA, LSH, SH and SKLSH projections. Neverthe-

less, I also observe the result that for these four projection functions GRH+VBQ does

not significantly outperform GRH+NPQ. This latter result suggests that both VBQ and

NPQ are equivalently effective in quantising the GRH refined projections and no fur-

ther boost in effectiveness is possible by assigning different number of thresholds per

projected dimension. The end user can therefore save computation time by using K/2

of the K available hyperplanes and quantising all K/2 with a uniform three thresholds

per projected dimension, rather than rely on VBQ to find a good data-driven allocation.

The retrieval results obtained when ITQ provides the initialisation of the hyper-

planes suggest a somewhat different story. Firstly I observe from Table 7.3 that there

is no significant difference between the AUPRC from simply quantising ITQ projec-

tions directly with single bit quantisation (SBQ) (0.2669) and further refining the hy-

perplanes with GRH (0.2558). This result therefore strongly suggests that the ITQ

hyperplanes are already providing a very good partitioning of the input feature space

under the ε-NN groundtruth definition, with GRH being unable to better that position-

ing as it readily does for LSH, SH, PCA and SKLSH projection functions. However

quantising the projections from the GRH refined ITQ hyperplanes with both NPQ
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Figure 7.5: Learning the hashing hypersurfaces and quantisation thresholds jointly

(GRH+NPQ) versus independently (GRH+SBQ, SBQ) over a haschode length of 16-

128 bits. Results are shown for SKLSH projections (Figure (a)) and SH projections

(Figure (b)).

(GRH+NPQ) and VBQ (GRH+VBQ) gives significantly lower retrieval effective-

ness (0.3670, 0.3185) than simply taking the ITQ hyperplanes directly and quantis-

ing their projections with NPQ (0.3917). Using both GRH and NPQ or VBQ in the

same model therefore does not give an additive benefit in retrieval effectiveness as it

does for the LSH, SKLSH, PCA and SH projection functions. This finding suggests

that ITQ+NPQ is the best model combination and leads to the highest image retrieval

effectiveness for the literature standard groundtruth definition (ε-NN) and Hamming

ranking evaluation metric (AUPRC). I explore this result further in Section 7.3.3.2.

7.3.3.2 Experiment II: Finding the Model Combination with Highest Retrieval Ef-

fectiveness

In my final experiment of this chapter I will compare the effectiveness of the best

combination of models resulting from the novel contributions made in this thesis to the

highest performing baselines from the literature. Table 7.4 presents the retrieval results

on the CIFAR-10 dataset. I select ITQ+NPQ as my best model which quantises ITQ

projections with the multi-threshold quantisation algorithm (NPQ). NPQ is parame-

terised with T = 3 thresholds per projected dimensions and is configured to use the

Manhattan Quantisation binary codebook and Manhattan distance hashcode ranking

strategy. This combination was found to give the overall highest retrieval effectiveness
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out of all the model combinations I considered in preliminary experiments. As base-

lines for comparison I select two of the strongest performing models from the relevant

literature. In previous chapters I found Iterative Quantisation (ITQ) (Gong and Lazeb-

nik (2011)) to give high retrieval effectiveness, in addition to the Supervised Hashing

with Kernels (KSH) model of Liu et al. (2012). I observe in Table 7.4 that ITQ+NPQ

significantly (Wilcoxon signed rank test, p < 0.01) outperforms the strong non-linear

baseline model of KSH, while also substantially outperforming the other baseline of

ITQ on the task of image retrieval. Combining my proposed quantisation model (NPQ)

with ITQ therefore leads to a new state-of-the-art retrieval performance on the standard

CIFAR-10 image dataset.

16 32 48 64 128

ITQ+NPQ 0.2439NN 0.3991NN 0.4567NN 0.5019NN 0.5501NN

KSH 0.1654 0.2878 0.3511 0.3820 0.4397

ITQ 0.1734 0.2638 0.3072 0.3382 0.3646

Table 7.4: The best model combination resulting from research in this thesis ITQ+NPQ

compared against the models with the highest retrieval effectiveness from the learning

to hash literature (ITQ, KSH). NN indicates statistical significance (Wilcoxon signed

rank test, p < 0.01) versus KSH.

