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Note: This presentation contains a slide with flashing imagery.



What is computational photography?

Computational photography refers to image capture and processing using digital computation (instead of
optical processes). It's a core topic in “low level” computer vision.
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Why is this interesting?
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We’re taking a lot of photos...

u . TRILLIONS TOTAL PHOTOS TAKEN
4 Trillion ™

| ' - 1437 1.64T
photos will be taken in 2020 -~ 1421
Proving the adage 'you'll never have 1.3 :
1.2

fewer digital pictures than before’, the
number of photos taken worldwide is
expected to grow again in 2020.

Compound Annual Growth Rate

https://focus.mylio.com/tech-today/how-many-photos-will-be-taken-in-2020
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...on our smartphones
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But how to get more out of our photos?

https://www.clickinmoms.com/blog/reasons-deliberately-underexpose-photo/
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Traditional ISP pipeline

A traditional Image Signal Processor (ISP) is a pipeline of image processing algorithms to transform the raw data acquired
by the image sensor into a high quality JPG image.
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= Can one use Deep Learning in the ISP? = Can one replace the ISP with a neural network?



DeeplISP

DeeplISP is a convolutional neural network that maps from RAW sensor data to a high
quality RGB image.

* Low level network: denoising, demosaicing

* High level network: transforms colours using a quadratic function
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DeeplISP: Toward Learning an End-to-End Image Processing Pipeline, Eli Schwartz, Raja Giryes, Alex M. Bronstein,
IEEE Transactions on Image Processing, 28(2), 2019.



https://ieeexplore.ieee.org/document/8478390/

Image enhancement using curve layers

»  Photoshop / Lightroom allows users to adjust global image properties through the use of curves

Example: adjusting brightness

= Can we build a neural network perform these types of operations automatically?



CURL

We recently introduced neural CURve Layers (CURL) which learns and applies curve adjustments to an
image. CURL has the following features:

*  Curves are piecewise linear

*  Curves can flexibly adjust different image attributes (brightness, saturation, colour)
» Different colour spaces (RGB, HSV, LAB) supported

*  Fully differentiable and trained end-to-end

*  Predicted curves are intuitive and can be user adjusted N SN I R
+  State-of-the-art performance

CIELab b channel neural curve
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CURL: Neural Curve Layers for Global Image Enhancement, Sean Moran, Steven McDonagh, Greg Slabaugh, to appear /ICPR 2020



https://arxiv.org/pdf/1911.13175.pdf

CURL architecture
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Transformed Encoder/Decoder (TED)

UNet style encoder/decoder but uses a multi-scale contextual awareness (MSCA) connection
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CURL block

A CURL block is a multi-colour space neural retouching block that estimates enhancement curves
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Loss and ablation studies

L = Lt 4+ C + L0 Loss is designed to control each of the colour-
Z hov + Liab gb red space specific transformations in CURL

1=1

Liap+Lreg Liap+Lhsv+Lreg All terms Groundtruth

HSV (21.99 dB) RGB (22.93 dB) LAB (24.76 dB) All (25.86 dB) Groundtruth




Results
DeepISP (28.19 dB) TED-+CURL (29.37 dB) Groundtruth

DeepUPE (16.85 dB) TED+CURL (23.55 dB) Groundtruth




Tables

Ordering PSNR . Architecture PSNRT
(test)" "?Egme(c:t[l}ﬁ ;’slng TED+CURL 24.20
HSV—-RGB—LAB | 26.20 -t . 51
RGB—HSV—LAB | 26.83 TED 26.56 g?g?;}t [15] 22'?2
LAB—RGB—HSV | 27.09 : .
LAB—HSV—RGB | 26.37 U-Net [13] 25.90 White-Box [2] 18.57
RGB—LAB—HSV | 25.32 DeepISP [8] 26.51 Distort-and-Recover [24] | 20.97
HSV—LAB—RGB | 26.53 DeepUPE [1] 23.04

Ordering through colour spaces RAW to RGB RGB to RGB
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DeepLPF for local image enhancement

Graduated filters

Elliptical filters
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DeepLPF: Deep Local Parametric Filters for Image Enhancement, Sean Moran, Pierre Marza, Steven McDonagh, Sarah Parisot, Gregory Slabaugh, CVPR 2020



https://openaccess.thecvf.com/content_CVPR_2020/html/Moran_DeepLPF_Deep_Local_Parametric_Filters_for_Image_Enhancement_CVPR_2020_paper.html

Thank you
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