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Introduction

• Machine Learning on Sourcecode (MLOnCode) promises to redefine how
software is delivered through intelligent augmentation of the software
development lifecycle (SDLC).

• Core to the field of MLOnCode is the learning of sourcecode feature
representations (“code vectors”). Popular methods include code2vec [1] and
transformer architectures [8] that capture structure and context.

• We represent sourcecode in a visual way as images that explicitly, through
the unique 2D representation, present both the code structure and context
directly to the learning algorithm.

• CV4Code is a novel and compact encoding of sourcecode as a 2D spatial
grid of numeric values that represent the characters in the code by their
ASCII codepoints.

• CV4Code code vectors can be used as code embeddings for MLOnCode
tasks, similar to VGG features [7] that have been shown to be a powerful
and flexible embedding of images for computer vision tasks.

Figure 1: The proposed CV4Code code understanding pipeline

Representing Code as Images

• CV4Code: Code snippets are transformed into 2-dimensional (matrix)
representation by mapping each printable ASCII character to their unique
index values and padding the special [blank] token wherever necessary to
retain the rectangular shape of the output.

• Figure 2 shows an example of the code representation generation process.
For a code snippet spanning L lines each with Cl, l ∈ 0, ..., L − 1
characters, the transformation is done in three steps:
1 Remove characters not within the valid set, output has L̂ lines each with Ĉl,

l ∈ 0, ..., L̂ − 1 characters;
2 Map each input character vk ∈ Vc to its index value k;
3 Pad each line to M = maxL̂−1

l=0 Ĉl long with the index value of [blank], generate the
output 2-dimensional code matrix X ∈ RL×M .

Figure 2: Example of 2D code representation generation.

Models

Figure 3: CV4Code transformer model variants.

• Models: ResNet [3], ViT [4], ViT for small-size datasets (ViT-fsd) [5] and
hybrid Convolutional Transformer (Conv-ViT) [2].

• Figure 3 shows an overview of the CV4Code transformer models:
1 ViT. Images are split into non-overlapping fixed-size patches. A learnable [class]

embedding is prepended whose state at the ViT output is the sourcecode representation
which is passed to an MLP head.

2 ViT-fsd. While the same setup as ViT is used, we apply shifted patch tokenization and
Locality Self-Attention [5].

3 Conv-ViT. To leverage CNN’s locality inductive bias we use convolutional layers to create
soft visual tokens and keep the use of [class] embedding (Figure 3(b)).

Results

Model Multilingual Java-only
Top-1 Top-5 Top-1 Top-5

ResNet 92.93 96.50 91.17 95.50
ViT-L 92.85 96.86 90.27 95.46

ViT-fsd-L 92.27 96.47 88.99 94.49
Conv-ViT-L 97.64 98.99 97.13 98.79

Table 1: problem_id classification results on CodeNetBench-Test.

Figure 4: Attention maps (rollout) of Conv-ViT-L. 1) C++, 2) Python, 3) Java
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