7.4 Conclusions

In this chapter I have consolidated the novel contributions made throughout this thesis

from two angles. Firstly I conducted an initial investigation into coupling the hyper-

surface and threshold learning algorithms developed in Chapters 4-6. The projections

formed by my graph regularised projection function (GRH) were quantised with my

multi-threshold quantisation models (NPQ, VBQ). My findings resulting from these

model combinations were:

• Learning the hashing hypersurfaces and quantisation thresholds in the same

hashing model (GRH+NPQ) can give a retrieval effectiveness higher than a

model which learns either the hashing hypersurfaces (GRH) or the quantisation

thresholds (NPQ, VBQ). Quantitative results supporting this claim are presented

in Section 7.3.3.1, Table 7.3.



258 Chapter 7. Learning Hypersurfaces and Quantisation Thresholds

In my experiments I treated the GRH and NPQ models as methods for refining the

hypersurfaces of existing projection functions such as LSH or PCA. With this view in

mind my experimental evaluation found that the GRH+NPQ model combination was

shown to be most beneficial for a broad selection of data-independent and dependent

projection functions other than the Iterative Quantisation (ITQ) model of Gong and

Lazebnik (2011).

I then consolidated my research from a second angle that involved finding the over-

all best performing model combination that leveraged one or more of the ideas pre-

sented throughout this dissertation. I made the following experimental finding in this

regard:

• The model combination ITQ+NPQ significantly outperforms a set of strong

baseline models from the learning-to-hash literature yielding state-of-the-art re-

trieval effectiveness. This claim is supported by the results in Section 7.3.3.2,

Table 7.4.

For the Computer Vision practitioner, I would therefore advocate the use of the

ITQ+NPQ model combination for image retrieval. I found this model combination

to be simple to engineer, fast to run in both training and hashcode prediction time

for the relatively low-dimensional image datasets considered in this thesis while also

exhibiting state-of-the-art image retrieval effectiveness in my experimental evaluation.

In Chapter 8 I conclude this dissertation by providing a summary of my main re-

search findings, alongside several pointers to potentially fruitful avenues for future

work in the field.



Chapter 8

Conclusions

8.1 Introduction

In this chapter I conclude this thesis by summarising the main content of the disser-

tation in Section 8.2 and discussing my novel contributions and experimental findings

in Section 8.3. I present in Section 8.4 several suggestions as to how the research pre-

sented in this thesis could be extended in the future, with a focus on directions that I

consider to be potentially most fruitful.

8.2 Thesis Summary

In this thesis I explored the benefits of learning similarity preserving binary hashcodes

for hashing-based approximate nearest neighbour (ANN) search. In Chapters 1-2, I de-

scribed and motivated the problem of nearest neighbour search which involves finding

the most similar data-point(s) to a query in a large database. We saw how this operation

is truly fundamental in many diverse fields of study, from constructing noun similar-

ity lists from web-scale textual datasets (Ravichandran et al. (2005)) to the automatic

detection of thousands of object classes on a single machine (Dean et al. (2013)). The

simplicity of this definition belies the considerable complexity of solving this search

problem in a manner that does not require exhaustively comparing the query to every

single data-point in the database. I specifically focused on the sub-field of approximate

nearest neighbour search in this dissertation which encompasses a class of algorithms

that seek to generate similarity preserving binary hashcodes for the query and database

data-points. These binary hashcodes have the critical property of being more similar

- that is sharing more bits in common - for more similar data-points. In Chapter 2 we

259
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have seen how we can then obtain an attractive constant query time by using these bi-

nary hashcodes as the indices into the buckets of a set of hashtables and only returning

colliding data-points as candidate nearest neighbours. This vast reduction in the search

space is the primary advantage of hashing-based ANN search algorithms. However as

I also discussed in Chapter 2 the faster query time comes at the cost of both a non-zero

probability of failing to retrieve the closest neighbour in all cases and typically the re-

quirement of relatively long hashcodes and multiple hashtables for an adequate level

of precision and recall.

The original research presented in Chapters 4-7 introduced a suite of novel data-

driven algorithms for improving the retrieval effectiveness of existing models for hashi-

ng-based ANN search at the cost of a one time offline training phase. My premise

throughout this thesis was that learning the binary hashcodes by explicitly taking the

distribution of the input data into consideration could yield much more compact and

discriminative hashcodes that would improve search effectiveness over and above the

state-of-the-art. In Chapter 2 I identified two key operations used by existing hashing-

based ANN search algorithms to generate hashcodes both of which are amenable to

data-driven learning: projection followed by quantisation. The projection step in-

volves fracturing the input feature space into a set of disjoint polytope-shaped regions

using a set of randomly drawn hyperplanes, with each region so-formed constituting

a hashtable bucket. The hashcode for a data-point is therefore a geometric identifier

specifying the unique region within which that data-point resides and can be computed

by simply determining the position of the data-point with respect to each of the hy-

perplanes, with a ‘0’ appended to the hashcode if the data-point is on one side of a

hyperplane and a ‘1’ otherwise. Computationally this operation involves two funda-

mental steps: a dot product (projection) onto the normal vector to each hyperplane

followed by a thresholding (quantisation) operation on the resulting projected values.

I argued in Chapter 2 that these two operations - projection and quantisation - are

responsible for the overall locality preserving quality of the hashcodes. For example,

if a hyperplane happens to partition two true nearest neighbours or if a quantisation

threshold separates the two related data-points then the hashcodes for those data-points

will ultimately be more dissimilar, sharing less bits in common. In Chapter 2 it was

further highlighted how Locality Sensitive Hashing (LSH) - a popular family of ran-

domised algorithms for solving the ANN search problem - positioned the hashing hy-

perplanes randomly and the quantisation thresholds statically (at zero), independent of

the data distribution. I hypothesised that the data-independent setting of these two crit-
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ical parameters negatively impacted the retrieval effectiveness of hashing-based ANN

search and I set out in Chapters 4-7 to investigate this claim.

Concretely, in Chapter 4, I introduced a novel algorithm for optimising one or

more quantisation thresholds using an objective function that explicitly targeted the

number of true nearest neighbours that are assigned the same bits. Rather than a sin-

gle threshold placed statically at zero along a projected dimension I instead advocated

a data-adaptive optimisation of multiple thresholds. In Chapter 5 this quantisation

model was extended to automatically learn the optimal quantity of thresholds for each

hyperplane based on a novel measure of hyperplane informativeness. Hyperplanes that

better preserved the neighbourhood relationships between the data-points in the input

feature space were rewarded with a greater allocation of thresholds. Locality preserv-

ing hyperplanes typically result in projections with more related data-points clumped

together, a structure that can be better exploited with a finer quantisation granularity

consisting of many thresholds. Having instilled a degree of data-dependence into the

quantisation operation I turned my attention to learning the hashing hyperplanes in

Chapter 6. I introduced a three-step iterative algorithm that utilised a small amount

of pairwise supervision to guide the placement of the hashing hyperplanes in a way

that attempted to avoid dividing regions of the space dense in true nearest neighbours.

This model was further adapted to learn hyperplanes that generated similar hashcodes

for similar data-points in two different modalities, such as images and text. Chapter

7 consolidated the research in this thesis by showing how the hashing hyperplanes

and quantisation thresholds could be learnt as part of the same hashing model, thereby

unifying the contributions put forward in Chapters 4-6. In all cases experimental analy-

sis suggested my data-driven algorithms significantly improved retrieval effectiveness

over incumbent models that set the hyperplanes or quantisation thresholds indepen-

dently of the data distribution. I will outline the specific contributions made in each of

these four chapters in Section 8.3.

8.3 Contributions and Experimental Findings

In this dissertation I have demonstrated that learning the hashing hyperplanes and

quantisation thresholds in a task-specific manner can yield statistically significant im-

provements in hashing-based approximate nearest neighbour search effectiveness. To

investigate this claim I set out to relax the previously ingrained assumptions of exist-

ing work regarding how the hashing hyperplanes and quantisation thresholds should be
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constructed. The following three limiting assumptions were first identified in Chapter

1:

• A1: Single static threshold placed at zero (for mean centered data)

• A2: Uniform allocation of thresholds across each dimension

• A3: Linear hypersurfaces (hyperplanes) positioned randomly

Each of these assumptions led to a new data-driven model that specifically sought

to relax that assumption. Furthermore, with each model I empirically set out to test

its retrieval effectiveness with respect to the best of prior-art in the field on the pri-

mary task of query-by-example image retrieval. I now summarise each model and the

findings that arose from their experimental evaluation.

8.3.1 Learning Multiple Quantisation Thresholds

In Chapter 4 I contributed the first known semi-supervised multiple threshold learning

algorithm for scalar quantisation in the context of hashing-based ANN search. In most

existing work the projections are binarised by placing a single static threshold at zero

along each projected dimension. The resulting binary bits are then used to construct the

hashcodes for the data-points. My model permitted one or more thresholds to be opti-

mised per projected dimension in addition to the application of any binary codebook to

index the quantised regions. Furthermore, my quantisation model was unique in both

its objective function and the manner in which this objective function was maximised.

I proposed an objective function consisting of an F1-measure supervised term that was

interpolated with an unsupervised term that computed the compactness of the projec-

tions along a given dimension. The F1-measure was computed using an adjacency

graph that dictated the pairwise relationships between the data-points in the original

feature space. True positives in this case were true nearest neighbour pairs falling into

the same quantised regions, false negatives were true nearest neighbours pairs that fell

into different regions and false positives were non nearest neighbours that fell into the

same quantised regions. Given the non-differentiable nature of this objective function

I advocated maximisation by stochastic search (simulated annealing and evolutionary

algorithms). My experimental results arising from this research were many and varied

and I will only attempt to outline the main findings here. Specifically, I demonstrated

that:
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• Retrieval effectiveness can always be increased by optimising the quantisation

threshold(s) rather than statically placing the threshold at zero along a projected

dimension (Chapter 4, Section 4.3.3.5).

• The optimum number of thresholds per projected dimension is projection func-

tion specific. For example, Locality Sensitive Hashing (LSH) generally pre-

ferred a single threshold while Principal Components Analysis (PCA) hashing

benefited from two or more (Chapter 4, Sections 4.3.3.5-4.3.3.6).

• My semi-supervised objective function yielded the best retrieval effectiveness

compared to state-of-the-art multi-threshold scalar quantisation models from the

literature (Chapter 4, Section 4.3.3.8).

I confirmed that relaxing assumption A1 is beneficial for retrieval effectiveness in

the context of hashing-based approximate nearest neighbour search.

8.3.2 Learning Variable Quantisation Thresholds

In the second contribution of this thesis presented in Chapter 5, I highlighted the im-

portance of learning the appropriate allocation of thresholds per projected dimension.

The existing strategy of assigning the same number of thresholds to all projected di-

mension assumes that the corresponding hyperplanes are of equal locality preserving

quality, yet this is frequently not true in real datasets. For example, a PCA hyperplane

that captures a large proportion of the variance in the input feature space will tend to

be much more discriminative than a hyperplane that captures a much lower proportion

of the variance. I argued that the additional structure in the projected dimensions re-

sulting from the more informative hyperplanes should be exploited with a quantisation

of a finer granularity using multiple thresholds. This thesis presented, to the best of my

knowledge, the first known research that identified and solved this problem in the con-

text of hashing-based ANN search. I advocated the Fβ-measure as an original way of

quantifying the quality of a hyperplane. This Fβ-measure was computed from a data-

point adjacency graph with hyperplanes better preserving the neighbourhood structure

between the data-points generally obtaining a higher Fβ-measure. I introduced two

new threshold allocation algorithms that used the computed Fβ-measure scores to al-

locate thresholds to hyperplanes. Both algorithms sought to maximise the cumulative

Fβ-measure across hyperplanes but did so in two very different ways: one algorithm

solved the binary integer linear programme using branch and bound, while the other



264 Chapter 8. Conclusions

algorithm used a greedy approach that redistributed thresholds from the least informa-

tive to the most informative hyperplanes. The experimental evaluation demonstrated

the following main findings:

• Fβ-measure is a useful quantity for grading the locality preserving power of a

hyperplane (Chapter 5, Section 5.3.3.2).

• Retrieval effectiveness can be increased significantly by learning a variable allo-

cation of quantisation thresholds compared to a uniform allocation of thresholds

across projected dimensions (Chapter 5, Section 5.3.3.2).

I demonstrated that relaxing assumption A2 of existing work leads to significantly

higher retrieval effectiveness for hashing-based approximate nearest neighbour search.

8.3.3 Learning the Hashing Hypersurfaces

My third and fourth contributions in Chapter 6 centered around the relaxation of as-

sumption A3. Existing models for hashing-based ANN search draw the hashing hy-

perplanes randomly within the input feature space. I contributed a new supervised

projection function that instilled a degree of supervision into the placement of the

hashing hypersurfaces. My contention was that a small amount of supervision would

enable a better positioning of the hashing hypersurfaces in a way that encouraged more

true nearest neighbours to fall within the same partitioned regions of the space. The

projection function was an iterative three step algorithm reminiscent of the Expecta-

tion Maximisation (EM) algorithm. In the first step hashcodes of training data-points

were smoothed using a data-point adjacency graph, which had the effect of setting the

hashcode for each data-point to be the average of the hashcodes of its nearest neigh-

bours as defined by the adjacency graph. This was my novel method for integrating

supervision into the hypersurface learning procedure. In the next step a set of binary

classifiers were learnt to predict the regularised bits with maximum margin. This step

effectively positioned the hashing hypersurfaces within the space in a way that was

consistent with the regularised bits: if two data-points shared a bit in common they

were more likely to end up on the same side of the corresponding hypersurface. In

the third step of the iterative algorithm the training data-points were re-labelled using

the learnt hypersurfaces, which corrected the bits of any data-points that ended up on

the wrong side of the hypersurfaces in the previous step. Iterating these three steps

for a fixed number of iterations enabled the hypersurfaces to evolve into positions that
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fractured the input feature space in a manner consistent with the supervisory signal.

In my unimodal image retrieval evaluation, I made the following main experimental

findings:

• Learnt hashing hyperplanes lead to significantly higher nearest neighbour re-

trieval effectiveness compared to hyperplanes that are placed randomly in the

input feature space (Chapter 6, Section 6.3.3.4).

• Regularising hashcodes over a data-point adjacency graph is a more effective

method of integrating supervision into the process of hyperplane learning than a

Laplacian Eigenmap dimensionality reduction (Chapter 6, Section 6.3.3.6).

• Non-linear hypersurfaces induced by the radial basis function (RBF) kernel pro-

vide a more effective partitioning of the input feature space compared to linear

hypersurfaces (hyperplanes) (Chapter 6, Section 6.3.3.8).

• The training and prediction (hashcode generation) time of the linear variant of

my projection function was a fraction of the training time of competitive baseline

models (Chapter 6, Section 6.5).

• My supervised projection function attained state-of-the-art retrieval effective-

ness on standard image datasets, outperforming a large number of competitive

data-dependent and independent hashing models from the literature (Chapter 6,

Section 6.3.3.9).

The benefit of relaxing assumption A3 was confirmed in the context of unimodal

image retrieval in which the query and database are of the same feature type (e.g. SIFT

features). I further extended this supervised projection function to learn hyperplanes

that assigned similar hashcodes to similar data-points in two different modalities, such

as text (e.g. TF-IDF vectors) and images. The extension to cross-modal hypersur-

face learning was surprisingly straightforward: I simply learnt another set of binary

classifiers in the image feature space using the hashcodes of the textual data-points

as targets. This had the desired effect of making the hypersurfaces in the visual fea-

ture space consistent, that is capable of assigning the same bits to similar data-points,

with those in the textual feature space. Despite this simplicity I found the following

encouraging results:

• Extending the three-step iterative hypersurface learning algorithm to cross-modal

hashing yielded state-of-the-art retrieval effectiveness on standard cross-modal
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datasets, outperforming a large selection of existing models in the field (Chapter

6, Section 6.6).

• Regularising hashcodes over a data-point adjacency graph is more effective for

learning cross-modal hypersurfaces than solving an eigenvalue problem to obtain

the hypersurfaces (Chapter 6, Section 6.6).

• The training time of my cross-modal projection function was a fraction of the

time required by competitive baselines while having a similar prediction (hash-

code generation) time (Chapter 6, Table 6.27).

Relaxing assumption A3 was therefore also found to be beneficial for cross-modal

retrieval effectiveness.

8.3.4 Learning Hypersurfaces and Quantisation Thresholds

In the final contribution of this thesis I conducted a preliminary exploration into the

effect on retrieval effectiveness of learning both the hashing hypersurfaces and multi-

ple quantisation thresholds jointly. This research presented in Chapter 7 combined the

multiple threshold quantisation algorithms introduced in Chapters 4-5 with the itera-

tive hypersurface learning algorithm presented in Chapter 6. In doing so I created a

fully data-adaptive hashing pipeline of projection followed by quantisation. To con-

nect both models I binarised the low-dimensional projections computed by the hyper-

surface learning algorithm using the multiple threshold quantisation algorithm. On the

standard task of query-by-example image retrieval I made the following encouraging

finding:

• Learning the hashing hypersurfaces and the quantisation thresholds as part of

the same hashing model gives a retrieval effectiveness significantly greater than

learning either parameter individually (Chapter 7, Section 7.3.3.1).

8.4 Avenues for Future Work

The novel contributions presented in this thesis have but only scratched the surface

of this important and flourishing field of research and the potential scope for future

research is both many and varied. I will attempt to highlight several potential future

directions that I consider particularly promising in this last section.
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8.4.1 Groundtruth and Evaluation Metric Correlation with Human

Judgments

There has been little previous work that examines the extent to which the evaluation

metrics and groundtruth used in the learning to hash field are sensible for learning

hashcodes that correlate well with user search satisfaction. For example, ideally it

should be the case that a significant increase in the area under the precision recall

curve (AUPRC) should also lead to a significant increase in user satisfaction with the

retrieved images or documents. Furthermore, in Chapter 3 I introduced the class-based

and ε-NN based groundtruth definitions that were subsequently used to evaluate my

models in Chapter 4-7. Many datasets of interest do not have manually assigned class

labels, and so it would be useful to conduct a user-study as to how metric definitions

of nearest neighbour groundtruth, such as the ε-NN groundtruth paradigm outlined in

Chapter 3 Section 3.3.1, align with human judgements of item-item similarity. Ideally

we would want many related data-points to a given query, as judged by a user, to be

contained within the same ε-ball. For the class-based groundtruth used in Chapter 6

and outlined in Chapter 3 Section 3.3.2, this is less of an issue because those labels

have been specifically assigned to the images by humans. The outcome of this user

study would be expected to inform future developments in the evaluation procedures

for hashing-based ANN search algorithms, and would be a valuable contribution to the

community.

8.4.2 Online Learning of the Hashing Hypersurfaces

In Chapter 6 the hashing hypersurfaces were constructed in a batch fashion that as-

sumed the entire training dataset would be immediately available for learning. As

soon as the hypersurfaces were learnt they were never updated. This batch learning

assumption is flawed when we consider many modern data sources of prime interest

such as social media streams (e.g. Twitter). Twitter posts, for example, can be mod-

elled as a never-ending, effectively infinite stream of data that could never be inspected

in its entirety in a batch fashion (Petrović et al. (2010)). Furthermore streaming data

sources are highly likely to exhibit a drift in the distribution of the data over time as,

for example, new topics are discussed and the vocabulary changes. Simply learning a

set of hypersurfaces once with no possibility of further updates would be an entirely

suboptimal approach in this situation. It would be particularly interesting to adapt the

hypersurface learning algorithm presented in Chapter 6 to the streaming data scenario
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in which the hypersurfaces are capable of being updated in an online manner after

each labelled pair of data-points are encountered in the stream. To achieve this goal

one could potentially investigate the effectiveness of using passive aggressive (PA)

classifiers (Crammer et al. (2006)) in place of the support vector machines (SVMs)

used in this thesis. The PA classifier is particularly amenable to online learning and

would make an ideal starting point for future research on this topic. To the best of my

knowledge no online supervised projection function has so far been proposed for ap-

plication to large-scale streaming data sources. I believe such a model would have sig-

nificant potential impact in the field. An interesting challenge in this context would be

how to efficiently update the hashcodes of existing data-points in the face of changing

data. Furthermore, implementation of this model would address a second criticism of

the work presented in this thesis, namely the application of the algorithms to datasets

of medium size (1 million data-points or less) and of relatively low dimensionality

(D≤ 512).

8.4.3 Hashing Documents Written in Two Different Languages

The cross-modal extension to my supervised projection function was only tested on

images and textual data in this thesis, both of which were represented as low dimen-

sional feature vectors. A particularly interesting extension to the work would involve

exploring how the model could be adapted to hash cross-lingual documents, for exam-

ple English and Spanish Wikipedia articles. In this task my goal would be to cluster

related cross-lingual documents in the same hashtable buckets, without using any form

of machine translation. In contrast to the image and text features used in this the-

sis multi-lingual document data sources are likely to be very high dimensional when

encoded as TF-IDF vectors. The large freely available parallel and comparable cor-

pora1 consisting of similar documents written in different languages would provide the

needed pairwise supervision for learning the hashing hypersurfaces, negating any te-

dious manual effort to obtain the required labels. The cross-lingual projection function

could be directly compared and evaluated against Ture et al. (2011), a solution based

on machine translation and traditional unimodal Locality Sensitive Hashing (LSH).

Given the significant gains in retrieval effectiveness for the cross-modal experiments

conducted in this thesis I have strong reason to suspect that cross-lingual hashing with

a suitable adaptation of my graph regularised projection function would attract similar

1http://www.statmt.org/europarl/

http://www.statmt.org/europarl/
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gains in performance.

Given that more and more data on the Web is written in different languages I also

foresee an online version of this cross-lingual projection function being particularly

exciting future work. For example, a fast steaming algorithm for clustering similar

tweets written in many different languages into the same hashtable buckets could prove

useful to analysts in the financial industry or to linguists interested in studying the

linguistic properties of Twitter and other related micro-blogs (Zanzotto et al. (2011)).

8.4.4 Dependent Hypersurfaces and Quantisation Thresholds

The multiple threshold quantisation models introduced in Chapters 4-5 positioned

the quantisation thresholds independently across each projected dimension. In other

words, the learning of the quantisation thresholds for one projected dimension was in-

dependent of the learning of the quantisation thresholds for another projected dimen-

sion. Inspired by the body of research into multivariate discretisation (Bay (2001))

a potential future avenue of research could examine the benefits of inducing a degree

of dependence between the quantisation thresholds across projected dimensions. A

particularly simple, albeit contrived example of a dataset that would not be quantised

correctly by independently optimised thresholds is the two dimensional XOR dataset

(Bay (2000)). In this case the quantisation algorithm would need to account for the

correlation between the different feature dimensions in order to find the optimal posi-

tioning of the thresholds.

In a similar vein of research, the supervised projection function introduced in Chap-

ter 6 constructed each hypersurface independently in a simple sequential fashion. In-

ducing a degree of dependence between the learning of the hypersurfaces might con-

tribute to a reduced redundancy between bits while also permitting hypersurfaces learnt

later in the sequence to focus on data-point pairs incorrectly classified by hypersur-

faces learnt earlier in the sequence. A straightforward starting point would be to assign

a weight to each pair in the adjacency matrix in a similar manner to the Adaboost algo-

rithm (Schapire and Freund (2012)). True nearest neighbours assigned the same bits by

earlier hypersurfaces could have their weight decreased while non-nearest neighbours

assigned the same bits could have their weights increased. In this way the learning of

the hashing hypersurfaces could be gradually biased to focus on data-points pairs that

are more difficult to classify, potentially resulting in enhanced retrieval effectiveness.
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8.4.5 Closer Integration of the Projection and Quantisation Opera-

tions

In Chapter 7, I demonstrated that combining projection function and quantisation

threshold learning as part of the same hashing model can lead to significantly bet-

ter retrieval effectiveness as compared to learning either in isolation. My approach

involved a simple concatenation of my quantisation and projection models developed

in Chapters 4-6. In effect, the hyperplanes were optimised first and then the quantisa-

tion of the projections were optimised during the second step of the two-stage pipeline,

with both steps being performed independently, and without knowledge of the other.

In future work it would be interesting to explore a combined objective function that

both learns the optimal positioning of the hyperplanes while also simultaneously min-

imising the quantisation loss. This objective could be optimised in a single procedure,

for example, by using existing gradient-based optimisers, to exploit synergies between

the projection and quantisation operations to mutually influence and reinforce each

other. Indeed, there has been recent evidence provided by Zhu et al. (2016) that such

a tight coupling of projection and quantisation can lead to significantly better retrieval

effectiveness over the standard image datasets considered in this dissertation.

8.5 Concluding Remarks

This thesis has explored the benefits of learning binary hashcodes for fast nearest

neighbour search over large-scale datasets, with a particular focus on images. The ex-

perimental results have overwhelmingly indicated that significant increases in retrieval

effectiveness can be obtained through data-aware hashcodes compared to their data-

oblivious counterparts frequently employed in both industry and academia. I hope that

the research presented in this dissertation contributes in some small way to the devel-

opment of increasingly more effective and efficient algorithms for nearest neighbour

search.



Appendix A

Definition of Mathematical Notation

Notation Definition

N Number of data-points in dataset

D Dimensionality of data-point feature representation

K Number of hashcode bits

L Number of hashtables

Q Number of query data-points

B Number bits per projected dimension

T Number of thresholds per projected dimension

M Iterations

C Randomly sampled data-points or cluster centroids

X ∈ RN×D Dataset of N data-points, dimensionality D

xr ∈ RD : xr = Xr• rth row of matrix X
xc ∈ RN : xc = X•c cth column of matrix X
Xi j Element of matrix X in row i column j

q ∈ RD Query data-point

p ∈ RD Arbitrary database data-point

Y ∈ RN×K Projection matrix of N data-points, dimensionality K

yr ∈ RK : yr = Yr• Projected values for rth data-point

yc ∈ RN : yc = Y•c cth projected dimension

d : RD×RD→ R Distance function e.g. Euclidean distance

qk : R→{0,1}B Quantisation function

D ∈ RN×N Matrix of data-point distances

B ∈ {−1,1}N×K Hashcodes of N data-points each of length K bits

br ∈ {−1,1}K : br = Br• Hashcode of rth data-point xr
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hk : RD→{0,1} Hash function

gl : RD→{0,1}K Hash function concatenation [h1(.),h2(.), . . . ,hK(.)]

S ∈ RN×N Si j = 1 if xi and x j are nearest neighbours, 0 otherwise

hk ∈ RD Hyperplane

wk ∈ RD Hyperplane normal vector

W ∈ RD×K Matrix of K hyperplane normal vectors

tk ∈ R Scalar threshold

T ∈ RK×T Matrix of thresholds for each projected dimension

tr ∈ RT : tr = Tr• Set of thresholds for rth projected dimension

κ : RD×RD→ R Kernel function

γ ∈ R Kernel bandwidth parameter

‖X‖2
F = ∑

N
i j |Xi j|2 Frobenius L2 norm of matrix

‖X‖1
F = ∑

N
i j |Xi j| Frobenius L1 norm of matrix

X = diag(x) Places elements of vector x on diagonal of matrix X
sgn(a) ∈ {−1,1} Sign function returning 1 for a > 0, and -1 otherwise

[a]+ Equal to a if a≥ 0, and 0 otherwise

Table A.1: Definition of the mathematical notation used throughout the thesis
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